• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 8
    Aug.  2025
    Turn off MathJax
    Article Contents
    Liu Demin, Zhang Yan, Wang Haiming, Jiang Huai, Zhao Yue, Wang Dun, Yang Weiran, 2025. Surface Deformation Characteristics and Seismo-Tectonics of the 2025 Dingri Ms6.8 Earthquake in Southern Tibet. Earth Science, 50(8): 3270-3283. doi: 10.3799/dqkx.2025.103
    Citation: Liu Demin, Zhang Yan, Wang Haiming, Jiang Huai, Zhao Yue, Wang Dun, Yang Weiran, 2025. Surface Deformation Characteristics and Seismo-Tectonics of the 2025 Dingri Ms6.8 Earthquake in Southern Tibet. Earth Science, 50(8): 3270-3283. doi: 10.3799/dqkx.2025.103

    Surface Deformation Characteristics and Seismo-Tectonics of the 2025 Dingri Ms6.8 Earthquake in Southern Tibet

    doi: 10.3799/dqkx.2025.103
    • Received Date: 2025-06-12
    • Publish Date: 2025-08-25
    • Destructive earthquakes and other natural disasters not only cause deterioration of the regional ecological environment, but also lead to soil erosion and local poverty, but also have a more direct impact on the loss of people's lives and property, as well as the destruction and deformation of ground buildings such as residential buildings. The Surface deformation characteristics, ground subsidence, and building collapse caused by the Ms 6.8 earthquake occurred in Dingri County, southern Tibet on January 7, 2025 were comprehensively analyzed through field investigations. The vertical displacement intensity along the Dingmu Co fault decreases from vertical displacement of over 185 cm at an altitude of over 5 500 meters in the north to vertical displacement of less than 120 cm at an altitude of over 4 200 meters in the east of Dingmu Co; The northern section has a westward drop, which is due to the overall descent of the upper plate of the Dingmu Co fault, with some sections descending in a stepped manner, resulting in steep slopes of up to 3 meters for ice water sediments and slope foot alluvial deposits in the ice eroded U-shaped valley; Occasionally, dry cow manure, Permafrost bulge, and huge ice debris being left displaced, indicating that this earthquake also had obvious strike slip characteristics. A Surface deformation with a north-south extension and an east-west width of up to 50 meters appeared in the alluvial deposits of the eastern Pleistocene in Dingmu Co, characterized by a central collapse and overall westward subsidence. The steep slope of the tensile rupture generally does not exceed 120 cm, and up to 50 cm squeezing uplift and seismic bulges are also developed at the leading edge of the tensile rupture, near the local section of Dingmu Co. The villages of Jiweng and Gurong, located in the center of the surface fissure, were the most severely affected by the Dingri earthquake. Except for a few cement and brick houses, most of the houses collapsed, making them the most severely affected villages in this earthquake. Based on the analysis of regional geological background, the Dingri earthquake is a shallow source destructive earthquake controlled by extensional structures. The upwelling of mantle thermal material in the Cenozoic era activated extensional structures represented by the north-south Dingmu Co strike-slip normal fault and the nearly east-west Tibetan southern detachment system, releasing energy at the intersection of these extensional structures and causing earthquakes.

       

    • loading
    • Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872. https://doi.org/10.1029/jb091ib14p13803
      Bian, S., Yu, Z. Q., Gong J. F., et al., 2021. Spatial-Temporal Distribution and Geodynamic Mechanism of the Nearly NS Trending Rifts in the Tibetan Plateau. Journal of Geomechanics, 27(2): 178-194(in Chinese with English abstract).
      Dang, G. M., Wang, Z. J., 2002. Characteristics of the Surface Rupture Zone and Main Seismic Hazards Caused by the Ms8.1 Earthquake West of the Kunlun Pass, China-Constraints on the Regional Stability of the Qinghai-Tibet Plateau. Geological Bulletin of China, 21(2): 105-108(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2002.02.013
      Gao, Y., 2024. Spatial-Temporal Characteristic of the Quaternary NS Trending Normal Faulting in the Dinggye Gyrong Area, Southern Tibet(Dissertation). Pekin Unversity, Beijing(in Chinese with English abstract).
