• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 11
    Nov.  2025
    Turn off MathJax
    Article Contents
    Duan Lian, Feng Yun, Hua Weihua, Chen Qihao, Liu Xiuguo, Zhang Kun, Fu Wei, 2025. Rock Solid Texture Synthesis Based on 3D-CA-GAN. Earth Science, 50(11): 4499-4513. doi: 10.3799/dqkx.2025.134
    Citation: Duan Lian, Feng Yun, Hua Weihua, Chen Qihao, Liu Xiuguo, Zhang Kun, Fu Wei, 2025. Rock Solid Texture Synthesis Based on 3D-CA-GAN. Earth Science, 50(11): 4499-4513. doi: 10.3799/dqkx.2025.134

    Rock Solid Texture Synthesis Based on 3D-CA-GAN

    doi: 10.3799/dqkx.2025.134
    • Received Date: 2025-04-15
    • Publish Date: 2025-11-25
    • Solid texture synthesis based on 2D samples (deep learning) is an important pathway for rock solid texture generation, which currently suffers from the inability of long distance dependence and color distortion. In this paper, it proposes an innovative method based on 3D coordinate attention generative adversarial network (3D-CA-GAN). By extending the coordinate attention mechanism to three-dimensional space (3D-CA) and combining the content-aware upsampling module and multi-scale discriminator, high-fidelity modeling of the spatial distribution of mineral particles is achieved. Experiments show that the method significantly outperforms existing techniques in terms of SSIM (0.773), PSNR (24.92% enhancement), and LPIPS (0.110 reduction), and ablation experiments further validate that the 3D-CA module improves the SSIM of directional textures by 14.69%. This study provides a new solution to texture synthesis with realism for geological modeling, and its 3D attention framework is useful for generic generation tasks.

       

