• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 9
    Sep.  2025
    Turn off MathJax
    Article Contents
    Niu Zixian, Chen Jie, Xiong Lihua, Li Shuang, Bai Xiongfeng, 2025. Improvement of Deep Learning Method for Daily Precipitation Downscaling. Earth Science, 50(9): 3506-3520. doi: 10.3799/dqkx.2025.095
    Citation: Niu Zixian, Chen Jie, Xiong Lihua, Li Shuang, Bai Xiongfeng, 2025. Improvement of Deep Learning Method for Daily Precipitation Downscaling. Earth Science, 50(9): 3506-3520. doi: 10.3799/dqkx.2025.095

    Improvement of Deep Learning Method for Daily Precipitation Downscaling

    doi: 10.3799/dqkx.2025.095
    • Received Date: 2025-02-17
    • Publish Date: 2025-09-25
    • To improve the downscaling effectiveness of deep learning methods for daily precipitation from global climate models (GCMs). Targeting at the Yangtze River basin, we constructed four deep learning downscaling models based on historical daily precipitation outputs from 20 GCMs. A hybrid method (DL-DBC) was proposed by integrating these models with the daily bias correction method. The four deep learning models exhibited comparable performance in daily precipitation downscaling. Compared to DBC, they achieved lower mean absolute relative error (MARE) for multi-year average daily precipitation but slightly higher MARE for multi-year average monthly and annual precipitation. The DL-DBC method outperformed standalone deep learning models, reducing MARE for multi-year average annual precipitation by 6.7%-11.3% and monthly precipitation by 6.3%-7.6%, while also demonstrating superior performance in precipitation frequency analysis. The DL-DBC method enhances the downscaling effectiveness of deep learning models and further reduces biases in daily precipitation data from GCMs.

       