      Kali, E., Leloup, P. H., Arnaud, N., et al., 2010. Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime range: Key Pressure-Temperature-Deformation-Time Constraints on Orogenic Models: Ama Drime Exhumation History. Tectonics, 29(2): 1-10. https://doi.org/10.1029/2009tc002551
      Huang, T., Wu, Z. H., Han, S., et al., 2024. The Basic Characteristics of Active Faults in the Region of Xigaze, Xizangand the Assessment of Potential Earthquake Disaster Risks. Progress in Earthquake Sciences, 54(10): 696-711(in Chinese with English abstract).
      Leloup, P. H., Mahéo, G., Arnaud, N., et al., 2010. The South Tibet Detachment Shear Zone in the Dinggye Area Time Constraints on Extrusion Models of the Himalayas. Earth and Planetary Science Letters, 292(1/2): 1-16. https://doi.org/10.1016/j.epsl.2009.12.035
      Li, H. B., Fu, X. F., Woerd, J., et al., 2008. Co-Seisimic Surface Rupture and Dextral-Slip Oblique Thrusting of the MS 8.0 Wenchuan Earthquake. Acta Geologica Sinica, 82(12): 1623-1643(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2008.12.002
      Li, N., Liu, L. Q, Zhu, L. D, et al., 2024. Quaternarу Soft-Sediment Deformation Structures in the Dingmucuo Graben, Northern Himalaуa. Journal of Chengdu University of Technology (Science & Technology Edition), 51(6): 1048-1069(in Chinese with English abstract).
      Liu, D. M., Li, D. W., 2003. Detachment Faults in Dingjie Area, Middle Segment of Himalayan Orogenic Belt. Geotectonica et Metallogenia, 27(1): 37-42(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2003.01.005
      Liu, D. M., Li, D. W., Yang, W. R., 2003. Study of Mylonite and Deformation of Ductile Shear Zone, Dingjie Area. Earth Science Frontiers, 10(2): 479-486(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2003.02.028
      Liu, D. M., Yang, W. R., Guo, T. Y., 2020. Discussion on Cenozoic Tectonic Development and Dynamics in South Tibet. Earth Sciences Frontiers, 27(1): 194-203(in Chinese with English abstract).
      Liu, D. M., Wang, J., Jiang, H., et al., 2024. Evolutionary Geodynamics and Remote Effects of the Uplift of the Qinghai-Tibet Plateau. Earth Science Frontiers, 31(1): 154-169(in Chinese with English abstract).
      Liu, F. C., Pan, J. W., Li, H. B., et al., 2025. Co-Seismic Surface Rupture of the 2025 Mw7.1 Tingri Earthquake and Potential Seismic Risk in Southern Tibetan Plateau. Acta Geologica Sinica, 99(3): 685-703(in Chinese with English abstract).
      Lu, Z. W., Gao, R., Li, Q. S., et al., 2006. Deep Geophysical Probe and Geodynamic Study on the Qinghai_Tibet Plateau(1958-2004). Chinese Journal of Geophysics, 49(3): 753-770(in Chinese). doi: 10.3321/j.issn:0001-5733.2006.03.019
      Molnar, P., England, P., Martinod, J., 1993. Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 31(4): 357-396. https://doi.org/10.1029/93rg02030
      Pan, J. W., Li, H. B., Wu, F. X., 2011. Surface Rupture Characteristics, Rupture Mechanics, and Rupture Process of the Yushu Earthquake(Ms7.1), 14/04/2010. Acta Petrologica Sinica, 27(11): 3449-3459(in Chinese with English abstract).
      Shao, Y. S., Wang, A. S., Liu, J., et al., 2025. Preliminary Investigation on Surface Rupture and CoseismicDisplacement of the January 7, 2025 Dingri Earthquake in Xizang. Earth Science, 50(5): 1677-1695(in Chinese with English abstract).
