• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 11
    Nov.  2025
    Turn off MathJax
    Article Contents
    Zhu Min, Meng Lifeng, Li Ye, Chen Xinwei, Wu Hongxiang, 2025. Provenance of Early Triassic Clastic Rocks and Its Constraint on Tectonic Evolution of Lijiang Basin, Upper Yangtze Block. Earth Science, 50(11): 4424-4441. doi: 10.3799/dqkx.2025.138
    Citation: Zhu Min, Meng Lifeng, Li Ye, Chen Xinwei, Wu Hongxiang, 2025. Provenance of Early Triassic Clastic Rocks and Its Constraint on Tectonic Evolution of Lijiang Basin, Upper Yangtze Block. Earth Science, 50(11): 4424-4441. doi: 10.3799/dqkx.2025.138

    Provenance of Early Triassic Clastic Rocks and Its Constraint on Tectonic Evolution of Lijiang Basin, Upper Yangtze Block

    doi: 10.3799/dqkx.2025.138
    • Received Date: 2025-04-21
    • Publish Date: 2025-11-25
    • Lijiang basin is a multi-plate confluence zone located in the southwestern margin of the Yangtze block. The study for the provenance of the Lower Triassic reveals the source-sink system of the southwestern Yangtze block and its spatio-temporal relationship with the western Gondwana arc basin system. Field observations and microscopic identification show that the sandstones of the Lamei Formation in Heqing region are mainly derived from the proximal transport of felsic volcanic rocks. The detrital zircons exhibit single age peaks of ~254 Ma and ~255 Ma, corresponding to the timing of felsic magmatic activity in the Emeishan Large Igneous Province (ELIP), and are consistent with interior/non-orogenic magmatic zircon trace element signatures, distinguishing them from those in arc orogenic belts. The εHf(t) values of the Lu-Hf isotopic analysis indicate the provenance of the sandstones of Lamei Formation are from the felsic rocks of the ELIP. Whole-rock geochemical data show that the Lamei Formation shares similar trace element characteristics with the Emeishan rhyolites, porphyries and syenites. A comprehensive analysis suggests that the materials of the Lamei Formation originate from the proximal transport of rhyolite, trachyte and syenite from ELIP. During the Early Triassic, the Lijiang basin functioned as a passive continental margin sedimentation area, primarily receiving materials from the ELIP, with no contributions from the western arc-basin system.

       

    • loading
    • Burchfiel, B. C., Chen, Z. L., 2013. Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland. Geological Society of America, 210: 231. https://doi.org/10.1130/mem210
      Chen, H. L., Zhu, M., Chen, S. Q., et al., 2020. Basin-Orogen Patterns and the Late Triassic Foreland Basin Conversion Process in the Western Yangtze Block, China. Journal of Asian Earth Sciences, 194: 104311. https://doi.org/10.1016/j.jseaes.2020.104311
      Cheng, L. L., Wang, Y., Herrin, J. S., et al., 2017. Origin of K-Feldspar Megacrysts in Rhyolites from the Emeishan Large Igneous Province, Southwest China. Lithos, 294/295: 397-411. https://doi.org/10.1016/j.lithos.2017.10.018
      Chung, S. L., Jahn, B. M., 1995. Plume-Lithosphere Interaction in Generation of the Emeishan Flood Basalts at the Permian-Triassic Boundary. Geology, 23(10): 889. https://doi.org/10.1130/0091-7613(1995)0230889:pliigo>2.3.co;2 doi: 10.1130/0091-7613(1995)0230889:pliigo>2.3.co;2
      Corfu, F., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. https://doi.org/10.2113/0530469
      Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9
      Cui, K. X., 2004. Atlas of Palaeogeography and Its Evolution in Southwest China. Seismological Press, Beijing, 25-130 (in Chinese).
      Deng, X. S., Yang, J. H., He, B., et al., 2025. Response of Lower Triassic Clastic Rocks in Northwest Guizhou to Emei Mountain Igneous Province. Acta Sedimentologica Sinica, 43(4): 1293-1307 (in Chinese with English abstract).
