• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 12
    Dec.  2025
    Turn off MathJax
    Article Contents
    Kong Weiliang, Qiu Zhen, Zhang Jiaqiang, Zhang Qin, Liu Wen, Qu Tianquan, Gao Wanli, Cai Guangyin, Jiang Chong, 2025. Volcanic Activity and Extraordinarily High Organic Matter Deposition across Ordovician-Silurian Transition: A Case Study from South China. Earth Science, 50(12): 4583-4603. doi: 10.3799/dqkx.2025.125
    Citation: Kong Weiliang, Qiu Zhen, Zhang Jiaqiang, Zhang Qin, Liu Wen, Qu Tianquan, Gao Wanli, Cai Guangyin, Jiang Chong, 2025. Volcanic Activity and Extraordinarily High Organic Matter Deposition across Ordovician-Silurian Transition: A Case Study from South China. Earth Science, 50(12): 4583-4603. doi: 10.3799/dqkx.2025.125

    Volcanic Activity and Extraordinarily High Organic Matter Deposition across Ordovician-Silurian Transition: A Case Study from South China

    doi: 10.3799/dqkx.2025.125
    • Received Date: 2025-02-10
    • Publish Date: 2025-12-25
    • Large-scale volcanic activity is recognized as one of the critical drivers of global climate and environmental changes, as well as biodiversity fluctuations. It can enhance marine surface primary productivity and promote the development of euxinic bottom water conditions, thus facilitating organic-rich sedimentation. Across the Ordovician-Silurian transition, intense global volcanic activities coincided with the widespread deposition of black shales and the development of organic-rich intervals characterized by extraordinarily high total organic matter (TOC≥3.0%). Based on more than 800 samples, including TOC, major and trace elements, mercury (Hg) concentrations and Hg isotopes, collected from over 20 typical wells and sections of the Wufeng-Lungmachi formations in South China, this study discusses the occurrence and identification features of visible volcanic ash layers and highlights the application of major and trace elements, Hg concentrations and isotopes to identify cryptotephra. Furthermore, the impact of volcanic activity on marine environmental changes and the formation of extraordinarily high organic matter deposits were investigated. The results suggest follows. (1) The distribution of visible volcanic ash and cryptotephra provides a robust basis for reconstructing volcanic history of this period. (2) Elevated phosphorus inputs from volcanic activity enhanced marine surface primary productivity and expanded the extent of anoxic bottom water. (3) The anoxic conditions promoted phosphorus recycling, thereby sustaining high primary productivity. (4) Enhanced volcanic weathering increased sulfate input, which could further promote euxinic conditions. Sustained volcanic activities and their associated climate and environmental effects contributed to the high primary productivity and euxinic conditions, ultimately leading to the extraordinarily high organic matter accumulation in the Wufeng-Lungmachi shale.

       

    • loading
    • Ayris, P., Delmelle, P., 2012. Volcanic and Atmospheric Controls on Ash Iron Solubility: A Review. Physics and Chemistry of the Earth, 45-46: 103-112. https://doi.org/10.1016/j.pce.2011.04.013
      Bao, H. Y., Meng, Z. Y., Li, K., et al., 2023. Plane Heterogeneity Characteristics and Main Controlling Factors of Development of Upper Gas Layer in Gas-Bearing Shale of Longmaxi Formation in Fuling Area, Sichuan Basin. Earth Science, 48(7): 2750-2763 (in Chinese with English abstract).
      Batchelor, R. A., 2008. Geochemical 'Golden Spike' for Lower Palaeozoic Metabentonites. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 99(3-4): 177-187. https://doi.org/10.1017/s1755691009007087
      Bergquist, B. A., Blum, J. D., 2009. The Odds and Evens of Mercury Isotopes: Applications of Mass-Dependent and Mass-Independent Isotope Fractionation. Elements, 5(6): 353-357. https://doi.org/10.2113/gselements.5.6.353.
      Bergström, S. M., Huff, W. D., Kolata, D. R., et al., 1997. A Unique Middle Ordovician K‐Bentonite Bed Succession at Röstånga, S. Sweden. GFF, 119(3): 231-244. https://doi.org/10.1080/11035899709546481
      Biswas, A., Blum, J. D., Bergquist, B. A., et al., 2008. Natural Mercury Isotope Variation in Coal Deposits and Organic Soils. Environmental Science & Technology, 42(22): 8303-8309. https://doi.org/10.1021/es801444b
      Blum, J. D., Sherman, L. S., Johnson, M. W., 2014. Mercury Isotopes in Earth and Environmental Sciences. Annual Review of Earth and Planetary Sciences, 42(1): 249-269. https://doi.org/10.1146/annurev-earth-050212-124107
      Bond, D. P. G., Grasby, S. E., 2020. Late Ordovician Mass Extinction Caused by Volcanism, Warming, and Anoxia, not Cooling and Glaciation. Geology, 48(8): 777-781. https://doi.org/10.1130/g47377.1
      Briffa, K. R., Jones, P. D., Schweingruber, F. H., et al., 1998. Influence of Volcanic Eruptions on Northern Hemisphere Summer Temperature over the Past 600 Years. Nature, 393: 450-455. https://doi.org/10.1038/30943
      Buggisch, W., Joachimski, M. M., Lehnert, O., et al., 2010. Did Intense Volcanism Trigger the First Late Ordovician Icehouse? Geology, 38: 327-330. https://doi.org/10.1130/g30577.1
      Cai, Q. S., Hu, M. Y., Yang, Z, et al., 2024. Sedimentary Environment and Organic Matter Accumulation of Black Rock Series of Wufeng-Longmaxi Formations in Foreland Depression, Western Hunan Province: An Example from Well TD2 in Changde Area. Earth Science, 49(7): 2330-2345 (in Chinese with English abstract).
