| Citation: | Chen Zhongyuan, Ren Tao, Zhao Dong, 2025. TPE-SVM Model and SHAP Analysis to Identify Pb-Zn Deposit Types Based on Sphalerite Trace Elements. Earth Science, 50(11): 4355-4369. doi: 10.3799/dqkx.2025.136 |
|
Aggarwal, C. C., 2016. An Introduction to Outlier Analysis. Springer International Publishing, Cham, 1-34. https://doi.org/10.1007/978-3-319-47578-3_1
|
|
Bauer, M. E., Burisch, M., Ostendorf, J., et al., 2019. Trace Element Geochemistry of Sphalerite in Contrasting Hydrothermal Fluid Systems of the Freiberg District, Germany: Insights from LA-ICP-MS Analysis, Near-Infrared Light Microthermometry of Sphalerite-Hosted Fluid Inclusions, and Sulfur Isotope Geochemistry. Mineralium Deposita, 54(2): 237-262. https://doi.org/10.1007/s00126-018-0850-0
|
|
Bédard, É., De Bronac de Vazelhes, V., Beaudoin, G., 2022. Performance of Predictive Supervised Classification Models of Trace Elements in Magnetite for Mineral Exploration. Journal of Geochemical Exploration, 236: 106959. https://doi.org/10.1016/j.gexplo.2022.106959
|
|
Belissont, R., Muñoz, M., Boiron, M. C., et al., 2016. Distribution and Oxidation State of Ge, Cu and Fe in Sphalerite by μ-XRF and K-Edge μ-XANES: Insights into Ge Incorporation, Partitioning and Isotopic Fractionation. Geochimica et Cosmochimica Acta, 177: 298-314. https://doi.org/10.1016/j.gca.2016.01.001
|
|
Cai, Y. W., Qiu, K. F., Petrelli, M., et al., 2024. The Application of "Transfer Learning" in Optical Microscopy: The Petrographic Classification of Opaque Minerals. American Mineralogist, 109(12): 2060-2072. https://doi.org/10.2138/am-2023-9092
|
|
Caleb, C. J., Gysi, A. P., Monecke, T., et al., 2023. Experimental Study of Apatite-Fluid Interaction and Partitioning of Rare Earth Elements at 150 and 250 ℃. American Mineralogist, 108(8): 1409-1420. https://doi.org/10.2138/am-2022-8589
|
|
Chen, J. Y., Shen, H. J., Yan, W. Y., 2023. LA-ICP-MS Trace Element Geochemistry of Sphalerite: Metallogenic Constraints on the Langyaquan Pb-Zn Deposit in the Middle Tianshan Metallogenic Belt. Mineral Exploration, 14(3): 377-391 (in Chinese with English abstract).
|
|
Cook, N. J., Ciobanu, C. L., Pring, A., et al., 2009. Trace and Minor Elements in Sphalerite: A LA-ICPMS Study. Geochimica et Cosmochimica Acta, 73(16): 4761-4791. https://doi.org/10.1016/j.gca.2009.05.045
|
|
Dong, S. N., Wang, D., Ma, G. T., et al., 2024. Application of Machine Learning to Predict Types of Pb-Zn Deposits by Using Trace Elemental Characteristics of Sphalerite. Journal of Chengdu University of Technology (Science & Technology Edition), 51(4): 614-629 (in Chinese with English abstract).
