| Citation: | Zhou Lin, Chen Jianfeng, Zhu Yan, 2025. Development Model of Excess Pore Pressure for Geogrid Reinforced Coral Sand Based on Strain Characteristics. Earth Science, 50(10): 3905-3915. doi: 10.3799/dqkx.2025.097 | 
The accumulation of excess pore pressure in coral sand under seismic loading until liquefaction is a key factor leading to structural damage. A series of undrained cyclic triaxial tests were conducted in this study to investigate the effects of geogrid reinforcement layer, relative density (Dr) and cyclic stress ratio (CSR) on the development of excess pore pressure and axial strain in reinforced coral sand. The results indicate that geogrid reinforcement as well as an increase in the number of geogrid layers reduce the development rate of excess pore pressure and axial strain, thereby improving the liquefaction resistance of coral sand. The pore pressure of coral sand is much higher than that of siliceous sand under the same cyclic vibration ratio, and the pore pressure development curve of reinforced coral sand gradually transitions from an S-type to a hyperbolic type with the increase of cyclic stress ratio, thus the classic Seed pore pressure stress model is difficult to describe its pore pressure development trend. Based on the above findings, a strain-based excess pore pressure development model for geogrid-reinforced coral sand is proposed. This model accurately predicts the development trend of excess pore pressure in reinforced coral sand under different Dr and CSR, which provides a theoretical basis for the seismic design of infrastructure and stability analysis using effective stress in coral sand island reef area of the South China Sea.
	                | 
					 Akosah, S., Zhou, L., Chen, J. F., et al., 2024. Experimental Investigation on Cyclic Behavior of Geogrid-Reinforced Coral Sand from the South China Sea. Marine Georesources & Geotechnology, 42(6): 707-720.  https://doi.org/10.1080/1064119x.2023.2214933 
						
					 | 
			
| 
					 Asadi, M. S., Asadi, M. B., Orense, R. P., et al., 2018. Undrained Cyclic Behavior of Reconstituted Natural Pumiceous Sands. Journal of Geotechnical and Geoenvironmental Engineering, 144(8): 04018045.  https://doi.org/10.1061/(asce)gt.1943-5606.0001912 
						
					 | 
			
| 
					 Chen, G. X., Ma, W. J., Qin, Y., et al., 2021. Liquefaction Susceptibility of Saturated Coral Sand Subjected to Various Patterns of Principal Stress Rotation. Journal of Geotechnical and Geoenvironmental Engineering, 147(9): 04021093.  https://doi.org/10.1061/(asce)gt.1943-5606.0002590 
						
					 | 
			
| 
					 Chen, G. X., Wu, Q., Zhou, Z. L., et al., 2020. Undrained Anisotropy and Cyclic Resistance of Saturated Silt Subjected to Various Patterns of Principal Stress Rotation. Géotechnique, 70(4): 317-331.  https://doi.org/10.1680/jgeot.18.p.180 
						
					 | 
			
| 
					 Chen, J. F., Akosah, S., Ma, C., et al., 2023. Large-Scale Triaxial Tests of Reinforced Coral Sand with Different Grain Size Distributions. Marine Georesources & Geotechnology, 41(5): 544-554.  https://doi.org/10.1080/1064119x.2022.2068462 
						
					 | 
			
| 
					 Ding, X. M., Luo, Z. G., Ou, Q., 2022. Mechanical Property and Deformation Behavior of Geogrid Reinforced Calcareous Sand. Geotextiles and Geomembranes, 50(4): 618-631.  https://doi.org/10.1016/j.geotexmem.2022.03.002 
						
					 | 
			
| 
					 Fang, Y., Ikuo, T., Ghalandarzadeh, A., et al., 2001. Mechanism of Deformation and Failure of Gravity-Type Quay Walls under Earthquake Liquefaction. Earth Science, 26(4): 415-418 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Gao, R., Ye, J. H., 2019. Experimental Investigation on the Dynamic Characteristics of Calcareous Sand from the Reclaimed Coral Reef Islands in the South China Sea. Rock and Soil Mechanics, 40(10): 3897-3908, 3919(in Chinese with English abstract). 
						