      Courtillot, V. E., 2002. Evolutionary Catastrophes: The Science of Mass Extinction. Cambridge University Press, Cambridge.
      Cox, G. M., Lyons, T. W., Mitchell, R. N., et al., 2018. Linking the Rise of Atmospheric Oxygen to Growth in the Continental Phosphorus Inventory. Earth and Planetary Science Letters, 489: 28-36. https://doi.org/10.1016/j.epsl.2018.02.016
      Dellwig, O., Leipe, T., März, C., et al., 2010. A New Particulate Mn-Fe-P-Shuttle at the Redoxcline of Anoxic Basins. Geochimica et Cosmochimica Acta, 74(24): 7100-7115. https://doi.org/10.1016/j.gca.2010.09.017
      Demers, J. D., Blum, J. D., Zak, D. R., 2013. Mercury Isotopes in a Forested Ecosystem: Implications for Air-Surface Exchange Dynamics and the Global Mercury Cycle. Global Biogeochemical Cycles, 27(1): 222-238. https://doi.org/10.1002/gbc.20021
      Derakhshi, M., Ernst, R. E., Kamo, S. L., 2022. Ordovician-Silurian Volcanism in Northern Iran: Implications for a New Large Igneous Province (LIP) and a Robust Candidate for the Late Ordovician Mass Extinction. Gondwana Research, 107: 256-280. https://doi.org/10.1016/j.gr.2022.03.009
      Du, X. B., Lu, Y. C., Duan, D., et al., 2020. Was Volcanic Activity during the Ordovician-Silurian Transition in South China Part of a Global Phenomenon? Constraints from Zircon U-Pb Dating of Volcanic Ash Beds in Black Shales. Marine and Petroleum Geology, 114: 104209. https://doi.org/10.1016/j.marpetgeo.2019.104209
      Du, X. B., Jia, J. X., Zhao, K., et al., 2022. Development Characteristics of Deep-Time Volcanic Ash Layers and Its Influence on Deposition of Organic-Rich Shale across Ordovician-Silurian Transition in Yangtze Area, South China. Journal of Central South University (Science and Technology), 53(9): 3509-3521 (in Chinese with English abstract).
      Duggen, S., Croot, P., Schacht, U., et al., 2007. Subduction Zone Volcanic Ash can Fertilize the Surface Ocean and Stimulate Phytoplankton Growth: Evidence from Biogeochemical Experiments and Satellite Data. Geophysical Research Letters, 34(1): 2006GL027522. https://doi.org/10.1029/2006gl027522
      Duhamel, S., Diaz, J. M., Adams, J. C., et al., 2021. Phosphorus as an Integral Component of Global Marine Biogeochemistry. Nature Geoscience, 14(6): 359-368. https://doi.org/10.1038/s41561-021-00755-8
      Ernst, R. E., Youbi, N., 2017. How Large Igneous Provinces Affect Global Climate, Sometimes Cause Mass Extinctions, and Represent Natural Markers in the Geological Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 30-52. https://doi.org/10.1016/j.palaeo.2017.03.014
      Fendley, I. M., Frieling, J., Mather, T. A., et al., 2024. Early Jurassic Large Igneous Province Carbon Emissions Constrained by Sedimentary Mercury. Nature Geoscience, 17(3): 241-248. https://doi.org/10.1038/s41561-024-01378-5
      Finnegan, S., Heim, N. A., Peters, S. E., et al., 2012. Climate Change and the Selective Signature of the Late Ordovician Mass Extinction. Proceedings of the National Academy of Sciences of the United States of America, 109(18): 6829-6834. https://doi.org/10.1073/pnas.1117039109
      Fisher, R. V., Schmincke, H. U., 1984. Pyroclastic Rocks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74864-6
      Fortey, R. A., Cocks, L. R. M., 2005. Late Ordovician Global Warming: The Boda Event. Geology, 33(5): 405. https://doi.org/10.1130/g21180.1
      Ge, X. Y., Mou, C. L., Men, X., et al., 2023. Discussion on U-Pb Dating and Tectonic Setting of K-Bentonites from Late Ordovician-Early Silurian Period in the Sichuan Basin. Sedimentary Geology and Tethyan Geology (in press)(in Chinese with English abstract).