|
|
Dong, Y. L., Zhang, Z. J., 2024. Deep Forest Modeling: An Interpretable Deep Learning Method for Mineral Prospectivity Mapping. Journal of Geophysical Research: Machine Learning and Computation, 1(4): e2024JH000311. https://doi.org/10.1029/2024JH000311
|
|
Frenzel, M., Hirsch, T., Gutzmer, J., 2016. Gallium, Germanium, Indium, and Other Trace and Minor Elements in Sphalerite as a Function of Deposit Type—A Meta-Analysis. Ore Geology Reviews, 76: 52-78. https://doi.org/10.1016/j.oregeorev.2015.12.017
|
|
Gisbert, G., Tornos, F., Losantos, E., et al., 2021. Vectors to Ore in Replacive Volcanogenic Massive Sulfide (VMS) Deposits of the Northern Iberian Pyrite Belt: Mineral Zoning, Whole Rock Geochemistry, and Application of Portable X-Ray Fluorescence. Solid Earth, 12(8): 1931-1966. https://doi.org/10.5194/se-12-1931-2021
|
|
Guilbert, J. M., Park, C. F., 1986. The Geology of Ore Deposits. Freeman, New York.
|
|
He, L., Liang, T., Wang, D. H., et al., 2024. Skarn Formation and Zn-Cu Mineralization in the Dachang Sn Polymetallic Ore Field, Guangxi: Insights from Skarn Rock Assemblage and Geochemistry. Minerals, 14(2): 193. https://doi.org/10.3390/min14020193
|
|
Hou, L. L., Wu, S., Yi, J. Z., et al., 2024. Discriminating Deposit Types Using Chlorite Trace Elements Based on Machine Learning. Earth Science, 49(12): 4303-4317 (in Chinese with English abstract).
|
|
Huang, H. X., Li, R. X., Xiong, F. Y., et al., 2020. A Method to Probe the Pore-Throat Structure of Tight Reservoirs Based on Low-Field NMR: Insights from a Cylindrical Pore Model. Marine and Petroleum Geology, 117: 104344. https://doi.org/10.1016/j.marpetgeo.2020.104344
|
|
Huang, X. H., Li, Z. H., Deng, T., et al., 2023. Uranium Potential Evaluation of Zhuguangshan Granitic Pluton in South China Based on Machine Learning. Earth Science, 48(12): 4427-4440 (in Chinese with English abstract).
|
|
Jin, L. Y., Qin, K. Z., Li, G. M., et al., 2015. Trace Element Distribution in Sulfides from the Chalukou Porphyry Mo-Vein-Type Zn-Pb System, Northern Great Xing'an Range, China: Implications for Metal Source and Ore Exploration. Acta Petrologica Sinica, 31(8): 2417-2434 (in Chinese with English abstract).
|
|
Keith, M., Haase, K. M., Schwarz-Schampera, U., et al., 2014. Effects of Temperature, Sulfur, and Oxygen Fugacity on the Composition of Sphalerite from Submarine Hydrothermal Vents. Geology, 42(8): 699-702. https://doi.org/10.1130/g35655.1
|
|
Li, X. M., Zhang, Y. X., Li, Z. K., et al., 2023. Discrimination of Pb-Zn Deposit Types Using Sphalerite Geochemistry: New Insights from Machine Learning Algorithm. Geoscience Frontiers, 14(4): 101580. https://doi.org/10.1016/j.gsf.2023.101580
|
|
Liu, P., Mao, J. W., Jian, W., et al., 2020. Fluid Mixing Leads to Main-Stage Cassiterite Precipitation at the Xiling Sn Polymetallic Deposit, SE China: Evidence from Fluid Inclusions and Multiple Stable Isotopes (H-O-S). Mineralium Deposita, 55(6): 1233-1246. https://doi.org/10.1007/s00126-019-00933-0
|
|
Liu, W. H., Mei, Y., Etschmann, B., et al., 2023. Germanium Speciation in Experimental and Natural Sphalerite: Implications for Critical Metal Enrichment in Hydrothermal Zn-Pb Ores. Geochimica et Cosmochimica Acta, 342: 198-214. https://doi.org/10.1016/j.gca.2022.11.031