    • loading
    • Baño-Medina, J., Manzanas, R., Gutiérrez, J. M., 2020. Configuration and Intercomparison of Deep Learning Neural Models for Statistical Downscaling. Geoscientific Model Development, 13(4): 2109-2124. https://doi.org/10.5194/gmd-13-2109-2020
      Bennett, J. C, Grose, M. R., Post, D. A., et al., 2011. Performance of Quantile-Quantile Bias-Correction for Use in Hydroclimatological Projections. In: Chan, F., Marinova, D., Anderssen, R. S., eds., 19th International Congress on Modelling and Simulation. Perth. https://doi.org/10.36334/modsim.2011.f5.bennett
      Cannon, A. J., 2018. Multivariate Quantile Mapping Bias Correction: An N-Dimensional Probability Density Function Transform for Climate Model Simulations of Multiple Variables. Climate Dynamics, 50(1): 31-49. https://doi.org/10.1007/s00382-017-3580-6
      Chen, J., Brissette, F. P., Chaumont, D., et al., 2013. Performance and Uncertainty Evaluation of Empirical Downscaling Methods in Quantifying the Climate Change Impacts on Hydrology over Two North American River Basins. Journal of Hydrology, 479: 200-214. https://doi.org/10.1016/j.jhydrol.2012.11.062
      Chen, J., Xu, C. Y., Guo, S. L., et al., 2016. Progress and Challenge in Statistically Downscaling Climate Model Outputs. Journal of Water Resources Research, 5(4): 299-313 (in Chinese with English abstract).
      Dickinson, R. E., Errico, R. M., Giorgi, F., et al., 1989. A Regional Climate Model for the Western United States. Climatic Change, 15(3): 383-422. https://doi.org/10.1007/BF00240465
      Eden, J. M., Widmann, M., 2014. Downscaling of GCM-Simulated Precipitation Using Model Output Statistics. Journal of Climate, 27(1): 312-324. https://doi.org/10.1175/jcli-d-13-00063.1
      Eum, H. I., Cannon, A. J., 2017. Intercomparison of Projected Changes in Climate Extremes for South Korea: Application of Trend Preserving Statistical Downscaling Methods to the CMIP5 Ensemble. International Journal of Climatology, 37(8): 3381-3397. https://doi.org/10.1002/joc.4924
      Guo, Q., Chen, J., Zhang, X. C., et al., 2019. A New Two-Stage Multivariate Quantile Mapping Method for Bias Correcting Climate Model Outputs. Climate Dynamics, 53(5): 3603-3623. https://doi.org/10.1007/s00382-019-04729-w
      Harris, L., McRae, A. T. T., Chantry, M., et al., 2022. A Generative Deep Learning Approach to Stochastic Downscaling of Precipitation Forecasts. Journal of Advances in Modeling Earth Systems, 14(10): e2022MS003120. https://doi.org/10.1029/2022MS003120
      He, X. G., Chaney, N. W., Schleiss, M., et al., 2016. Spatial Downscaling of Precipitation Using Adaptable Random Forests. Water Resources Research, 52(10): 8217-8237. https://doi.org/10.1002/2016WR019034
      Huang, G., Liu, Z., Van Der Maaten, L., et al., 2017. Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu. https://doi.org/10.1109/CVPR.2017.243
      Kingma, D., Ba, J., 2014. Adam: A method for Stochastic Optimization. The 3rd International Conference for Learning Representations, San Diego.
      Legasa, M. N., Manzanas, R., Calviño, A., et al., 2022. A Posteriori Random Forests for Stochastic Downscaling of Precipitation by Predicting Probability Distributions. Water Resources Research, 58(4): e2021WR030272. https://doi.org/10.1029/2021WR030272
      Li, W. T., Pan, B. X., Xia, J. J., et al., 2022. Convolutional Neural Network-Based Statistical Post-Processing of Ensemble Precipitation Forecasts. Journal of Hydrology, 605: 127301. https://doi.org/10.1016/j.jhydrol.2021.127301
      Lim, B., Son, S., Kim, H., et al., 2017. Enhanced Deep Residual Networks for Single Image Super-Resolution. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu. https://doi.org/10.1109/CVPRW.2017.151
      Liu, J., Chen, Q., Xu, Y., et al., 2024. Simulation of Phosphorus Inflow and Outflow Fluxes and Water Quality Prediction in Dongting Lake Area of the Yangtze River Basin: A Coupled Approach of Machine Learning and Traditional Hydrological Modeling. Earth Science, 49(11): 3995-4007 (in Chinese with English abstract).
      Liu, Y. H., Guo, W. D., Feng, J. M., et al., 2011. A Summary of Methods for Statistical Downscaling of Meteorological Data. Advances in Earth Science, 26(8): 837-847 (in Chinese with English abstract).
      Liu, Y. M., Ganguly, A. R., Dy, J., 2020. Climate Downscaling Using YNet: A Deep Convolutional Network with Skip Connections and Fusion. The 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. San Diego. https://doi.org/10.1145/3394486.3403366
      Liu, Z., Mao, H., et al., 2022. A Convnet for the 2020s. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle.
      Mearns, L. O., Arritt, R., Biner, S., et al., 2012. The North American Regional Climate Change Assessment Program: Overview of Phase I Results. Bulletin of the American Meteorological Society, 93(9): 1337-1362. https://doi.org/10.1175/bams-d-11-00223.1
      Meehl, G. A., Covey, C., Delworth, T., et al., 2007. THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research. Bulletin of the American Meteorological Society, 88(9): 1383-1394. https://doi.org/10.1175/bams-88-9-1383
      Mei, Y. W., Maggioni, V., Houser, P., et al., 2020. A Nonparametric Statistical Technique for Spatial Downscaling of Precipitation over High Mountain Asia. Water Resources Research, 56(11): e2020WR027472. https://doi.org/10.1029/2020WR027472
      Monjo, R., Gaitán, E., Pórtoles, J., et al., 2016. Changes in Extreme Precipitation over Spain Using Statistical Downscaling of CMIP5 Projections. International Journal of Climatology, 36(2): 757-769. https://doi.org/10.1002/joc.4380