      Gernon, T. M., Barr, R., Fitton, J. G., et al., 2022. Transient Mobilization of Subcrustal Carbon Coincident with Palaeocene-Eocene Thermal Maximum. Nature Geoscience, 15(7): 573-579. https://doi.org/10.1038/s41561-022-00967-6
      Gernon, T. M., Mills, B. J. W., Hincks, T. K., et al., 2024. Solid Earth Forcing of Mesozoic Oceanic Anoxic Events. Nature Geoscience, 17(9): 926-935. https://doi.org/10.1038/s41561-024-01496-0
      Gong, Q., Wang, X. D., Zhao, L. S., et al., 2017. Mercury Spikes Suggest Volcanic Driver of the Ordovician-Silurian Mass Extinction. Scientific Reports, 7: 5304. https://doi.org/10.1038/s41598-017-05524-5
      Grasby, S. E., Shen, W. J., Yin, R. S., et al., 2017. Isotopic Signatures of Mercury Contamination in Latest Permian Oceans. Geology, 45(1): 55-58. https://doi.org/10.1130/g38487.1
      Grasby, S. E., Them, T. R., Chen, Z. H., et al., 2019. Mercury as a Proxy for Volcanic Emissions in the Geologic Record. Earth-Science Reviews, 196: 102880. https://doi.org/10.1016/j.earscirev.2019.102880
      Guo, L. C., Xiong, S. F., Mills, B. J. W., et al., 2024. Acceleration of Phosphorus Weathering under Warm Climates. Science Advances, 10(28): eadm7773. https://doi.org/10.1126/sciadv.adm7773
      Gutjahr, M., Ridgwell, A., Sexton, P. F., et al., 2017. Very Large Release of Mostly Volcanic Carbon during the Palaeocene-Eocene Thermal Maximum. Nature, 548(7669): 573-577. https://doi.org/10.1038/nature23646
      Hamme, R. C., Webley, P. W., Crawford, W. R., et al., 2010. Volcanic Ash Fuels Anomalous Plankton Bloom in Subarctic Northeast Pacific. Geophysical Research Letters, 37(19): 2010GL044629. https://doi.org/10.1029/2010GL044629
      Hong, H. L., Algeo, T. J., Fang, Q., et al., 2019. Facies Dependence of the Mineralogy and Geochemistry of Altered Volcanic Ash Beds: An Example from Permian-Triassic Transition Strata in Southwestern China. Earth-Science Reviews, 190: 58-88. https://doi.org/10.1016/j.earscirev.2018.12.007
      Hu, X. M., Li, J., Han, Z., et al., 2020. Two Types of Hyperthermal Events in the Mesozoic-Cenozoic: Environmental Impacts, Biotic Effects, and Driving Mechanisms. Science China Earth Sciences, 50(8): 1023-1043(in Chinese).
      Hu, D. P., Li, M. H., Chen, J. B., et al., 2021. Major Volcanic Eruptions Linked to the Late Ordovician Mass Extinction: Evidence from Mercury Enrichment and Hg Isotopes. Global and Planetary Change, 196: 103374. https://doi.org/10.1016/j.gloplacha.2020.103374
      Hu, Y. H., Liu, J., Zhou, M. Z., et al., 2009a. An Overview of Ordovician and Silurian K-Bentonites. Geochimica, 38(4): 393-404(in Chinese with English abstract)
      Hu, Y. H., Sun, W. D., Ding, X., et al., 2009b. Volcanic Event at the Ordovician-Silurian Boundary: The Message from K-Bentonite of Yangtze Block. Acta Petrologica Sinica, 25(12): 3298-3308 (in Chinese with English abstract).