      Sheng, S. Z., Wang, Q. R., Li, Z. Y., et al., 2025. Investigation of the Seismogenic Structure of the 2025 Dingri MS 6.8 Earthquake in Xizang Base on the Tectonic Stress Field Perspective. Seismology and Geology, 47(1): 49-63(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2025.01.004
      Shi, F., Lian, M. J., Luo, Q. X., et al., 2025. Seismogenic Fault and Coseimic Surface Deformation of the Dingri Ms 6.8 Earthquake in Tibet, China. Seismology and Geology, 47(1): 1-15(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2025.01.001
      Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10. 1126/science.105978 doi: 10.1126/science.105978
      Tian, T. T., 2021. Dating of Late Quaternary Paleoseismic Events of the DingmuCuo Fault in the Southern Section of Shenzha-Dingjie Rift(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Tian, T. T., Wu, Z. H., 2023. Recent Prehistoric Major Earthquake Event of Dingmucuo Normal Fault in the Southern Segment of Shenzha-Dingjie Rift and Its Seismic Geological Significance. Geological Review, 69(s1): 53-55(in Chinese with English abstract).
      Wang, H., Elliott, J. R., Craig, T. J., et al., 2014. Normal Faulting Sequence in the Pumqu-Xainza Rift Constrained by InSAR and Teleseismic Body-Wave Seismology. Geochemistry, Geophysics, Geosystems, 15(7): 2947-2963. https://doi.org/10.1002/2014gc005369
      Wang, H., Wright, T. J., Jing, L. Z., et al., 2019. Strain Rate Distribution in South-Central Tibet from Two Decades of InSAR and GPS. Geophysical Research Letters, 46(10): 5170-5179. https://doi.org/10.1029/2019gl081916
      Wu, Z. H., Zhang, Y. S., Hu, D. G., et al., 2008. Quaternary Normal Faulting and Its Dynamic Mechanism of the Cona-Nariyong Co Graben in South-Eastern Tibet. Quaternary Sciences, 28(2): 232-242(in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.2008.02.005
      Wu, Z. M., Cao, Z. Q., Shen, T. B. M., et al., 1994. Seismogenic Tectonics in the Central Tibet. Earthquake Research in China, 10(1): 19-27(in Chinese).
      Xu, X. Y., 2019. Late Quaternary Activity and Its Environmental Effects of the N-S Trend Kharta Fault in Shenzha-Dingjie Rift, Southern Tibet(Dissertation). Institute of Geology, China Earth quake Administration, Beijing(in Chinese).
      Yang, T., Wang, S. G., Fang, L. H., et al., 2025. Aftershock Sequence Characteristics and Seismogenic Structure of the Ms 6.8 Dingri Earthquake in Tibet. Earth Science, 50(5): 1721-1732(in Chinese with English abstract).
      Yin, A., Kapp, P. A., Murphy, M. A., et al., 1999. Significant Late Neogene East-West Extension in Northern Tibet. Geology, 27: 787-790.
      Yin, A., 2000. Mode of Cenozoic East-West Extension in Tibet Suggesting a Common Origin of Rifts in Asia during the Indo-Asian Collision. Journal of Geophysical Research: Solid Earth, 105(B9): 21745-21759. https://doi.org/10.1029/2000jb900168
      Zhang, J. J., 2007. Review on the Extensional Structures in the Northern Himalaya and Southern Tibet. Geological Bulletin of China, 26(6): 639-649(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2007.06.003
      Zhou, J. J., Shao, Z. G., He, H. L., et al., 2025. Surface Rupture Interpretation and Building Damage Assessment of Xizang Dingri MS6.8 Earthquake on January 7, 2025. Seismology and Geology, 47(1): 16-35(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2025.01.002
      卞爽, 于志泉, 龚俊峰, 等, 2021. 青藏高原近SN向裂谷的时空分布特征及动力学机制. 地质力学学报, 27(2): 178-194.
      党光明, 吴赞军, 2002. 青海昆仑山口西Ms8.1级地震地表破裂带特征与主要震害——对青藏高原区域稳定性评价的制约. 地质通报, 21(2): 105-108. doi: 10.3969/j.issn.1671-2552.2002.02.013
      高扬, 2024. 藏南定结—吉隆地区第四纪近SN向正断层作用的时空特征(博士学位论文). 北京: 北京大学.
      黄婷, 吴中海, 韩帅, 等, 2024. 西藏日喀则地区的活断层基本特征及地震灾害潜在风险评估. 地震科学进展, 54(10): 696-711.
      李海兵, 付小方, Jérme Van Der Woerd, 等, 2008. 汶川地震(MS8.0)地表破裂及其同震右旋斜向逆冲作用. 地质学报, 82(12): 1623-1643. doi: 10.3321/j.issn:0001-5717.2008.12.002
      李楠, 刘陇强, 朱利东, 等, 2024. 喜马拉雅北缘丁木错地堑第四纪软沉积物变形构造. 成都理工大学学报(自然科学版), 51(6): 1048-1069.