      Dickinson, W. R., Beard, L. S., Brakenridge, G. R., et al., 1983. Provenance of North American Phanerozoic Sandstones in Relation to Tectonic Setting. Geological Society of America Bulletin, 94(2): 222. https://doi.org/10.1130/0016-7606(1983)94222:ponaps>2.0.co;2 doi: 10.1130/0016-7606(1983)94222:ponaps>2.0.co;2
      Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. https://doi.org/10.1016/j.jseaes.2011.03.002
      Fedo, C. M., Wayne Nesbitt, H., Young, G. M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921. https://doi.org/10.1130/0091-7613(1995)0230921:uteopm>2.3.co;2 doi: 10.1130/0091-7613(1995)0230921:uteopm>2.3.co;2
      Gao, C. L., Wang, J., Liu, M., et al., 2024. Boundary Changes of Jurassic-Cretaceous Prototype Basin of Southern Junggar and Responses of Sedimentary Provenance and Depositional Systems. Earth Science, 49(1): 103-122 (in Chinese with English abstract).
      Gao, Q. L., 2013. Felsic Volcanism in South China across the Permian-Triassic Boundary (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Han, C., 2023. Provenance of the Late Permian-Early Triassic Clastic Rocks in the Western Margin of the South China and Its Implications for the Subduction Polarity of the Paleo-Tethyan Branch Ocean (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      He, B., Xu, Y. G., Huang, X. L., et al., 2007. Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U-Pb Dating of Silicic Ignimbrites, Post-Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255(3/4): 306-323. https://doi.org/10.1016/j.epsl.2006.12.021
      He, B., Xu, Y. G., Xiao, L., et al., 2006. Sedimentary Responses to Uplift of Emeishan Mantle Plume and Its Implications. Geological Review, 52(1): 30-37 (in Chinese with English abstract).
      He, B., Zhong, Y. T., Xu, Y. G., et al., 2014. Triggers of Permo-Triassic Boundary Mass Extinction in South China: The Siberian Traps or Paleo-Tethys Ignimbrite Flare-Up?. Lithos, 204: 258-267. https://doi.org/10.1016/j.lithos.2014.05.011
      He, H. Y., Wang, Y. J., Qian, X., et al., 2018. The Bangxi-Chenxing Tectonic Zone in Hainan Island (South China) as the Eastern Extension of the Song Ma-Ailaoshan Zone: Evidence of Late Paleozoic and Triassic Igneous Rocks. Journal of Asian Earth Sciences, 164: 274-291. https://doi.org/10.1016/j.jseaes.2018.06.032
      He, M. C., Ding, Z. J., Wang, X., et al., 2023. Geochemical Characteristics of Niutitang Formation in Zoumazhen Area, Hefeng, Hubei Province: Provenance, Paleoweathering, Sedimentary Environment and Tectonic Setting. Earth Science, 48(9): 3280-3295 (in Chinese with English abstract).
      Hei, H. X., Su, S. G., Wang, Y., et al., 2018. Rhyolites in the Emeishan Large Igneous Province (SW China) with Implications for Plume-Related Felsic Magmatism. Journal of Asian Earth Sciences, 164: 344-365. https://doi.org/10.1016/j.jseaes.2018.05.032
      Hoskin, P. W. O., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
      Huang, H., Cawood, P. A., Hou, M. C., et al., 2022a. Zircon U-Pb Age, Trace Element, and Hf Isotopic Constrains on the Origin and Evolution of the Emeishan Large Igneous Province. Gondwana Research, 105: 535-550. https://doi.org/10.1016/j.gr.2021.09.023
      Huang, H., Huyskensm, M., Yinm, Q. Z., et al., 2022b. Eruptive Tempo of Emeishan Large Igneous Province: Relations to Biotic Crises and Paleoclimate Changes around the Guadalupian-Lopingian Boundary. Geology, 50(9): 1083-1087.