      Huang, X. L., Yu, Y., Li, J., et al., 2013. Geochronology and Petrogenesis of the Early Paleozoic Ⅰ-Type Granite in the Taishan Area, South China: Middle-Lower Crustal Melting during Orogenic Collapse. Lithos, 177: 268-284. https://doi.org/10.1016/j.lithos.2013.07.002
      Huff, W. D., 2008. Ordovician K-Bentonites: Issues in Interpreting and Correlating Ancient Tephras. Quaternary International, 178(1): 276-287. https://doi.org/10.1016/j.quaint.2007.04.007
      Huff, W. D., 2016. K-Bentonites: A Review. American Mineralogist, 101(1): 43-70. https://doi.org/10.2138/am-2016-5339
      Huff, W. D., Kolata, D. R., Bergström, S. M., et al., 1996. Large-Magnitude Middle Ordovician Volcanic Ash Falls in North America and Europe: Dimensions, Emplacement and Post-Emplacement Characteristics. Journal of Volcanology and Geothermal Research, 73(3-4): 285-301. https://doi.org/10.1016/0377-0273(96)00025-x
      Jia, J. X., Du, X. B., Zhao, K., et al., 2022. Sources of K-Bentonites across the Ordovician-Silurian Transition in South China: Implications for Tectonic Activities on the Northern and Southern Margins of the South China Block. Marine and Petroleum Geology, 139: 105599. https://doi.org/10.1016/j.marpetgeo.2022.105599
      Jia, X. H., Wang, X. D., Yang, W. Q., 2017. Petrogenesis and Geodynamic Implications of the Early Paleozoic Potassic and Ultrapotassic Rocks in the South China Block. Journal of Asian Earth Sciences, 135: 80-94. https://doi.org/10.1016/j.jseaes.2016.12.013
      Jiskra, M., Heimbürger-Boavida, L. E., Desgranges, M. M., et al., 2021. Mercury Stable Isotopes Constrain Atmospheric Sources to the Ocean. Nature, 597: 678-682. https://doi.org/10.1038/s41586-021-03859-8
      Jones, D. S., Martini, A. M., Fike, D. A., et al., 2017. A Volcanic Trigger for the Late Ordovician Mass Extinction? Mercury Data from South China and Laurentia. Geology, 45(7): 631-634. https://doi.org/10.1130/g38940.1
      Jones, M. T., Gislason, S. R., 2008. Rapid Releases of Metal Salts and Nutrients Following the Deposition of Volcanic Ash into Aqueous Environments. Geochimica et Cosmochimica Acta, 72(15): 3661-3680. https://doi.org/10.1016/j.gca.2008.05.030
      Kiipli, T., Kallaste, T., Kiipli, E., et al., 2008a. Use of Immobile Trace Elements for the Correlation of Telychian Bentonites on Saaremaa Island, Estonia, and Mapping of Volcanic Ash Clouds. Estonian Journal of Earth Sciences, 57(1): 39. https://doi.org/10.3176/earth.2008.1.04
      Kiipli, T., Soesoo, A., Kallaste, T., et al., 2008b. Geochemistry of Telichian (Silurian) K-Bentonites in Estonia and Latvia. Journal of Volcanology and Geothermal Research, 171(1-2): 45-58. https://doi.org/10.1016/j.jvolgeores.2007.11.005
      Kiipli, T., Einasto, R., Kallaste, T., et al., 2011. Geochemistry and Correlation of Volcanic Ash Beds from the Rootsiküla Stage (Wenlock-Ludlow) in the Eastern Baltic. Estonian Journal of Earth Sciences, 60(4): 207. https://doi.org/10.3176/earth.2011.4.02
      Kiipli, T., Kallaste, T., Nestor, V., 2012. Correlation of Upper Llandovery-Lower Wenlock Bentonites in the När (Gotland, Sweden) and Ventspils (Latvia) Drill Cores: Role of Volcanic Ash Clouds and Shelf Sea Currents in Determining Areal Distribution of Bentonite. Estonian Journal of Earth Sciences, 61(4): 295. https://doi.org/10.3176/earth.2012.4.08
      Kong, W. L., Qiu, Z., Zhang, J. Q., et al., 2025. Mercury Deposition in South China across the Ordovician-Silurian Transition: Implications for Climate Change. Geochemistry, Geophysics, Geosystems, 26(7): e2024GC012122. https://doi.org/10.1029/2024GC012122
      Kwon, S. Y., Blum, J. D., Yin, R. S., et al., 2020. Mercury Stable Isotopes for Monitoring the Effectiveness of the Minamata Convention on Mercury. Earth-Science Reviews, 203: 103111. https://doi.org/10.1016/j.earscirev.2020.103111
      Li, X. L., Yu, J. H., Jiang, D. S., et al., 2021. Linking Ocean Subduction with Early Paleozoic Intracontinental Orogeny in South China: Insights from the Xiaying Complex in Eastern Guangxi Province. Lithos, 398/399: 106258. https://doi.org/10.1016/j.lithos.2021.106258
      Liang, C., Liu, Y. D., Cao, Y. C., et al., 2023. Coupling Relationship of Multiple Events and Enrichment of Organic Matter during Ordovician-Silurian Transition Period in Yangtze Region. Journal of China University of Petroleum (Edition of Natural Science), 47(6): 1-12 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1673-5005.2023.06.001
