• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 12
    Dec.  2025
    Turn off MathJax
    Article Contents
    Xue Gang, Chen Honghan, Ma Xiaodong, Zang Suhua, Zan Ling, Bai Luanxi, Tai Hao, Su Peng, Cheng Ji, Su Danmei, Huang Tianjiao, Jiang Jiayi, 2025. Oil Correlation for Whole Petroleum System in Qintong Sag, Subei Basin. Earth Science, 50(12): 4652-4670. doi: 10.3799/dqkx.2025.130
    Citation: Xue Gang, Chen Honghan, Ma Xiaodong, Zang Suhua, Zan Ling, Bai Luanxi, Tai Hao, Su Peng, Cheng Ji, Su Danmei, Huang Tianjiao, Jiang Jiayi, 2025. Oil Correlation for Whole Petroleum System in Qintong Sag, Subei Basin. Earth Science, 50(12): 4652-4670. doi: 10.3799/dqkx.2025.130

    Oil Correlation for Whole Petroleum System in Qintong Sag, Subei Basin

    doi: 10.3799/dqkx.2025.130
    • Received Date: 2025-02-09
    • Publish Date: 2025-12-25
    • With the continual progressing of shale oil exploration and development in lacustrine facies, the investigation in Qintong sag of Subei basin steps into the stage of whole petroleum system evaluation. The previous oil correlation researches focused on the influence of salinity of lake water during source rock development onto biomarkers, which is hard to satisfy the requirement of oil correlation with the source rocks of "contemporaneous heterotopic facies" for whole petroleum system. This study is on the basis of analysis of controlling of high-resolution sequence stratigraphy driven by paleoclimate on source rock development and distribution, totally 11 shale oil and conventional crude oil samples in Qintong sag have been employed to measure the aryl isoprenoid biomarkers which can reflect sulfuration habitat and be used to correlate the whole petroleum system with source rocks. Meanwhile, the 2, 3, 6- aryl isoprenoids (2, 3, 6-AIPs) and 2, 3, 4- aryl isoprenoids (2, 3, 4-AIPs) have been applied to build two parameters: C3=Σ(2, 3, 6-AIPs)/Σ(2, 3, 4-AIPs) and C4=Σ(2, 3, 6-AIPs)/ Σ(2, 3, 4-AIPs)+ Σ(2, 3, 6-AIPs), which are utilized to calculate the relative sulfuration intensity and relative paleo-depth of lake water for the source rocks of shale oils and conventional crude oils, respectively. And then, several research results have been obtained as following. (1) The second member of Funing Formation in Qintong sag underwent the low frequency cycle of earlier lake expansion system tract (EEST)→later lake expansion system tract (LEST) →high level system tract (HST), which can be divided into high frequency cycle of 9-fourth level quasi-sequence group (P1-P9), and 32.5-fifth level subsequences, which indicates the total tendency from the (semi-) haline water during the earlier cold and dry paleoclimate evolving into the fresh water during the later warm and humid paleoclimate. (2) The relative higher values of residual total organic carbon (TOC) in the second member of Funing Formation are always corresponding to the maximum lake flooding surface of system tract cycles with warm and humid paleo-climate and fresh water; and the relative lower values of residual TOC being always corresponding to the initial lake flooding surface with cold and dry paleo-climate and (semi-) haline water. This leads to a conclusion that bathyal-deep lake environments with warm, humid paleoclimate and fresh water are more beneficial to organic enrichment. (3) Four types of source rocks in the second member of Funing Formation can be recognized: the first is relatively shallower water column and weaker sulfuration facies; the second being relatively deeper water column and moderate sulfuration facies; the third being deeper water column and intensive sulfuration facies; and the fourth being deeper and fresh water column facies. This research is not only providing a new tool for "contemporaneous heterotopic facies" source rock evolution, but also giving the evidence to establish the distribution sequence of whole petroleum system.