      Huang, H., Du, Y. S., Yang, J. H., et al., 2014. Origin of Permian Basalts and Clastic Rocks in Napo, Southwest China: Implications for the Erosion and Eruption of the Emeishan Large Igneous Province. Lithos, 208/209: 324-338. https://doi.org/10.1016/j.lithos.2014.09.022
      Lei, Y. L., Li, B. L., Chen, Z. X., 2010. Tectonic Evolution on the Western Border Area of Upper Yangtze Plate. Geological Publishing House, Beijing, 1-181 (in Chinese).
      Li, C. M., 2009. A Review on the Minerageny and Situ Microanalytical Dating Techniques of Zircons. Geological Survey and Research, 32(3): 161-174 (in Chinese with English abstract).
      Li, P. W., Gao, R., Guan, Y., et al., 2009. Paleomagnetic Constraints on the Closure Time of Paleo-Tethys: Implications for the Tectonic Setting of Formation of Triassic Songpan-Ganzi Flysch Complex. Acta Geoscientica Sinica, 30(1): 39-50 (in Chinese with English abstract).
      Ma, Y. S., Chen, H. D., Wang, G. L., 2009. Sequence Stratigraphy and Paleogeography of South China. Science Press, Beijing, 116-152 (in Chinese).
      McLennan, S. M., 1993. Weathering and Global Denudation. The Journal of Geology, 101(2): 295-303.
      Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeo-Geographic Evolution of Eastern Tethys. J. Asian Earth Sci., 66: 1-33.
      Meng, L. F., Chen. W., Shen, T., et al., 2022. A Study on the Provenance of Early to Late Triassic Clastic Rocks from the Northwestern Sichuan Basin, Southwestern China: Constraints on the Early Mesozoic Tectonic Evolution of the Western Yangtze Block. Frontiers in Earth Science, 10: 1-12.
      Miao, Y., Tian, Y. F., Wu, L., et al., 2021. Zircon U-Pb Chronology, Petrochemistry and Its Implications for Rodinia Supercontinent Tectonic Evolution in the Lower Triassic Feixianguan Formation in the Daibu Area, Southwest of Upper Yangtze. Acta Geologica Sinica, 95(12): 3739-3757 (in Chinese with English abstract).
      Munteanu, M., Yao, Y., Wilson, A. H., et al., 2013. Panxi Region (South West China): Tectonics, Magmatism and Metallogenesis. A Review. Tectonophysics, 608: 51-72. https://doi.org/10.1016/j. tecto. 2013. 09. 008 doi: 10.1016/j.tecto.2013.09.008
      Nesbitt, H. W., Fedo, C. M., Young, G. M., 1997. Quartz and Feldspar Stability, Steady and Non‐Steady‐State Weathering, and Petrogenesis of Siliciclastic Sands and Muds. The Journal of Geology, 105(2): 173-192.
      Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
      Pan, G. T., Wang, L. Q., Li, X. Z., et al., 2001. The Tectonic Framework and Spatial Allocation of the Archipelagic Arc Basin Systems on the Qinghai-Xizang Plateau. Sedimentary Geology and Tethyan Geology, 21(3): 1-26 (in Chinese with English abstract).
      Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. Orogenic Andesites and Related Rocks. John Wiley and Sons, New York, 528-548.