					 | 
			
| 
					 Goodarzi, S., Shahnazari, H., 2018. Strength Enhancement of Geotextile-Reinforced Carbonate Sand. Geotextiles and Geomembranes, 47(2): 128-139.  https://doi.org/10.1016/j.geotexmem.2018.12.004 
						
					 | 
			
| 
					 Hussain, M., Sachan, A., 2019. Dynamic Characteristics of Natural Kutch Sandy Soils. Soil Dynamics and Earthquake Engineering, 125: 105717.  https://doi.org/10.1016/j.soildyn.2019.105717 
						
					 | 
			
| 
					 Lee, K. L., Albaisa, A., 1974. Earthquake Induced Settlements in Saturated Sands. Journal of the Geotechnical Engineering Division, 100(4): 387-406.  https://doi.org/10.1061/ajgeb6.0000034 
						
					 | 
			
| 
					 Li, W. Y., Huang, Y., 2023. Model Tests on the Effect of Dip Angles on Flow Behavior of Liquefied Sand. Journal of Earth Science, 34(2): 381-385.  https://doi.org/10.1007/s12583-021-1498-8 
						
					 | 
			
| 
					 Li, X., Liu, J. K., Nan, J. Y., 2022. Prediction of Dynamic Pore Water Pressure for Calcareous Sand Mixed with Fine-Grained Soil under Cyclic Loading. Soil Dynamics and Earthquake Engineering, 157: 107276.  https://doi.org/10.1016/j.soildyn.2022.107276 
						
					 | 
			
| 
					 Liu, H. L., Zhang, Y., Guo, W., et al., 2021. A Prediction Model of Dynamic Pore Water Pressure for MICP-Treated Calcareous Sand. Chinese Journal of Rock Mechanics and Engineering, 40(4): 790-801(in Chinese with English abstract). 
						
					 | 
			
| 
					 Ma, W. J., Chen, G. X., Li, L., et al., 2019. Experimental Study on Liquefaction Characteristics of Saturated Coral Sand in Nansha Islands under Cyclic Loading. Chinese Journal of Geotechnical Engineering, 41(5): 981-988(in Chinese with English abstract). 
						
					 | 
			
| 
					 Ma, W. J., Chen, G. X., Qin, Y., et al., 2020. Experimental Studies on Effects of Initial Major Stress Direction Angles on Liquefaction Characteristics of Saturated Coral Sand. Chinese Journal of Geotechnical Engineering, 42(3): 592-600 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Maheshwari, B. K., Singh, H. P., Saran, S., 2012. Effects of Reinforcement on Liquefaction Resistance of Solani Sand. Journal of Geotechnical and Geoenvironmental Engineering, 138(7): 831-840.  https://doi.org/10.1061/(asce)gt.1943-5606.0000645 
						
					 | 
			
| 
					 Mao, W. W., Li, W., Rasouli, R., et al., 2023. Numerical Simulation of Liquefaction-Induced Settlement of Existing Structures. Journal of Earth Science, 34(2): 339-346.  https://doi.org/10.1007/s12583-021-1531-y 
						
					 | 
			
| 
					 Olson, S. M., Green, R. A., Lasley, S., et al., 2012. Documenting Liquefaction and Lateral Spreading Triggered by the 12 January 2010 Haiti Earthquake. Earthquake Spectra, 27(1_suppl1): 93-116.  https://doi.org/10.1193/1.3639270 
						
					 | 
			
| 
					 Rui, S. J., Guo, Z., Si, T. L., et al., 2020. Effect of Particle Shape on the Liquefaction Resistance of Calcareous Sands. Soil Dynamics and Earthquake Engineering, 137: 106302.  https://doi.org/10.1016/j.soildyn.2020.106302 
						
					 | 
			
| 
					 Seed, H. B., Martin, P. P., Lysmer, J., 1976. Pore-Water Pressure Changes during Soil Liquefaction. Journal of the Geotechnical Engineering Division, 102(4): 323-346.  https://doi.org/10.1061/ajgeb6.0000258 
						
					 | 
			
| 
					 Shen, Y., Ma, Y. H., Rui, X. X., 2023. Experimental Study on Pore Water Pressure Characteristics and Accumulated Loss Energy of Saturated Calcareous Sand under Wave Loading. Rock and Soil Mechanics, 44(8): 2195-2204(in Chinese with English abstract). 
						
					 | 
			
| 
					 Wang, L., Wang, Y. L., Yuan, X. M., et al., 2021. Experimental Study on Liquefaction Resistance of Hydraulic Fill Coralline Soils at Artificial Sites Based on Large-Scale Dynamic Triaxial Apparatus. Rock and Soil Mechanics, 42(10): 2819-2829(in Chinese with English abstract). 
						
					 | 
			
| 
					 Wu, Q., Wang, L. Y., Liu, Q. F., et al., 2023. Experimental Study on Development Model of Excess Pore Pressure for Saturated Coral Sand Based on Shear Strain Characteristics. Chinese Journal of Geotechnical Engineering, 45(10): 2091-2099(in Chinese with English abstract). 
						