|
|
Lundberg, S., Lee, S. I., 2017. A Unified Approach to Interpreting Model Predictions. Computer Science, 1-10. https://doi.org/10.48550/arXiv.1705.07874
|
|
Martin, A. J., McDonald, I., McFall, K. A., et al., 2021. Low-Temperature Silica-Rich Gold Mineralization in Mafic VMS Systems: Evidence from the Troodos Ophiolite, Cyprus. Mineralium Deposita, 56(4): 805-822. https://doi.org/10.1007/s00126-020-01007-2
|
|
Nathwani, C. L., Wilkinson, J. J., Fry, G., et al., 2022. Machine Learning for Geochemical Exploration: Classifying Metallogenic Fertility in Arc Magmas and Insights into Porphyry Copper Deposit Formation. Mineralium Deposita, 57(7): 1143-1166. https://doi.org/10.1007/s00126-021-01086-9
|
|
Niu, P. P., Muñoz, M., Mathon, O., et al., 2024. Mechanism of Germanium Enrichment in the World-Class Huize MVT Pb-Zn Deposit, Southwestern China. Mineralium Deposita, 59(5): 995-1016. https://doi.org/10.1007/s00126-023-01242-3
|
|
Qiu, K. F., Zhou, T., Chew, D., et al., 2024. Apatite Trace Element Composition as an Indicator of Ore Deposit Types: A Machine Learning Approach. American Mineralogist, 109(2): 303-314. https://doi.org/10.2138/am-2022-8805
|
|
Rajabpour, S., Hassanpour, S., Jiang, S. Y., 2023. Physicochemical Evolution and Mechanism of a Skarn System: Insights from the World-Class Mazraeh Cu Deposit, NW Iran. GSA Bulletin, 136(1-2): 351-370. https://doi.org/10.1130/B36854.1
|
|
Reich, M., Deditius, A., Chryssoulis, S., et al., 2013. Pyrite as a Record of Hydrothermal Fluid Evolution in a Porphyry Copper System: A SIMS/EMPA Trace Element Study. Geochimica et Cosmochimica Acta, 104: 42-62. https://doi.org/10.1016/j.gca.2012.11.006
|
|
Ren, T., Zhou, J. X., Wang, D., et al., 2019. Trace Elemental and S-Pb Isotopic Geochemistry of the Fule Pb-Zn Deposit, NE Yunnan Province. Acta Petrologica Sinica, 35(11): 3493-3505 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.11.15
|
|
Sangster, D. F., 2018. Toward an Integrated Genetic Model for Vent-Distal SEDEX Deposits. Mineralium Deposita, 53(4): 509-527. https://doi.org/10.1007/s00126-017-0755-3
|
|
Sangster, D. F., 2020. Evidence for Lateral Fluid Flow in Vent-Distal SEDEX Zn-Pb Deposits and Districts. Mineralium Deposita, 55(3): 399-407. https://doi.org/10.1007/s00126-019-00931-2
|
|
Sihombing, F. M. H., Palin, R. M., Hughes, H. S. R., et al., 2024. Improved Mineral Prospectivity Mapping Using Graph Neural Networks. Ore Geology Reviews, 172: 106215. https://doi.org/10.1016/j.oregeorev.2024.106215
|
|
Song, Y. C., Yang, Z. M., Zhuang, L. L., 2023. Enrichment of Mississippi Valley-Type (MVT) Deposits in the Tethyan Domain Linked to Organic Matter-Rich Sediments. Science China Earth Sciences, 66(12): 2853-2870. https://doi.org/10.1007/s11430-023-1195-5
|
|
Straumal, B., Kilmametov, A., Korneva, A., et al., 2021. The Enrichment of (Cu, Sn) Solid Solution Driven by High-Pressure Torsion. Crystals, 11(7): 766. https://doi.org/10.3390/cryst11070766
|
|
Sun, G. T., Zhou, J. X., 2022. Application of Machine Learning Algorithms to Classification of Pb-Zn Deposit Types Using LA-ICP-MS Data of Sphalerite. Minerals, 12(10): 1293. https://doi.org/10.3390/min12101293
|
|