    • loading
    • Cao, T. S., Kreis, K., Fidler, S., et al., 2023. TexFusion: Synthesizing 3D Textures with Text-Guided Image Diffusion Models. IEEE International Conference on Computer Vision (ICCV), Paris, 4169-4181. https://arxiv.org/abs/2310.13772
      Du, S. P., Hu, S. M., Martin, R. R., 2013. Semiregular Solid Texturing from 2D Image Exemplars. IEEE Transactions on Visualization and Computer Graphics, 19(3): 460-469. https://doi.org/10.1109/TVCG.2012.129
      Fu, J. M., Hu, M. S., Fang, F., et al., 2024. Complex Orebody 3D Modeling Using Radial Basis Function Surface Incorporating Stacking Integration Strategy. Earth Science, 49(3): 1165-1176 (in Chinese with English abstract).
      Gatys, L. A., Ecker, A. S., Bethge, M., 2015. Texture Synthesis Using Convolutional Neural Networks. Advances in Neural Information Processing Systems (NIPS), La Jolla, 1-9. https://doi.org/10.5555/2969239.2969269
      Gatys, L. A., Ecker, A. S., Bethge, M., 2016. Image Style Transfer Using Convolutional Neural Networks. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2414-2423. https://doi.org/10.1109/CVPR.2016.265
      Gulrajani, I., Ahmed, F., Arjovcky, M., et al., 2017. Improved Training of Wasserstein GANs. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, 5769-5779. https://doi.org/10.5555/3295222.3295327
      Gutierrez, J., Rabin, J., Galerne, B., et al., 2020. On Demand Solid Texture Synthesis Using Deep 3D Networks. Computer Graphics Forum, 39(1): 511-530. https://doi.org/10.1111/cgf.13889
      Heeger, D. J., Bergen, J. R., 1995. Pyramid-Based Texture Analysis/Synthesis. Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, New York, 229-238. https://doi.org/10.1145/218380.218446
      Henzler, P., Mitra, N. J., Ritschel, T., 2020. Learning a Neural 3D Texture Space from 2D Exemplars. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 8353-8361. https://doi.org/10.1109/cvpr42600.2020.00838
      Hou, Q. B., Zhou, D. Q., Feng, J. S., 2021. Coordinate Attention for Efficient Mobile Network Design. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 13708-13717. https://doi.org/10.1109/CVPR46437.2021.01350
      Hua, W. H., Xiao, Y. N., Wang, Z. J., et al., 2022. Real-Time Generation Technology of Vector Geological Profile Based on 3D Geological Model. Earth Science, 47(11): 4256-4266 (in Chinese with English abstract).
      Huo, D., Guo, Z. X., Zuo, X. X., et al., 2024. TexGen: Text-Guided 3D Texture Generation with Multi-View Sampling and Resampling. In: Leonardis, A., Ricci, E., Roth, S., eds., Computer Vision-ECCV 2024. Springer, Cham, 352-368. https://doi.org/10.1007/978-3-031-72920-1_20
      Kwatra, V., Essa, I., Bobick, A., et al., 2005. Texture Optimization for Example-Based Synthesis. ACM SIGGRAPH 2005 Papers, Los Angeles, 795-802. https://doi.org/10.1145/1186822.1073263
      Peachey, D. R., 1985. Solid Texturing of Complex Surfaces. ACM SIGGRAPH Computer Graphics, 19(3): 279-286. https://doi.org/10.1145/325165.325246
      Perlin, K., 1985. An Image Synthesizer. ACM SIGGRAPH Computer Graphics, 19(3): 287-296. https://doi.org/10.1145/325165.325247
      Portenier, T., Bigdeli, S., Goksel, O., 2020. GramGAN: Deep 3D Texture Synthesis from 2D Exemplars. Proceedings of the 34th International Conference on Neural Information Processing Systems, Montreal, 6994-7004. https://doi.org/10.5555/3495724.3496311
      Qian, Y. L., Shi, J., Sun, H. Q., et al., 2023. Vector Solid Texture Synthesis Using Unified RBF-Based Representation and Optimization. The Visual Computer, 39(9): 3963-3977. https://doi.org/10.1007/s00371-022-02541-y
      Qian, Y. L., Shu, Y., Sun, H. Q., et al., 2015. Vector Solid Texture Synthesis Using Two-Scale Shaping Model. Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology, Beijing, 27-36. https://doi.org/10.1145/2821592.2821605
      Shaham, T. R., Dekel, T., Michaeli, T., 2019. SinGAN: Learning a Generative Model from a Single Natural Image. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 4569-4579. https://doi.org/10.1109/iccv.2019.00467
      Tai, W. X., Zhou, Q., Yang, C. F., et al., 2023.3D Geological Visualization Modeling and Its Application in Zhexiang Gold Deposit, Southwest Guizhou Province. Earth Science, 48(11): 4017-4033 (in Chinese with English abstract).
      Wang, J. Q., Chen, K., Xu, R., et al., 2022. CARAFE: Unified Content-Aware Re-Assembly of FEatures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9): 4674-4687. https://doi.org/10.1109/TPAMI.2021.3074370
      Wang, P. Q., Chen, P. F., Yuan, Y., et al., 2018. Understanding Convolution for Semantic Segmentation. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, 1451-1460. https://doi.org/10.1109/WACV.2018.00163
      Xiao, H. G., He, L., Zheng, Y. L., et al., 2022.3D Solid Digital and Numerical Modeling of Multimineral Heterogeneous Rocks Based on Deep Learning. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 8(6): 188. https://doi.org/10.1007/s40948-022-00495-y
      Zirek, S., 2023. Synthesising 3D Solid Models of Natural Heterogeneous Materials from Single Sample Image, Using Encoding Deep Convolutional Generative Adversarial Networks. Systems and Soft Computing, 5: 200051. https://doi.org/10.1016/j.sasc.2023.200051
      Zhang, R., Isola, P., Efros, A. A., et al., 2018. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 586-595. https://doi.org/10.1109/CVPR.2018.00068
      Zhao, X., Guo, J. F., Wang, L., et al., 2023. STS-GAN: Can We Synthesize Solid Texture with High Fidelity from Arbitrary 2D Exemplar? In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI). International Joint Conferences on Artificial Intelligence Organization, Macao, 1768-1776. https://doi.org/10.24963/ijcai.2023/196
      扶金铭, 胡茂胜, 方芳, 等, 2024. Stacking集成策略下的径向基函数曲面复杂矿体三维建模方法. 地球科学, 49(3): 1165-1176. doi: 10.3799/dqkx.2022.433
      花卫华, 肖旖旎, 王振娟, 等, 2022. 基于三维地质模型的矢量地质剖面图实时生成技术. 地球科学, 47(11): 4256-4266. doi: 10.3799/dqkx.2022.291
      邰文星, 周琦, 杨成富, 等, 2023. 黔西南者相金矿床三维地质可视化建模及应用. 地球科学, 48(11): 4017-4033. doi: 10.3799/dqkx.2022.095
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(18)  / Tables(6)

      Article views (111) PDF downloads(5) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return