       

    • loading
    • Brocks, J. J., Schaeffer, P., 2008. Okenane, a Biomarker for Purple Sulfur Bacteria (Chromatiaceae), and Other New Carotenoid Derivatives from the 1 640 Ma Barney Creek Formation. Geochimica et Cosmochimica Acta, 72(5): 1396-1414. https://doi.org/10.1016/j.gca.2007.12.006
      Chen, H. H., 2023. Advances on Relationship between Strike-Slip Structures and Hydrocarbon Accumulations in Large Superimposed Craton Basins, China. Earth Science, 48(6): 2039-2066(in Chinese with English abstract).
      Fang, C. H., Zhang, Z. H., Wang, Y. F., et al., 2008. Geochemical Characteristics of the Lower Tertiary Source Rock in Qintong Sag, Subei Basin. Journal of Xi'an Shiyou University (Natural Science Edition), 23(6): 1-5, 117(in Chinese with English abstract).
      Gao, Y. Q., He, X. P., Cheng, X., et al., 2024. Discussion on High Hydrocarbon Generation Efficiency of Saline Lacustrine Source Rocks with Low TOC: A Case Study of the Second Member of Funing Formation, Qintong Sag, Subei Basin. Petroleum Reservoir Evaluation and Development, 14(5): 678-687(in Chinese with English abstract).
      Guo, X. S., Li, W. P., Shen, B. J., et al., 2025. Selection Evaluation of Oil Shale In-Situ Mining in China Petrochemical Exploration Area and Its Adjacent Areas. Petroleum Reservoir Evaluation and Development, 15(1): 1-10(in Chinese with English abstract).
      Guo, X. S., Ma, X. X., Li, M. W., et al., 2023. Mechanisms for Lacustrine Shale Oil Enrichment in Chinese Sedimentary Basins. Oil & Gas Geology, 44(6): 1333-1349(in Chinese with English abstract).
      He, T. H., Li, W. H., Lu, S. F., et al., 2022. Distribution and Isotopic Signature of 2- Alkyl- 1, 3, 4- Trimethylbenzenes in the Lower Paleozoic Source Rocks and Oils of Tarim Basin: Implications for the Oil- Source Correlation. Petroleum Science, 19(6): 2572-2582. https://doi.org/10.1016/j.petsci.2022.07.014
      Hu, Y., Zhang, Z. H., Fang, C. H., 2005. Biomarker Features of Low- Mature Oil in Qintong Sag and Maturity Analysis. Oil & Gas Geology, 26(4): 512-517(in Chinese with English abstract).
      Huo, Q. L., Li, Z. G., Zeng, H. S., et al., 2010. Aryl Isoprenoids Found in Late Cretaceous Qn1 Source Rocks in Songliao Basin and Its Significance. Acta Sedimentologica Sinica, 28(4): 815-820(in Chinese with English abstract).
      Júnior, G. R. S., Santos, A. L. S., de Lima S. G., et al, 2013. Evidence for Euphotic Zone Anoxia during the Deposition of Aptian Source Rocks Based on Aryl Isoprenoids in Petroleum, Sergipe-Alagoas Basin, Northeastern Brazil. Organic Geochemistry, 63: 94-104. https://doi.org/10.1016/j.orggeochem.2013.07.009
      Li, M. Q., Yao, C., Chen, F. F., et al., 2025. Biomarker Classifications of Lower Paleozoic Deep Source Rocks and Crude Oils from the Tarim Basin and Oil Sources. Natural Gas Geoscience, 36(1): 166-182(in Chinese with English abstract).
      Li, Z. X., Fan, P., Li, J. G., et al., 1998. An Application of Aryl Isoprenoids in Indicating Sedimentary Environments. Acta Sedimentologica Sinica, 16(2): 9-13(in Chinese with English abstract).
      Li, Z. M., Liu, Y. H., He, J. Y., et al., 2023. Limits of Critical Parameters for Sweet- Spot Interval Evaluation of Lacustrine Shale Oil. Oil & Gas Geology, 44(6): 1453-1467(in Chinese with English abstract).
      Li, Z. P., Yu, Q. L., Zan, L., et al., 2023. Geochemical Characteristics and Hydrocarbon Generation Potential of Different Lithologic Source Rocks in the Second Member of Funing Formation in Qintong Sag, Subei Basin. Geoscience, 37(5): 1345-1357(in Chinese with English abstract).