Tăma, C. G., Andrii, M. P., Kovács, R., et al., 2021. Sphalerite Composition in Low- and Intermediate-Sulfidation Epithermal Ore Bodies from the Roia Montană Au-Ag Ore Deposit, Apuseni Mountains, Romania. Minerals, 11(6): 634. https://doi.org/10.3390/min11060634
|
|
Tan, R. C., Shao, Y. J., Brzozowski, M. J., et al., 2024. Development of a Machine Learning Model to Classify Mineral Deposits Using Sphalerite Chemistry and Mineral Assemblages. Ore Geology Reviews, 169: 106076. https://doi.org/10.1016/j.oregeorev.2024.106076
|
|
Torró, L., Millán-Nuñez, A. J., Benites, D., et al., 2023. Germanium- and Gallium-Rich Sphalerite in Mississippi Valley-Type Deposits: The San Vicente District and the Shalipayco Deposit, Peru. Mineralium Deposita, 58(5): 853-880. https://doi.org/10.1007/s00126-023-01160-4
|
|
Wang, C. Y., Li, J. F., Wang, K. Y., et al., 2018. Geology, Fluid Inclusion, and Stable Isotope Study of the Skarn-Related Pb-Zn (Cu-Fe-Sn) Polymetallic Deposits in the Southern Great Xing'an Range, China: Implications for Deposit Type and Metallogenesis. Arabian Journal of Geosciences, 11(5): 88. https://doi.org/10.1007/s12517-018-3417-6
|
|
Wang, Y., Qiu, K. F., Müller, A., et al., 2021. Machine Learning Prediction of Quartz Forming-Environments. Journal of Geophysical Research: Solid Earth, 126(8): e2021JB021925. https://doi.org/10.1029/2021JB021925
|
|
Wei, C., Ye, L., Hu, Y. S., et al., 2019. Distribution and Occurrence of Ge and Related Trace Elements in Sphalerite from the Lehong Carbonate-Hosted Zn-Pb Deposit, Northeastern Yunnan, China: Insights from SEM and LA-ICP-MS Studies. Ore Geology Reviews, 115: 103175. https://doi.org/10.1016/j.oregeorev.2019.103175
|
|
Wei, C., Ye, L., Hu, Y. S., et al., 2021a. LA-ICP-MS Analyses of Trace Elements in Base Metal Sulfides from Carbonate-Hosted Zn-Pb Deposits, South China: A Case Study of the Maoping Deposit. Ore Geology Reviews, 130: 103945. https://doi.org/10.1016/j.oregeorev.2020.103945
|
|
Wei, C., Ye, L., Huang, Z. L., et al., 2021b. In Situ Trace Elements and S Isotope Systematics for Growth Zoning in Sphalerite from MVT Deposits: A Case Study of Nayongzhi, South China. Mineralogical Magazine, 85(3): 364-378. https://doi.org/10.1180/mgm.2021.29
|
|
Wei, Y. K., Li, Z. H., Li, Z. X., et al., 2023. Weather Factors and Prediction Model of Synthetic Electric Field of Ultra-High Voltage Direct-Current Transmission Line. Science Technology and Engineering, 23(9): 3769-3778 (in Chinese with English abstract).
|
|
Xin, F. X., Whittingham, M. S., 2020. Challenges and Development of Tin-Based Anode with High Volumetric Capacity for Li-Ion Batteries. Electrochemical Energy Reviews, 3(4): 643-655. https://doi.org/10.1007/s41918-020-00082-3
|
|
Xu, J., Cook, N. J., Ciobanu, C. L., et al., 2021. Indium Distribution in Sphalerite from Sulfide-Oxide-Silicate Skarn Assemblages: A Case Study of the Dulong Zn-Sn-In Deposit, Southwest China. Mineralium Deposita, 56(2): 307-324. https://doi.org/10.1007/s00126-020-00972-y
|
|
Yang, R. L., 2018. Analysis of Current Situation of Lead and Zinc Mine Resources Development and Suggestions for Sustainable Development in China. World Nonferrous Metals, (1): 148, 150 (in Chinese with English abstract).