					 | 
			
| 
					 Wu, Y., Cui, J., Li, C., et al., 2022. Experimental Study on the Effect of Fines on the Maximum Dynamic Shear Modulus of Coral Sand in a Hydraulic Fill Island-Reef. Chinese Journal of Rock Mechanics and Engineering, 41(1): 205-216 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Wu, Y., Wu, Y. H., Ma, L. J., et al., 2024. Experimental Study on Dynamic Characteristics of Calcareous Sand-Gravel Mixtures from Islands in the South China Sea. Chinese Journal of Geotechnical Engineering, 46(1): 63-71 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Xiao, P., Liu, H. L., Stuedlein, A. W., et al., 2019. Effect of Relative Density and Biocementation on Cyclic Response of Calcareous Sand. Canadian Geotechnical Journal, 56(12): 1849-1862.  https://doi.org/10.1139/cgj-2018-0573 
						
					 | 
			
| 
					 Yu, H. Z., Wang, R., Zhao, W. G., et al., 2006. Experimental Research on Development Pattern of Pore Water Pressure of Carbonate Sand under Wave Loads. Journal of Wuhan University of Technology, 28(11): 86-89(in Chinese with English abstract). 
						
					 | 
			
| 
					 Zhou, L., Chen, J. F., Peng, M., et al., 2022. Liquefaction Behavior of Fiber-Reinforced Calcareous Sands in Unidirectional and Multidirectional Simple Shear Tests. Geotextiles and Geomembranes, 50(4): 794-806.  https://doi.org/10.1016/j.geotexmem.2022.04.003 
						
					 | 
			
| 
					 Zhou, L., Chen, J. F., Zhu, Y., et al., 2024. Liquefaction and Post-Liquefaction Behaviors of Unreinforced and Geogrid Reinforced Calcareous Sand. Geotextiles and Geomembranes, 52(3): 286-303.  https://doi.org/10.1016/j.geotexmem.2023.11.002 
						
					 | 
			
| 
					 Zhou, L., Chen, J. F., Zhuang, X. Y., 2023. Undrained Cyclic Behaviors of Fiber-Reinforced Calcareous Sand under Multidirectional Simple Shear Stress Path. Acta Geotechnica, 18(6): 2929-2943.  https://doi.org/10.1007/s11440-022-01780-6 
						
					 | 
			
| 
					 方云, 东烟郁生, Ghalandarzadeh, A., 等, 2001. 地震液化条件下重力式码头的变形破坏机理. 地球科学, 26(4): 415-418. http://www.earth-science.net/article/id/865 
					
					 | 
			
| 
					 高冉, 叶剑红, 2019. 中国南海吹填岛礁钙质砂动力特性试验研究. 岩土力学, 40(10): 3897-3908, 3919. 
					
					 | 
			
| 
					 刘汉龙, 张宇, 郭伟, 等, 2021. 微生物加固钙质砂动孔压模型研究. 岩石力学与工程学报, 40(4): 790-801. 
					
					 | 
			
| 
					 马维嘉, 陈国兴, 李磊, 等, 2019. 循环荷载下饱和南沙珊瑚砂的液化特性试验研究. 岩土工程学报, 41(5): 981-988. 
					
					 | 
			
| 
					 马维嘉, 陈国兴, 秦悠, 等, 2020. 初始主应力方向角对饱和珊瑚砂液化特性影响的试验. 岩土工程学报, 42(3): 592-600. 
					
					 | 
			
| 
					 沈扬, 马英豪, 芮笑曦, 2023. 波浪荷载作用下饱和钙质砂孔压特性及累积损失能量试验研究. 岩土力学, 44(8): 2195-2204. 
					
					 | 
			
| 
					 王鸾, 汪云龙, 袁晓铭, 等, 2021. 人工场地吹填珊瑚土抗液化强度大粒径动三轴试验研究. 岩土力学, 42(10): 2819-2829. 
					
					 | 
			
| 
					 吴琪, 王路阳, 刘启菲, 等, 2023. 基于剪切应变特征的饱和珊瑚砂超静孔压发展模型试验研究. 岩土工程学报, 45(10): 2091-2099. 
					
					 | 
			
| 
					 吴杨, 崔杰, 李晨, 等, 2022. 细粒含量对岛礁吹填珊瑚砂最大动剪切模量影响的试验研究. 岩石力学与工程学报, 41(1): 205-216. 
					
					 | 
			
| 
					 吴杨, 吴毅航, 马林建, 等, 2024. 南海岛礁珊瑚砂砾混合料动力特性试验研究. 岩土工程学报, 46(1): 63-71. 
					
					 | 
			
| 
					 虞海珍, 汪稔, 赵文光, 等, 2006. 波浪荷载下钙质砂孔压增长特性的试验研究. 武汉理工大学学报, 28(11): 86-89. 
					
					 |