      Liang, C., Xie, H. R., Wu, J., et al., 2025. Volcanic Activity Driving Rapid Organic Carbon Burial during the Ordovician-Silurian Transition. Geological Society of America Bulletin, 137(5-6): 1909-1926. https://doi.org/10.1130/b37946.1
      Lin, I. I., Hu, C. M., Li, Y. H., et al., 2011. Fertilization Potential of Volcanic Dust in the Low-Nutrient Low-Chlorophyll Western North Pacific Subtropical Gyre: Satellite Evidence and Laboratory Study. Global Biogeochemical Cycles, 25(1). https://doi.org/10.1029/2009gb003758
      Liu, X., Wang, Q., Ma, L., et al., 2020. Early Paleozoic Intracontinental Granites in the Guangzhou Region of South China: Partial Melting of a Metasediment-Dominated Crustal Source. Lithos, 376-377: 105763. https://doi.org/10.1016/j.lithos.2020.105763
      Liu, Y., Li, Y. C., Hou, M. C., et al., 2023. Terrestrial rather than Volcanic Mercury Inputs to the Yangtze Platform (South China) during the Ordovician-Silurian Transition. Global and Planetary Change, 220: 104023. https://doi.org/10.1016/j.gloplacha.2022.104023
      Longman, J., Mills, B. J. W., Manners, H. R., et al., 2021. Late Ordovician Climate Change and Extinctions Driven by Elevated Volcanic Nutrient Supply. Nature Geoscience, 14(12): 924-929. https://doi.org/10.1038/s41561-021-00855-5
      McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 2000GC000109. https://doi.org/10.1029/2000GC000109
      Melchin, M. J., Mitchell, C. E., Holmden, C., et al., 2013. Environmental Changes in the Late Ordovician-Early Silurian: Review and New Insights from Black Shales and Nitrogen Isotopes. Geological Society of America Bulletin, 125(11-12): 1635-1670. https://doi.org/10.1130/b30812.1
      Meyer, K. M., Kump, L. R., 2008. Oceanic Euxinia in Earth History: Causes and Consequences. Annual Review of Earth and Planetary Sciences, 36: 251-288. https://doi.org/10.1146/annurev.earth.36.031207.124256
      Olgun, N., Duggen, S., Andronico, D., et al., 2013. Possible Impacts of Volcanic Ash Emissions of Mount Etna on the Primary Productivity in the Oligotrophic Mediterranean Sea: Results from Nutrient-Release Experiments in Seawater. Marine Chemistry, 152: 32-42. https://doi.org/10.1016/j.marchem.2013.04.004
      Olson, S. L., Ostrander, C. M., Gregory, D. D., et al., 2019. Volcanically Modulated Pyrite Burial and Ocean-Atmosphere Oxidation. Earth and Planetary Science Letters, 506: 417-427. https://doi.org/10.1016/j.epsl.2018.11.015
      Perrot, V., Bridou, R., Pedrero, Z., et al., 2015. Identical Hg Isotope Mass Dependent Fractionation Signature during Methylation by Sulfate-Reducing Bacteria in Sulfate and Sulfate-Free Environment. Environmental Science & Technology, 49(3): 1365-1373. https://doi.org/10.1021/es5033376
      Plunkett, G., Pilcher, J. R., 2018. Defining the Potential Source Region of Volcanic Ash in Northwest Europe during the Mid- to Late Holocene. Earth-Science Reviews, 179: 20-37. https://doi.org/10.1016/j.earscirev.2018.02.006
      Pyle, D. M., Mather, T. A., 2003. The Importance of Volcanic Emissions for the Global Atmospheric Mercury Cycle. Atmospheric Environment, 37(36): 5115-5124. https://doi.org/10.1016/j.atmosenv.2003.07.011
      Qiu, Z., Kong, W. L., Zhang, J. Q., et al., 2025. Mercury Evidences Link Intensive Volcanism to the Late Ordovician Mass Extinction and Changes in the Atmosphere-Land-Ocean System. The Innovation Geoscience, 3(2): 100124. https://doi.org/10.59717/j.xinn-geo.2024.100124
      Qiu, Z., Zou, C. N., 2020. Unconventional Petroleum Sedimentology: Connotation and Prospect. Acta Sedimentologica Sinica, 38(1): 1-29(in Chinese with English abstract).
      Qiu, Z., Wei, H. Y., Liu, H. L., et al., 2021. Accumulation of Sediments with Extraordinary High Organic Matter Content: Insight Gained through Geochemical Characterization of Indicative Elements. Oil & Gas Geology, 42(4): 931-948 (in Chinese with English abstract).
      Qiu, Z., Wei, H. Y., Tian, L., et al., 2022a. Different Controls on the Hg Spikes Linked the Two Pulses of the Late Ordovician Mass Extinction in South China. Scientific Reports, 12: 5195. https://doi.org/10.1038/s41598-022-08941-3
      Qiu, Z., Zou, C. N., Mills, B. J. W., et al., 2022b. A Nutrient Control on Expanded Anoxia and Global Cooling during the Late Ordovician Mass Extinction. Communications Earth & Environment, 3: 82. https://doi.org/10.1038/s43247-022-00412-x
      Qiu, Z., Zou, C. N., Wang, H. Y., et al., 2020. Discussion on Characteristics and Controlling Factors of Differential Enrichment of Wufeng-Longmaxi Formations Shale Gas in South China. Natural Gas Geoscience, 31(2): 163-175 (in Chinese with English abstract).