      Lu, H. S., Qin, L. M., Liu, J., et al., 2009. Petroleum Migration and Accumulation in Qintong Sag, North Jiangsu Basin. Geological Review, 55(3): 395-405(in Chinese with English abstract).
      Lyu, C., Zhang, C. M., Wu, Y. F., 2015. Qualitative Analysis of Trimethylaryl Isoprenoids Using GC- MS Combined with Retention Indices. Journal of Yangtze University (Natural Science Edition), 12(5): 15-18, 27(in Chinese with English abstract).
      Ma, J., Wu, C. D., Wang, Y. Z., et al., 2020. Discoveryof Carotenoids and Its Paleolake Significance in the Oligocene Anjihaihe Formation, Southern Junggar Basin, China. Acta Geologica Sinica, 94(6): 1853-1868(in Chinese with English abstract).
      Quan, C., Liu, Y. S., Utescher, T., 2012. Eocene Monsoon Prevalence over China: A Paleobotanical Perspective. Palaeogeography, Palaeoclimatology, Palaeoecology, 365: 302-311. https://doi.org/10.1016/j.palaeo.2012.09.035.
      Schwark, L., Frimmel, A., 2004. Chemostratigraphy of the Posidonia Black Shale, SW-Germany Ⅱ. Assessment of Extent and Persistence of Photic-Zone Anoxia Using Aryl Isoprenoid Distributions. Chemical Geology, 206(3-4): 231-248. https://doi.org/10.1016/j.chemgeo.2003.12.008
      Song, Y., Jia, C. Z., Jiang, L., et al., 2024. Connotation and Research Strategy of the Whole Petroleum System. Petroleum Exploration and Development, 51(6): 1-13(in Chinese with English abstract).
      Sun, Y. G., Xiao, Z. Y., Xu, S. P., et al., 2004. Aryl-Isoprenoids in Crude Oil and Its Implication in Geological Exploration. Xinjiang Petroleum Geology, 25(2): 215-218(in Chinese with English abstract).
      Wu, Q., Yu, W. D., Luo, W. F., et al., 2016. Achievements and Recognitions of Exploration in Lithologic Reservoirs in Qintong Sag, North Jiangsu Basin. China Petroleum Exploration, 21(3): 99-107(in Chinese with English abstract).
      Yang, Y. C., Zhang, Z. H., Fang, C. H., et al., 2006. Feature of Crude Oil Triaromatic Steroid and Oil Correlation in Qintong Sag of Subei Basin. Memoir of the Fourth International Conference of Hydrocarbon Reservoiring Mechanism and Reserve Evaluation, 26(3): 531-539(in Chinese).
      Yao, H. S., Yun, L., Zan, L., et al., 2023. Development Mode and Practice of Fault- Block Oriented Shale Oil Well in the Second Member of Funing Formation, Qintong Sag, Subei Basin. Petroleum Reservoir Evaluation and Development, 13(2): 141-151(in Chinese with English abstract).
      Yao, H. S., Zan, L., Gao, Y. Q., et al., 2021. Main Controlling Factors for the Enrichment of Shale Oil and Significant Discovery in Second Member of Paleogene Funing Formation, Qintong Sag, Subei Basin. Petroleum Geology & Experiment, 43(5): 776-783(in Chinese with English abstract).
      Yu, X. K., Fan, P., 1990. Discovery of New Biomarker Compounds of South Florid Basin in America. Science in China (Series B), (5): 539-544(in Chinese with English abstract).
      Yun, L., He, X. P., Hua, C. X., et al., 2023. Accumulation Characteristics and Resource Potential of Paleogene Continental Shale Oil in Qintong Sag of Subei Basin. Acta Petrolei Sinica, 44(1): 176-187(in Chinese with English abstract).
      Zan, L., Bai, L. X., Yin, Y. L., et al., 2023. Basic Characteristics and Genesis Analysis of Shale Oil in the Second Member of Paleogene Funing Formation in Qintong Sag, Subei Basin. Petroleum Geology & Experiment, 45(2): 356-365(in Chinese with English abstract).