      Pan, B. X., Anderson, G. J., Goncalves, A., et al., 2021. Learning to Correct Climate Projection Biases. Journal of Advances in Modeling Earth Systems, 13(10): e2021MS002509. https://doi.org/10.1029/2021MS002509
      Pan, B. X., Hsu, K., AghaKouchak, A., et al., 2019. Improving Precipitation Estimation Using Convolutional Neural Network. Water Resources Research, 55(3): 2301-2321. https://doi.org/10.1029/2018WR024090
      Pierce, D. W., Cayan, D. R., Maurer, E. P., et al., 2015. Improved Bias Correction Techniques for Hydrological Simulations of Climate Change. Journal of Hydrometeorology, 16(6): 2421-2442. https://doi.org/10.1175/jhm-d-14-0236.1
      Pour, S. H., Shahid, S., Chung, E. S., 2016. A Hybrid Model for Statistical Downscaling of Daily Rainfall. Procedia Engineering, 154: 1424-1430. https://doi.org/10.1016/j.proeng.2016.07.514
      Rodrigues, E. R., Oliveira, I., Cunha, R., et al., 2018. DeepDownscale: A Deep Learning Strategy for High-Resolution Weather Forecast. 2018 IEEE 14th International Conference on e-Science (e-Science)., Amsterdam. https://doi.org/10.1109/eScience.2018.00130
      Sachindra, D. A., Kanae, S., 2019. Machine Learning for Downscaling: The Use of Parallel Multiple Populations in Genetic Programming. Stochastic Environmental Research and Risk Assessment, 33(8): 1497-1533. https://doi.org/10.1007/s00477-019-01721-y
      Schoof, J. T., Pryor, S. C., 2001. Downscaling Temperature and Precipitation: A Comparison of Regression-Based Methods and Artificial Neural Networks. International Journal of Climatology, 21(7): 773-790. https://doi.org/10.1002/joc.655
      Sharma, S. C. M., Kumar, B., Mitra, A., et al., 2024. Deep Learning-Based Bias Correction of ISMR Simulated by GCM. Atmospheric Research, 309: 107589. https://doi.org/10.1016/j.atmosres.2024.107589
      Sillmann, J., Kharin, V. V., Zhang, X., et al., 2013. Climate Extremes Indices in the CMIP5 Multimodel Ensemble: Part 1. Model Evaluation in the Present Climate. Journal of Geophysical Research: Atmospheres, 118(4): 1716-1733. https://doi.org/10.1002/jgrd.50203
      Sun, L., Lan, Y. F., 2021. Statistical Downscaling of Daily Temperature and Precipitation over China Using Deep Learning Neural Models: Localization and Comparison with Other Methods. International Journal of Climatology, 41(2): 1128-1147. https://doi.org/10.1002/joc.6769
      Taylor, K. E., Stouffer, R. J., Meehl, G. A., 2012. An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, 93(4): 485-498. https://doi.org/10.1175/bams-d-11-00094.1
      Vandal, T., Kodra, E., Ganguly, A. R., 2019. Intercomparison of Machine Learning Methods for Statistical Downscaling: The Case of Daily and Extreme Precipitation. Theoretical and Applied Climatology, 137(1): 557-570. https://doi.org/10.1007/s00704-018-2613-3
      Wang, F., Tian, D., 2022. On Deep Learning-Based Bias Correction and Downscaling of Multiple Climate Models Simulations. Climate Dynamics, 59(11): 3451-3468. https://doi.org/10.1007/s00382-022-06277-2
      Wang, F., Tian, D., Lowe, L., et al., 2021. Deep Learning for Daily Precipitation and Temperature Downscaling. Water Resources Research, 57(4): e2020WR029308. https://doi.org/10.1029/2020WR029308
      Wang, L., Chen, W., 2014. A CMIP5 Multimodel Projection of Future Temperature, Precipitation, and Climatological Drought in China. International Journal of Climatology, 34(6): 2059-2078. https://doi.org/10.1002/joc.3822
      Wilby, R. L., Wigley, T. M. L., Conway, D., et al., 1998. Statistical Downscaling of General Circulation Model Output: A Comparison of Methods. Water Resources Research, 34(11): 2995-3008. https://doi.org/10.1029/98WR02577
      Wood, A. W., Leung, L. R., Sridhar, V., et al., 2004. Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs. Climatic Change, 62(1): 189-216. https://doi.org/10.1023/B: CLIM.0000013685.99609.9e doi: 10.1023/B:CLIM.0000013685.99609.9e
      Wu, J., Gao, X. J., 2013. A Gridded Daily Observation Dataset over China Region and Comparison with the Other Datasets. Chinese Journal of Geophysics, 56(4): 1102-1111 (in Chinese with English abstract).
      Yang, C. L., Wang, N. L., Wang, S. J., et al., 2018. Performance Comparison of Three Predictor Selection Methods for Statistical Downscaling of Daily Precipitation. Theoretical and Applied Climatology, 131(1): 43-54. https://doi.org/10.1007/s00704-016-1956-x
      Yang, W., Andréasson, J., Phil Graham, L., et al., 2010. Distribution-Based Scaling to Improve Usability of Regional Climate Model Projections for Hydrological Climate Change Impacts Studies. Hydrology Research, 41(3-4): 211-229. https://doi.org/10.2166/nh.2010.004
      Zhang, Q., Wu, G. X., 2001. The Large Area Flood and Drought over Yangtze River Valley and Its Relation to the South Asia High. Acta Meteorologica Sinica, 59(5): 569-577 (in Chinese with English abstract).
      Zhang, Z. S., Li, S. L., Wang, H. J., et al., 2022. Introduction of Crossing Disciplines between Geology and Atmospheric Science. Earth Science, 47(10): 3569-3579 (in Chinese with English abstract).
      陈杰, 许崇育, 郭生练, 等, 2016. 统计降尺度方法的研究进展与挑战. 水资源研究, 5(4): 299-313.
      刘杰, 陈前, 许妍, 等, 2024. 长江流域洞庭湖区出入湖磷通量模拟及水质预测: 机器学习与传统水文模型耦合方法. 地球科学, 49(11): 3995-4007. doi: 10.3799/dqkx.2024.061
      刘永和, 郭维栋, 冯锦明, 等, 2011. 气象资料的统计降尺度方法综述. 地球科学进展, 26(8): 837-847.
      吴佳, 高学杰, 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比. 地球物理学报, 56(4): 1102-1111.
      张琼, 吴国雄, 2001. 长江流域大范围旱涝与南亚高压的关系. 气象学报, 59(5): 569-577.
      张仲石, 李双林, 王会军, 等, 2022. 浅谈大气科学与地质学的学科交叉. 地球科学, 47(10): 3569-3579. doi: 10.3799/dqkx.2022.350
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(3)

      Article views (312) PDF downloads(33) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return