      刘德民, 李德威, 2003. 喜马拉雅造山带中段定结地区拆离断层. 大地构造与成矿学, 27(1): 37-42. doi: 10.3969/j.issn.1001-1552.2003.01.005
      刘德民, 李德威, 杨巍然, 2003. 定结地区韧性剪切带变形特征与糜棱岩研究. 地学前缘, 10(2): 479-486. doi: 10.3321/j.issn:1005-2321.2003.02.028
      刘德民, 杨巍然, 郭铁鹰, 2020. 藏南地区新生代多阶段构造演化及其动力学的探讨. 地学前缘, 27(1): 194-203.
      刘德民, 王杰, 姜淮, 等, 2024. 青藏高原形成演化动力机制及其远程效应. 地学前缘, 31(1): 154-169.
      刘富财, 潘家伟, 李海兵, 等, 2025. 2025年Mw7.1西藏定日地震地表破裂与同震位移分布特征. 地质学报, 99(3): 685-703.
      卢占武, 高锐, 李秋生, 等, 2006. 中国青藏高原深部地球物理探测与地球动力学研究(1958—2004). 地球物理学报, 49(3): 753-770. doi: 10.3321/j.issn:0001-5733.2006.03.019
      潘家伟, 李海兵, 吴富峣, 等, 2011. 2010年玉树地震(Ms7.1)地表破裂特征、破裂机制与破裂过程. 岩石学报, 27(11): 3449-3459.
      邵延秀, 王爱生, 刘静, 等, 2025. 2025年1月7日西藏定日地震地表破裂特征和野外同震位移测量初步结果. 地球科学, 50(5): 1677-1695. doi: 10.3799/dqkx.2025.040
      盛书中, 王倩茹, 李振月, 等, 2025. 基于构造应力场研究2025年西藏定日6.8级地震的发震构造. 地震地质, 47(1): 49-63. doi: 10.3969/j.issn.0253-4967.2025.01.004
      石峰, 梁明剑, 罗全星, 等, 2025. 2025年1月7日西藏定日6.8级地震发震构造与同震地表破裂特征. 地震地质, 47(1): 1-15. doi: 10.3969/j.issn.0253-4967.2025.01.001
      田婷婷, 2021. 申扎-定结裂谷南段丁木错断裂晚第四纪古地震事件研究(博士学位论文). 北京: 中国地质大学.
      田婷婷, 吴中海, 2023. 西藏申扎-定结裂谷南段丁木错正断层的最新史前大地震事件及其地震地质意义. 地质论评, 69(s1): 53-55.
      吴中海, 张永双, 胡道功, 等, 2008. 西藏错那-拿日雍错地堑的第四纪正断层作用及其形成机制探讨. 第四纪研究, (2): 232-242. doi: 10.3321/j.issn:1001-7410.2008.02.005
      吴章明, 曹忠权, 申屠炳明, 1994. 西藏中部的发震构造. 中国地震, 10(1): 19-27.
      徐心悦, 2019. 藏南申扎-定结断裂系卡达正断裂晚第四纪活动性及其环境效应(博士学位论文). 北京: 中国地震局地质研究所.
      杨婷, 王世广, 房立华, 等, 2025. 西藏定日Ms6.8地震余震序列特征与发震构造. 地球科学, 50(5): 1721-1732. doi: 10.3799/dqkx.2025.033
      张进江, 郭磊, 丁林, 2002. 申扎-定结正断层体系中、南段构造特征及其与藏南拆离系的关系. 科学通报, 47(10): 738-743. doi: 10.3321/j.issn:0023-074X.2002.10.003
      张进江, 2007. 北喜马拉雅及藏南伸展构造综述. 地质通报, 26(6): 639-649. doi: 10.3969/j.issn.1671-2552.2007.06.003
      邹俊杰, 邵志刚, 何宏林, 等, 2025. 2025年1月7日西藏定日MS6.8地震地表破裂解译与建筑物震害损毁统计. 地震地质, 47(1): 16-35.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)

      Article views (144) PDF downloads(33) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return