      Qiu, Z., Zou, C. N., Wei, H. Y., et al., 2024. Unconventional Hydrocarbon Accumulation and Major Geological Events—Innovation Research in Unconventional Petroleum Sedimentology. Science Press, Beijing (in Chinese).
      Ray, D. C., Collings, A. V. J., Worton, G. J., et al., 2011. Upper Wenlock Bentonites from Wren's Nest Hill, Dudley: Comparisons with Prominent Bentonites along Wenlock Edge, Shropshire, England. Geological Magazine, 148(4): 670-681. https://doi.org/10.1017/s0016756811000288
      Redfield, A. C., 1934. On the Proportions of Organic Derivatives in Sea Water and Their Relation to the Composition of Plankton. University Press of Liverpool, Liverpool.
      Redfield, A. C., 1958. The Biological Control of Chemical Factors in the Environment. American Scientist, 46(3): 230A,205-230A,221.
      Schobben, M., Foster, W. J., Sleveland, A. R. N., et al., 2020. A Nutrient Control on Marine Anoxia during the End-Permian Mass Extinction. Nature Geoscience, 13(9): 640-646. https://doi.org/10.1038/s41561-020-0622-1
      Sell, B. K., Samson, S. D., 2011. Apatite Phenocryst Compositions Demonstrate a Miscorrelation between the Millbrig and Kinnekulle K-Bentonites of North America and Scandinavia. Geology, 39(4): 303-306. https://doi.org/10.1130/g31425.1
      Sherman, L. S., Blum, J. D., Nordstrom, D. K., et al., 2009. Mercury Isotopic Composition of Hydrothermal Systems in the Yellowstone Plateau Volcanic Field and Guaymas Basin Sea-Floor Rift. Earth and Planetary Science Letters, 279(1-2): 86-96. https://doi.org/10.1016/j.epsl.2008.12.032
      Smolarek-Lach, J., Marynowski, L., Trela, W., et al., 2019. Mercury Spikes Indicate a Volcanic Trigger for the Late Ordovician Mass Extinction Event: An Example from a Deep Shelf of the Peri-Baltic Region. Scientific Reports, 9: 3139. https://doi.org/10.1038/s41598-019-39333-9
      Štrok, M., Baya, P. A., Hintelmann, H., 2015. The Mercury Isotope Composition of Arctic Coastal Seawater. Comptes Rendus Geoscience, 347(7-8): 368-376. https://doi.org/10.1016/j.crte.2015.04.001
      Su, W. B., He, L. Q., Wang, Y. B., et al., 2002. K-Bentonite Beds and High-Resolution Integrated Stratigraphy of the Uppermost Ordovician Wufeng and the Lowest Silurian Longmaxi Formations in South China. Science in China (Seri. D), 32(3): 207-219 (in Chinese).
      Su, W. B., Huff, W. D., Ettensohn, F. R., et al., 2009. K-Bentonite, Black-Shale and Flysch Successions at the Ordovician-Silurian Transition, South China: Possible Sedimentary Responses to the Accretion of Cathaysia to the Yangtze Block and Its Implications for the Evolution of Gondwana. Gondwana Research, 15(1): 111-130. https://doi.org/10.1016/j.gr.2008.06.004
      Tao, H. F., Qiu, Z., Lu, B., et al., 2020. Volcanic Activities Triggered the First Global Cooling Event in the Phanerozoic. Journal of Asian Earth Sciences, 194: 104074. https://doi.org/10.1016/j.jseaes.2019.104074
      Tyrrell, T., 1999. The Relative Influences of Nitrogen and Phosphorus on Oceanic Primary Production. Nature, 400: 525-531. https://doi.org/10.1038/22941
      Walton, C. R., Ewens, S., Coates, J. D., et al., 2023. Phosphorus Availability on the Early Earth and the Impacts of Life. Nature Geoscience, 16(5): 399-409. https://doi.org/10.1038/s41561-023-01167-6
      Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2011. Kwangsian Crustal Anatexis within the Eastern South China Block: Geochemical, Zircon U-Pb Geochronological and Hf Isotopic Fingerprints from the Gneissoid Granites of Wugong and Wuyi-Yunkai Domains. Lithos, 127(1-2): 239-260. https://doi.org/10.1016/j.lithos.2011.07.027
      Westheimer, F. H., 1987. Why Nature Chose Phosphates. Science, 235(4793): 1173-1178. https://doi.org/10.1126/science.2434996
      Wignall, P. B., 2001. Large Igneous Provinces and Mass Extinctions. Earth-Science Reviews, 53(1-2): 1-33. https://doi.org/10.1016/s0012-8252(00)00037-4
      Wignall, P., 2005. The Link between Large Igneous Province Eruptions and Mass Extinctions. Elements, 1(5): 293-297. https://doi.org/10.2113/gselements.1.5.293
      Xiong, G. Q., Wang, J., Li, Y. Y., et al., 2017. Zircon U-Pb Dating and Geological Significance of the Bentonites from the Upper Ordovician Wufeng Formation and Lower Silurian Longmaxi Formation in Western Daba Mountains. Sedimentary Geology and Tethyan Geology, 37(2): 46-58 (in Chinese with English abstract).