|
|
Yang, Y., Zhang, H. S., Yang, X. Y., et al., 2024. Evolution of the Hydrothermal Ore-Forming System of Ashele VMS-Type Cu-Zn Deposit in Xinjiang, NW China: Insights from Mineralogy and Geochemistry of Sulfides. Ore Geology Reviews, 167: 105977. https://doi.org/10.1016/j.oregeorev.2024.105977
|
|
Zha, W. T., Yan, L. C., Chen, B., et al., 2022. Regional Ultra-Short-Term Wind Power Forecasting Method Based on TPE-LSTM. Computer Applications and Software, 39(11): 25-30, 111 (in Chinese with English abstract).
|
|
Zhang, C. Q., Liu, H., Wang, D. H., et al., 2015. A Preliminary Review on the Metallogeny of Pb-Zn Deposits in China. Acta Geologica Sinica, 89(4): 1333-1358. https://doi.org/10.1111/1755-6724.12532
|
|
Zhang, Y., Han, R. S., Ding, X., et al., 2019. An Experimental Study on Metal Precipitation Driven by Fluid Mixing: Implications for Genesis of Carbonate-Hosted Lead-Zinc Ore Deposits. Acta Geochimica, 38(2): 202-215. https://doi.org/10.1007/s11631-019-00314-4
|
|
Zheng, Y., Yu, P. P., Li, Z. K., et al., 2023. Critical Metals Ga, Ge and In in the Global Pb-Zn Deposits: Current Understanding, Challenges and Perspectives. Journal of Earth Science, 34(4): 1308-1311. https://doi.org/10.1007/s12583-023-1909-0
|
|
陈钧渝, 沈鸿杰, 颜伟裕, 2023. 中天山狼牙泉铅锌矿床闪锌矿LA-ICP-MS微量元素特征对矿床成因的指示意义. 矿产勘查, 14(3): 377-391.
|
|
董赛娜, 王达, 马国桃, 等, 2024. 基于机器学习的闪锌矿微量元素特征在铅锌矿床类型识别中的应用. 成都理工大学学报(自然科学版), 51(4): 614-629.
|
|
侯霖莉, 吴松, 易建洲, 等, 2024. 基于机器学习的绿泥石微量元素判别矿床类型. 地球科学, 49(12): 4303-4317. doi: 10.3799/dqkx.2023.173
|
|
黄鑫怀, 李增华, 邓腾, 等, 2023. 基于机器学习的华南诸广山花岗岩体铀矿潜力评价. 地球科学, 48(12): 4427-4440. doi: 10.3799/dqkx.2022.006
|
|
金露英, 秦克章, 李光明, 等, 2015. 大兴安岭北段岔路口斑岩Mo-热液脉状Zn-Pb成矿系统硫化物微量元素的分布、起源及其勘探指示. 岩石学报, 31(8): 2417-2434.
|
|
任涛, 周家喜, 王蝶, 等, 2019. 滇东北富乐铅锌矿床微量元素和S-Pb同位素地球化学研究. 岩石学报, 35(11): 3493-3505.
|
|
魏寅孔, 李振华, 李振兴, 等, 2023. 特高压直流输电线路合成电场的天气影响因素及预测模型. 科学技术与工程, 23(9): 3769-3778.
|
|
杨荣林, 2018. 浅析我国铅锌矿资源开发现状及可持续发展建议. 世界有色金属, (1): 148, 150.
|
|
查雯婷, 闫利成, 陈波, 等, 2022. 基于TPE-LSTM的区域超短期风电功率预测. 计算机应用与软件, 39(11): 25-30, 111.
|
陈忠元 附表.xlsx
|
|