      Zan, L., Chai, F. Y., Yin, Y. L., 2021a. Physical Properties, Geochemical Characteristics and Origins of Crude Oils in the Qintong Sag Slope. Acta Sedimentologica Sinica, 39(5): 1068-1077(in Chinese with English abstract).
      Zan, L., Luo, W. F., Yin, Y. L., et al., 2021b. Formation Conditions of Shale Oil and Favorable Targets in the Second Member of Paleogene Funing Formation in Qintong Sag, Subei Basin. Petroleum Geology & Experiment, 43(2): 233-241(in Chinese with English abstract).
      Zan, L., Luo, W. F., Ma, X. D., 2016. Hydrocarbon Generation Potential and Genetic Environments of Second Member of Funing Formation in Qintong Sag, Subei Basin. Unconventional Oil & Gas, 3(3): 1-8(in Chinese with English abstract).
      Zhang, C. M., Yang, L., 2013. Nomenclature of Aryl Isoprenoid Hydrocarbons. Geochimica, 42(4): 379-384(in Chinese with English abstract).
      Zhang, D. L., Zhang, K. Q., Xu, T. W., et al., 2020. Research on a Potential Indicator of High- Quality Source Rocks in Saline Lacustrine Basin: A Case Study of the Dongpu Depression. Journal of Yangtze University (Natural Science Edition), 17(1): 1-8(in Chinese with English abstract).
      Zhang, Z. H., Wang, Y., Wu, Y. Y., et al., 2006. Geochemical Behaviors of Condensates in Hongzhuang Structure in Qintong Sag. Natural Gas Industry, 26(9): 8-11(in Chinese with English abstract).
      Zhong, Z. G., Yu, W. Q., Duan, H. L., et al., 2025. Progress and Research Direction of Shale Oil Exploration in Complex Fault Blocks with Low to Medium TOC in Subei Basin. Petroleum Reservoir Evaluation and Development, 15(1): 11-18(in Chinese with English abstract).
      Zhu, L., Qin, L. M., Zhang, Z. H., et al., 2009. Geochemical Characteristics and Accumulation Process of Beihanzhuang Oilfield of Qintong Depression, Northern Jiangsu Basin. Natural Gas Geoscience, 20(1): 36-43(in Chinese with English abstract).
      陈红汉, 2023. 我国大型克拉通叠合盆地的走滑构造与油气聚集研究进展. 地球科学, 48(6): 2039-2066. doi: 10.3799/dqkx.2023.094
      方朝合, 张枝焕, 王义凤, 等, 2008. 苏北盆地溱潼凹陷第三系烃源岩地球化学特征. 西安石油大学学报(自然科学版), 23(6): 1-5, 117.
      高玉巧, 何希鹏, 程熊, 等, 2024. 陆相咸化湖盆"低TOC"烃源岩高生烃效率探讨: 以苏北盆地溱潼凹陷阜宁组二段泥页岩为例. 油气藏评价与开发, 14(5): 678-687.
      郭旭升, 李王鹏, 申宝剑, 等, 2025. 中国石化探区和邻区油页岩原位开采选区评价. 油气藏评价与开发, 15(1): 1-10.
      郭旭升, 马晓潇, 黎茂稳, 等, 2023. 陆相页岩油富集机理探讨. 石油与天然气地质, 44(6): 1333-1349.
      胡瑛, 张枝焕, 方朝合, 2005. 溱潼凹陷低熟油生物标志物特征及成熟度浅析. 石油与天然气地质, 26(4): 512-517.
      霍秋立, 李振广, 曾花森, 等, 2010. 松辽盆地北部晚白垩系青一段源岩中芳基类异戊二烯烃的检出及意义. 沉积学报, 28(4): 815-820.
      李梦勤, 姚超, 陈方方, 等, 2025. 塔里木盆地下古生界深层烃源岩和原油生物标志物类型划分及油源. 天然气地球科学, 36(1): 166-182.
      李振西, 范璞, 李景贵, 等, 1998. 芳基类异戊二烯生标在指相上的应用. 沉积学报, 16(2): 9-13.