      Xu, Y. J., Cawood, P. A., Du, Y. S., 2016. Intraplate Orogenesis in Response to Gondwana Assembly: Kwangsian Orogeny, South China. American Journal of Science, 316(4): 329-362. https://doi.org/10.2475/04.2016.02
      Yang, S. C., Hu, W. X., Wang, X. L., et al., 2019. Duration, Evolution, and Implications of Volcanic Activity across the Ordovician-Silurian Transition in the Lower Yangtze Region, South China. Earth and Planetary Science Letters, 518: 13-25. https://doi.org/10.1016/j.epsl.2019.04.020.
      Yang, S. C., Hu, W. X., Fan, J. X., et al., 2022. New Geochemical Identification Fingerprints of Volcanism during the Ordovician-Silurian Transition and Its Implications for Biological and Environmental Evolution. Earth-Science Reviews, 228: 104016. https://doi.org/10.1016/j.earscirev.2022.104016
      Yin, R. S., Chen, D., Pan, X., et al., 2022. Mantle Hg Isotopic Heterogeneity and Evidence of Oceanic Hg Recycling into the Mantle. Nature Communications, 13: 948. https://doi.org/10.1038/s41467-022-28577-1
      Yuan, X. C., Liu, J. L., Yang, Q. J., et al., 2024. Ordovician-Early Devonian Granitic Magmatism as the Consequence of Intracontinental Orogenic Activity along the Qinhang Belt in South China. Geological Society of America Bulletin, 136(7/8): 3137-3155. https://doi.org/10.1130/b36992.1
      Zambardi, T., Sonke, J. E., Toutain, J. P., et al., 2009. Mercury Emissions and Stable Isotopic Compositions at Vulcano Island (Italy). Earth and Planetary Science Letters, 277(1-2): 236-243. https://doi.org/10.1016/j.epsl.2008.10.023
      Zhang, F. F., Wang, Y. J., Zhang, A. M., et al., 2012. Geochronological and Geochemical Constraints on the Petrogenesis of Middle Paleozoic (Kwangsian) Massive Granites in the Eastern South China Block. Lithos, 150: 188-208. https://doi.org/10.1016/j.lithos.2012.03.011
      Zhang, X. S., Xu, X. S., Xia, Y., et al., 2017. Early Paleozoic Intracontinental Orogeny and Post-Orogenic Extension in the South China Block: Insights from Volcanic Rocks. Journal of Asian Earth Sciences, 141: 24-42. https://doi.org/10.1016/j.jseaes.2016.07.016.
      Zhang, Y., Shu, L. S., Chen, X. Y., 2011a. Geochemistry, Geochronology, and Petro-Genesis of the Early Paleozoic Granitic Plutons in the Central-Southern Jiangxi Province, China. Science China Earth Sciences, 54(10): 1492-1510. https://doi.org/10.1007/s11430-011-4249-3
      Zhao, K., Du, X. B., Lu, Y. C., et al., 2021. Is Volcanic Ash Responsible for the Enrichment of Organic Carbon in Shales? Quantitative Characterization of Organic-Rich Shale at the Ordovician-Silurian Transition. GSA Bulletin, 133(3/4): 837-848. https://doi.org/10.1130/b35737.1
      Zhao, M. Y., Mills, B. J. W., Poulton, S. W., et al., 2024. Drivers of the Global Phosphorus Cycle over Geological Time. Nature Reviews Earth & Environment, 5(12): 873-889. https://doi.org/10.1038/s43017-024-00603-4
      Zheng, W., Zhou, A. W., Sahoo, S. K., et al., 2023. Recurrent Photic Zone Euxinia Limited Ocean Oxygenation and Animal Evolution during the Ediacaran. Nature Communications, 14: 3920. https://doi.org/10.1038/s41467-023-39427-z
      Zheng, W., Zhou, A. W., Sun, R. Y., et al., 2023. Mercury Isotopes in Sedimentary Rocks as a Paleoenvironmental Proxy. Chinese Science Bulletin, 68(6): 628-643(in Chinese). doi: 10.1360/TB-2022-0158
      Zhong, Y. F., Ma, C. Q., Liu, L., et al., 2014. Ordovician Appinites in the Wugongshan Domain of the Cathaysia Block, South China: Geochronological and Geochemical Evidence for Intrusion into a Local Extensional Zone within an Intracontinental Regime. Lithos, 198-199: 202-216. https://doi.org/10.1016/j.lithos.2014.04.002
      Zhong, Y. F., Wang, L. X., Zhao, J. H., et al., 2016. Partial Melting of an Ancient Sub-Continental Lithospheric Mantle in the Early Paleozoic Intracontinental Regime and Its Contribution to Petrogenesis of the Coeval Peraluminous Granites in South China. Lithos, 264: 224-238. https://doi.org/10.1016/j.lithos.2016.08.026
      Zhou, M. Z., Luo, T. Y., Huang, Z. L., et al., 2007. Advances in Research on K-Bentonite. Acta Mineralogica Sinica, 27(Suppl. 1): 351-359 (in Chinese with English abstract).
