| Citation: | Li Shuang, Peng Ming, Shi Zhenming, Liu Maomao, Xia Chengzhi, Wang Yue, Zhu Yan, 2025. Simulation and Analysis of Cascading Hazard Based on Fluid-Soil Coupled SPH Method. Earth Science, 50(10): 3967-3981. doi: 10.3799/dqkx.2025.112 | 
This study adopts a bidirectionally coupled SPH numerical model to accurately simulate the full evolution of a landslide-dammed lake disaster chain. The model captures large deformation of the landslide body using the Drucker-Prager criterion and achieves water–soil coupling through mixture theory and nonlinear seepage drag forces. Validated against laboratory experiments, the model successfully reproduces the Baige landslide disaster chain, with simulation results closely matching field observations. Results show that the processes of landslide motion, impulse wave generation, and dam formation can be clearly delineated by the evolution of landslide velocity and energy. Quantitative analysis reveals that increasing the internal friction angle φ from 5° to 20° leads to a linear decrease in dam length, a power-law increase in dam height, and a significant reduction in wave height. The peak wave height exhibits a linear correlation with the landslide Froude number at impact. These findings highlight the systematic influence of landslide material properties on disaster chain dynamics and offer theoretical support for hazard prediction and risk assessment in mountainous river basins.
	                | 
					 Adami, S., Hu, X. Y., Adams, N. A., 2012. A Generalized Wall Boundary Condition for Smoothed Particle Hydrodynamics. Journal of Computational Physics, 231(21): 7057-7075.  https://doi.org/10.1016/j.jcp.2012.05.005 
						
					 | 
			
| 
					 Bao, Y. D., Su, L. J., Chen, J. P., et al., 2023. Dynamic Process of a High-Level Landslide Blocking River Event in a Deep Valley Area Based on FDEM-SPH Coupling Approach. Engineering Geology, 319: 107108.  https://doi.org/10.1016/j.enggeo.2023.107108 
						
					 | 
			
| 
					 Bui, H. H., Fukagawa, R., Sako, K., et al., 2008. Lagrangian Meshfree Particles Method (SPH) for Large Deformation and Failure Flows of Geomaterial Using Elastic-Plastic Soil Constitutive Model. International Journal for Numerical and Analytical Methods in Geomechanics, 32(12): 1537-1570.  https://doi.org/10.1002/nag.688 
						
					 | 
			
| 
					 Bui, H. H., Nguyen, G. D., 2021. Smoothed Particle Hydrodynamics (SPH) and Its Applications in Geomechanics: From Solid Fracture to Granular Behaviour and Multiphase Flows in Porous Media. Computers and Geotechnics, 138: 104315.  https://doi.org/10.1016/j.compgeo.2021.104315 
						
					 | 
			
| 
					 Cai, Y. J., Cheng, H. Y., Wu, S. F., et al., 2020. Breaches of the Baige Barrier Lake: Emergency Response and Dam Breach Flood. Science China Technological Sciences, 63(7): 1164-1176.  https://doi.org/10.1007/s11431-019-1475-y 
						
					 | 
			
| 
					 Du, W. J., Sheng, Q., Yang, X. H., et al., 2022. Chain Generation Process of Landslide Blocking River Based on Two-Phase Double-Point Material Point Method. Advanced Engineering Sciences, 54(3): 36-45 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Fan, X. M., Scaringi, G., Korup, O., et al., 2019. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Reviews of Geophysics, 57(2): 421-503.  https://doi.org/10.1029/2018rg000626 
						
					 | 
			
| 
					 Fan, X. M., Yang, F., Siva Subramanian, S., et al., 2020. Prediction of a Multi-Hazard Chain by an Integrated Numerical Simulation Approach: The Baige Landslide, Jinsha River, China. Landslides, 17(1): 147-164.  https://doi.org/10.1007/s10346-019-01313-5 
						
					 | 
			
| 
					 Feng, D. L., Neuweiler, I., Huang, Y., 2022. Numerical Modeling of Wave-Porous Structure Interaction Process with an SPH Model. Scientia Sinica Physica, Mechanica & Astronomica, 52(10): 104715.  https://doi.org/10.1360/sspma-2022-0216 
						
					 | 
			
| 
					 Guo, C. B., Wu, R. A., Zhong, N., et al., 2024. Large Landslides along Active Tectonic Zones of Eastern Tibetan Plateau: Background and Mechanism of Landslide Formation. Earth Science, 49(12): 4635-4658 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Heller, V., Hager, W. H., 2011. Wave Types of Landslide Generated Impulse Waves. Ocean Engineering, 38(4): 630-640.  https://doi.org/10.1016/j.oceaneng.2010.12.010 
						
					 | 
			
| 
					 Huang, C., Hu, C., An, Y., et al., 2023. Numerical Simulation of the Large-Scale Huangtian (China) Landslide-Generated Impulse Waves by a GPU-Accelerated Three-Dimensional Soil-Water Coupled SPH Model. Water Resources Research, 59(6): e2022WR034157.  https://doi.org/10.1029/2022wr034157 
						
					 | 
			
| 
					 Jia, K. C., Zhuang, J. Q., Zhan, J. W., et al., 2023. Reconstruction of the Dynamic Process of the Holocene Gelongbu Landslide Blocking-Flood Geological Disaster Chain Based on Numerical Simulation. Earth Science, 48(9): 3402-3419(in Chinese with English abstract). 
						