      李志明, 刘雅慧, 何晋译, 等, 2023. 陆相页岩油"甜点"段评价关键参数界限探讨. 石油与天然气地质, 44(6): 1453-1467.
      李志鹏, 余麒麟, 昝灵, 等, 2023. 苏北盆地溱潼凹陷阜二段不同岩性烃源岩的地球化学特征及生烃潜力对比. 现代地质, 37(5): 1345-1357.
      陆黄生, 秦黎明, 刘军, 等, 2009. 苏北盆地溱潼凹陷油气运聚模式. 地质论评, 55(3): 395-405.
      吕超, 张春明, 吴育飞, 2015. GC- MS结合保留指数对三甲基芳基类异戊二烯的定性. 长江大学学报(自然科学版), 12(5): 15-18, 27.
      马健, 吴朝东, 王熠哲, 等, 2020. 准噶尔盆地渐新世安集海河组类胡萝卜素的发现及古环境意义. 地质学报, 94(6): 1853-1868.
      宋岩, 贾承造, 姜林, 等, 2024. 全油气系统内涵与研究思路. 石油勘探与开发, 51(6): 1-13.
      孙永革, 肖中尧, 徐世平, 等, 2004. 塔里木盆地原油中芳基类异戊二烯烃的检出及其地质意义. 新疆石油地质, 25(2): 215-218.
      吴群, 余文端, 骆卫峰, 等, 2016. 苏北盆地溱潼凹陷岩性油藏勘探成果及启示. 中国石油勘探, 21(3): 99-107.
      杨永才, 张枝焕, 方朝合, 等, 2006. 苏北盆地溱潼凹陷原油三芳甾烷特征及油源对比. 第四届油气成藏机理与资源评价国际学术研讨会论文集, 26(3): 531-539.
      姚红生, 云露, 昝灵, 等, 2023. 苏北盆地溱潼凹陷阜二段断块型页岩油定向井开发模式及实践. 油气藏评价与开发, 13(2): 141-151.
      姚红生, 昝灵, 高玉巧, 等, 2021. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油富集高产主控因素与勘探重大突破. 石油实验地质, 43(5): 776-783.
      于心科, 范璞, 1990. 发现于美国South Florida盆地的新生物标志化合物. 中国科学(B辑), (5): 539-544.
      云露, 何希鹏, 花彩霞, 等, 2023. 苏北盆地溱潼凹陷古近系陆相页岩油成藏地质特征及资源潜力. 石油学报, 44(1): 176-187.
      昝灵, 白鸾羲, 印燕铃, 等, 2023. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油基本特征及成因分析. 石油实验地质, 45(2): 356-365.
      昝灵, 柴方园, 印燕铃, 2021a. 溱潼凹陷斜坡带原油物性和地化特征及成因. 沉积学报, 39(5): 1068-1077.
      昝灵, 骆卫峰, 印燕铃, 等, 2021b. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油形成条件及有利区评价. 石油实验地质, 43(2): 233-241.
      昝灵, 骆卫峰, 马晓东, 2016. 苏北盆地溱潼凹陷阜二段烃源岩生烃潜力及形成环境. 非常规油气, 3(3): 1-8.
      张春明, 杨禄, 2013. 芳基类异戊二烯烃类化合物的命名. 地球化学, 42(4): 379-384.
      张冬琳, 张蔻乔, 徐田武, 等, 2020. 一种潜在的咸化湖盆优质烃源岩指相标志物研究: 以东濮凹陷为例. 长江大学学报(自然科学版), 17(1): 1-8.
      张枝焕, 王瑶, 吴聿元, 等, 2006. 溱潼凹陷红庄构造凝析油气地化特征研究. 天然气工业, 26(9): 8-11, 160
      钟志国, 于雯泉, 段宏亮, 等, 2025. 苏北盆地中低TOC复杂断块页岩油勘探进展与攻关方向. 油气藏评价与开发, 15(1): 11-18.
      朱雷, 秦黎明, 张枝焕, 等, 2009. 苏北盆地溱潼凹陷北汉庄油田油气成藏地球化学特征. 天然气地球科学, 20(1): 36-43.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(3)

      Article views (279) PDF downloads(34) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return