      Zou, C. N., Qiu, Z., Poulton, S. W., et al., 2018a. Ocean Euxinia and Climate Change "Double Whammy" Drove the Late Ordovician Mass Extinction. Geology, 46(6): 535-538. https://doi.org/10.1130/g40121.1
      Zou, C. N., Qiu, Z., Wei, H. Y., et al., 2018b. Euxinia Caused the Late Ordovician Extinction: Evidence from Pyrite Morphology and Pyritic Sulfur Isotopic Composition in the Yangtze Area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 511: 1-11. https://doi.org/10.1016/j.palaeo.2017.11.033
      Zou, C. N., Qiu, Z., Zhang, J. Q., et al., 2022. Unconventional Petroleum Sedimentology: A Key to Understanding Unconventional Hydrocarbon Accumulation. Engineering, 18: 62-78. https://doi.org/10.1016/j.eng.2022.06.016
      包汉勇, 孟志勇, 李凯, 等, 2023. 四川盆地涪陵地区龙马溪组含气页岩段上部气层平面非均质性特征及其发育主控因素. 地球科学, 48(7): 2750-2763. doi: 10.3799/dqkx.2023.154
      蔡全升, 胡明毅, 杨智, 等, 2024. 湘西前陆坳陷区五峰-龙马溪组黑色岩系沉积环境与有机质富集机制: 以TD2井为例. 地球科学, 49(7): 2330-2345. doi: 10.3799/dqkx.2023.098
      杜学斌, 贾冀新, 赵珂, 等, 2022. 扬子地区奥陶纪-志留纪过渡期深时火山灰层发育特征及其对富有机质页岩沉积的影响. 中南大学学报(自然科学版), 53(9): 3509-3521.
      葛祥英, 牟传龙, 门欣, 等, 2023. 四川盆地晚奥陶世末期-早志留世初期钾质斑脱岩U-Pb年代学及其成因环境研究. 沉积与特提斯地质(待刊).
      胡修棉, 李娟, 韩中, 等, 2020. 中新生代两类极热事件的环境变化、生态效应与驱动机制. 中国科学: 地球科学, 50(8): 1023-1043.
      胡艳华, 刘健, 周明忠, 等, 2009a. 奥陶纪和志留纪钾质斑脱岩研究评述. 地球化学, 38(4): 393-404.
      胡艳华, 孙卫东, 丁兴, 等, 2009b. 奥陶纪-志留纪边界附近火山活动记录: 来华南周缘钾质斑脱岩的信息. 岩石学报, 25(12): 3298-3308.
      梁超, 刘雨迪, 操应长, 等, 2023. 扬子地区奥陶纪-志留纪转折期多事件耦合关系及有机质富集. 中国石油大学学报(自然科学版), 47(6): 1-12.
      邱振, 韦恒叶, 刘翰林, 等, 2021. 异常高有机质沉积富集过程与元素地球化学特征. 石油与天然气地质, 42(4): 931-948.
      邱振, 邹才能, 王红岩, 等, 2020. 中国南方五峰组-龙马溪组页岩气差异富集特征与控制因素. 天然气地球科学, 31(2): 163-175.
      邱振, 邹才能, 2020. 非常规油气沉积学: 内涵与展望. 沉积学报, 38(1): 1-29.
      邱振, 邹才能, 韦恒叶, 等, 2024. 非常规油气资源富集与重大地质事件: 非常规油气沉积学创新研究. 北京: 科学出版社.
      苏文博, 何龙清, 王永标, 等, 2002. 华南奥陶-志留系五峰组及龙马溪组底部斑脱岩与高分辨综合地层. 中国科学(D辑), 32(3): 207-219.
      熊国庆, 王剑, 李园园, 等, 2017. 大巴山西段上奥陶统-下志留统五峰组-龙马溪组斑脱岩锆石U-Pb年龄及其地质意义. 沉积与特提斯地质, 37(2): 46-58.
      郑旺, 周岸文, 孙若愚, 等, 2023. 沉积岩汞同位素的古环境指示意义. 科学通报, 68(6): 628-643.
      周明忠, 罗泰义, 黄智龙, 等, 2007. 钾质斑脱岩的研究进展. 矿物学报, 27(增刊1): 351-359.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)

      Article views (976) PDF downloads(242) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return