					 | 
			
| 
					 Li, D. Y., Nian, T. K., Tiong, R. L. K., et al., 2023a. River Blockage and Impulse Wave Evolution of the Baige Landslide in October 2018: Insights from Coupled DEM-CFD Analyses. Engineering Geology, 321: 107169.  https://doi.org/10.1016/j.enggeo.2023.107169 
						
					 | 
			
| 
					 Li, D. Y., Nian, T. K., Wu, H., et al., 2023. Coupled DEM–CFD Method for Landslide-River Blockage-Impulse Wave Disaster Chain Simulation and Its Application. Advanced Engineering Sciences, 55(1): 141-149(in Chinese with English abstract). 
						
					 | 
			
| 
					 Li, S., Peng, M., Gao, L., et al., 2024a. A 3D SPH Framework for Simulating Landslide Dam Breaches by Coupling Erosion and Side Slope Failure. Computers and Geotechnics, 175: 106699.  https://doi.org/10.1016/j.compgeo.2024.106699 
						
					 | 
			
| 
					 Li, S., Tang, H., Peng, C., et al., 2023b. Sensitivity and Calibration of Three-Dimensional SPH Formulations in Large-Scale Landslide Modeling. Journal of Geophysical Research: Solid Earth, 128(2): e2022JB024583.  https://doi.org/10.1029/2022jb024583 
						
					 | 
			
| 
					 Li, Y., Liu, H. Q., Yang, L., et al., 2024b. An Optimized DEM-SPH Model for Surge Waves Induced by Riverside Landslides. International Journal for Numerical and Analytical Methods in Geomechanics, 48(1): 270-286.  https://doi.org/10.1002/nag.3638 
						
					 | 
			
| 
					 Long, X. Y., Hu, Y. X., Gan, B. R., et al., 2024. Numerical Simulation of the Mass Movement Process of the 2018 Sedongpu Glacial Debris Flow by Using the Fluid-Solid Coupling Method. Journal of Earth Science, 35(2): 583-596.  https://doi.org/10.1007/s12583-022-1625-1 
						
					 | 
			
| 
					 Luo, H. W., Zhou, G. G. D., Lu, X. Q., et al., 2025. Experimental Investigation on the Formation and Failure of Landslide Dams Considering the Landslide Mobility and River Flow. Engineering Geology, 346: 107873.  https://doi.org/10.1016/j.enggeo.2024.107873 
						
					 | 
			
| 
					 Nian, T. K., Wu, H., Takara, K., et al., 2021. Numerical Investigation on the Evolution of Landslide-Induced River Blocking Using Coupled DEM-CFD. Computers and Geotechnics, 134: 104101.  https://doi.org/10.1016/j.compgeo.2021.104101 
						
					 | 
			
| 
					 Ouyang, C. J., An, H. C., Zhou, S., et al., 2019. Insights from the Failure and Dynamic Characteristics of Two Sequential Landslides at Baige Village along the Jinsha River, China. Landslides, 16(7): 1397-1414.  https://doi.org/10.1007/s10346-019-01177-9 
						
					 | 
			
| 
					 Peng, M., Li, S., Gao, L., et al., 2024. A Novel Local-Drag-Force-Based Approach for Simulating Wave Attenuation by Mangrove Forests Using a 3D-SPH Method. Ocean Engineering, 306: 118001.  https://doi.org/10.1016/j.oceaneng.2024.118001 
						
					 | 
			
| 
					 Peng, X. Y., Yu, P. C., Chen, G. Q., et al., 2020. Development of a Coupled DDA–SPH Method and Its Application to Dynamic Simulation of Landslides Involving Solid–Fluid Interaction. Rock Mechanics and Rock Engineering, 53(1): 113-131.  https://doi.org/10.1007/s00603-019-01900-x 
						
					 | 
			
| 
					 Ren, B., Wen, H. J., Dong, P., et al., 2016. Improved SPH Simulation of Wave Motions and Turbulent Flows through Porous Media. Coastal Engineering, 107: 14-27.  https://doi.org/10.1016/j.coastaleng.2015.10.004 
						
					 | 
			
| 
					 Shi, Z. M., Zhang, G. D., Peng, M., et al., 2023. Experimental Investigation on the Breaching Mechanisms of Landslide Dams with Heterogeneous Structures. Advanced Engineering Sciences, 55(1): 129-140 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Viroulet, S., Sauret, A., Kimmoun, O., 2014. Tsunami Generated by a Granular Collapse down a Rough Inclined Plane. EPL (Europhysics Letters), 105(3): 34004.  https://doi.org/10.1209/0295-5075/105/34004 
						
					 | 
			
| 
					 Viroulet, S., Sauret, A., Kimmoun, O., et al., 2013. Granular Collapse into Water: Toward Tsunami Landslides. Journal of Visualization, 16(3): 189-191.  https://doi.org/10.1007/s12650-013-0171-4 
						
					 | 
			
| 
					 Wendland, H., 1995. Piecewise Polynomial, Positive Definite and Compactly Supported Radial Functions of Minimal Degree. Advances in Computational Mathematics, 4(1): 389-396.  https://doi.org/10.1007/BF02123482 
						
					 | 
			
| 
					 Wu, H., Nian, T. K., Shan, Z. G., 2023. Research Progress on the Formation Mechanism and Risk Assessment Method of River Blocking Induced by Landslide. Chinese Journal of Rock Mechanics and Engineering, 42(S1): 3192-3205 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Xu, Q., Zheng, G., Li, W. L., et al., 2018. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018. Journal of Engineering Geology, 26(6): 1534-1551 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Zhang, C., Hu, X. Y., Adams, N. A., 2017. A Weakly Compressible SPH Method Based on a Low-Dissipation Riemann Solver. Journal of Computational Physics, 335: 605-620.  https://doi.org/10.1016/j.jcp.2017.01.027 
						
					 | 
			
| 
					 Zhang, C., Rezavand, M., Zhu, Y. J., et al., 2021. SPHinXsys: An Open-Source Multi-Physics and Multi-Resolution Library Based on Smoothed Particle Hydrodynamics. Computer Physics Communications, 267: 108066.  https://doi.org/10.1016/j.cpc.2021.108066 
						
					 | 
			
| 
					 Zhang, G. B., Tang, D. L., Wen, H. J., et al., 2024a. An Improved Two Phases-Two Points SPH Model for Submerged Landslide. Computers and Geotechnics, 176: 106802.  https://doi.org/10.1016/j.compgeo.2024.106802 
						
					 | 
			
| 
					 Zhang, S. H., Zhang, C., Hu, X. Y., et al., 2024b. A Riemann-Based SPH Method for Modelling Large Deformation of Granular Materials. Computers and Geotechnics, 167: 106052.  https://doi.org/10.1016/j.compgeo.2023.106052 
						
					 | 
			
| 
					 Zhang, L. M., Xiao, T., He, J., et al., 2019. Erosion-Based Analysis of Breaching of Baige Landslide Dams on the Jinsha River, China, in 2018. Landslides, 16(10): 1965-1979.  https://doi.org/10.1007/s10346-019-01247-y 
						
					 | 
			
| 
					 Zhou, G. G. D., Roque, P. J. C., Xie, Y. X., et al., 2020. Numerical Study on the Evolution Process of a Geohazards Chain Resulting from the Yigong Landslide. Landslides, 17(11): 2563-2576.  https://doi.org/10.1007/s10346-020-01448-w 
						
					 | 
			
| 
					 Zhou, L., Fan, X. M., Xu, Q., et al., 2019. Numerical Simulation and Hazard Prediction on Movement Process Characteristics of Baige Landslide in Jinsha River. Journal of Engineering Geology, 27(6): 1395-1404 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Zhu, C. W., Peng, C., Wu, W., et al., 2022. A Multi-Layer SPH Method for Generic Water-Soil Dynamic Coupling Problems. Part Ⅰ: Revisit, Theory, and Validation. Computer Methods in Applied Mechanics and Engineering, 396: 115106.  https://doi.org/10.1016/j.cma.2022.115106 
						
					 | 
			
| 
					 杜文杰, 盛谦, 杨兴洪, 等, 2022. 基于两相双质点MPM的滑坡堵江灾害链生全过程分析. 工程科学与技术, 54(3): 36-45. 
					
					 | 
			
| 
					 郭长宝, 吴瑞安, 钟宁, 等, 2024. 青藏高原东部活动构造带大型滑坡成灾背景与灾变机制. 地球科学, 49(12): 4635-4658. doi:  10.3799/dqkx.2024.124 
					
					 | 
			
| 
					 贾珂程, 庄建琦, 占洁伟, 等, 2023. 基于数值模拟的戈龙布滑坡-堵江-溃决洪水地质灾害链动力学过程重建. 地球科学, 48(9): 3402-3419. doi:  10.3799/dqkx.2021.124 
					
					 | 
			
| 
					 李东阳, 年廷凯, 吴昊, 等, 2023. 滑坡-堵江-涌浪灾害链模拟的DEM–CFD耦合分析方法及其应用. 工程科学与技术, 55(1): 141-149. 
					
					 | 
			
| 
					 石振明, 张公鼎, 彭铭, 等, 2023. 非均质结构堰塞坝溃决机理模型试验. 工程科学与技术, 55(1): 129-140. 
					
					 | 
			
| 
					 吴昊, 年廷凯, 单治钢, 2023. 滑坡堵江成坝的形成演进机制及危险性预测方法研究进展. 岩石力学与工程学报, 42(增刊1): 3192-3205. 
					
					 | 
			
| 
					 许强, 郑光, 李为乐, 等, 2018.2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究. 工程地质学报, 26(6): 1534-1551. 
					
					 | 
			
| 
					 周礼, 范宣梅, 许强, 等, 2019. 金沙江白格滑坡运动过程特征数值模拟与危险性预测研究. 工程地质学报, 27(6): 1395-1404. 
					
					 |