      Pearce, N. J. G., Perkins, W. T., Westgate, J. A., et al., 1997. A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandards Newsletter, 21(1): 115-144. https://doi.org/10.1111/j.1751-908X.1997.tb00538.x
      Shellnutt, J. G., Wang, C. Y., Zhou, M. F., et al., 2009. Zircon Lu-Hf Isotopic Compositions of Metaluminous and Peralkaline A-Type Granitic Plutons of the Emeishan Large Igneous Province (SW China): Constraints on the Mantle Source. Journal of Asian Earth Sciences, 35(1): 45-55. https://doi.org/10.1016/j.jseaes.2008.12.003
      Shellnutt, J. G., Zhou, M. F., Yan, D. P., et al., 2008. Longevity of the Permian Emeishan Mantle Plume (SW China): 1 Ma, 8 Ma or 18 Ma? Geological Magazine, 145(3): 373-388. https://doi.org/10.1017/s0016756808004524
      Shen, L. W., Yu, J. H., O'Reilly, S. Y., et al., 2018. Subduction-Related Middle Permian to Early Triassic Magmatism in Central Hainan Island, South China. Lithos, 318/319: 158-175. https://doi.org/10.1016/j.lithos.2018.08.009
      Sichuan Institute of Geology and Mineral Resources, 1987. Triassic Statigraphy and Sedimentary Facies of Yanyuan-Lijiang Region. Geological Publishing House, Beijing, 48-104 (in Chinese).
      Song, F., He, Y. Y., Niu, Z. J., et al., 2024. Nanhuan-Sinian Sedimentary Strata Correlation and Its Provenance Feature in Southeastern Part of South China Block: Implications for Tectonic Evolution. Earth Science, 49(9): 3411-3427 (in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford.
      Tomaschek, F., Kennedy, A. K., Villa, I. M., et al., 2003. Zircons from Syros, Cyclades, Greece—Recrystallization and Mobilization of Zircon during High-Pressure Metamorphism. Journal of Petrology, 44(11): 1977-2002. https://doi.org/10.1093/petrology/egg067
      Wang, B. D., Wang, L. Q., Chen, J. L., et al., 2014. Triassic Three-Stage Collision in the Paleo-Tethys: Constraints from Magmatism in the Jiangda-Deqen-Weixi Continental Margin Arc, SW China. Gondwana Research, 26(2): 475-491. https://doi.org/10.1016/j.gr.2013.07.023
      Wang, M., Zhong, Y. T., Hou, Y. L., et al., 2018. Source and Extent of the Felsic Volcanic Ashes at the Permian-Triassic Boundary in South China. Acta Petrologica Sinica, 34(1): 36-48 (in Chinese with English abstract).
      Wang, X. D., Cawood, P. A., Zhao, L. S., et al., 2019. Convergent Continental Margin Volcanic Source for Ash Beds at the Permian-Triassic Boundary, South China: Constraints from Trace Elements and Hf-Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 154-165. https://doi.org/10.1016/j.palaeo.2018.02.011
      Wang, Y. N., Wang, Q. F., Deng, J., et al., 2021. Late Permian-Early Triassic Mafic Dikes in the Southwestern Margin of the South China Block: Evidence for Paleo-Pacific Subduction. Lithos, 384/385: 105994. https://doi.org/10.1016/j.lithos.2021.105994
      Wu, F. Y., Zhang, Y. B., Yang, J. H., et al., 2008. Zircon U-Pb and Hf Isotopic Constraints on the Early Archean Crustal Evolution in Anshan of the North China Craton. Precambrian Research, 167(3/4): 339-362. https://doi.org/10.1016/j.precamres.2008.10.002
      Xiao, L., Xu, Y. G., Mei, H. J., et al., 2004. Distinct Mantle Sources of Low-Ti and High-Ti Basalts from the Western Emeishan Large Igneous Province, SW China: Implications for Plume-Lithosphere Interaction. Earth and Planetary Science Letters, 228(3/4): 525-546. https://doi.org/10.1016/j.epsl.2004.10.002
      Xu, Y. G., Chung, S. L., Jahn, B. M., et al., 2001. Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 58(3/4): 145-168. https://doi.org/10.1016/S0024-4937(01)00055-X
      Xu, Y. G., Chung, S. L., Shao, H., et al., 2010. Silicic Magmas from the Emeishan Large Igneous Province, Southwest China: Petrogenesis and Their Link with the End-Guadalupian Biological Crisis. Lithos, 119(1/2): 47-60. https://doi.org/10.1016/j.lithos.2010.04.013
      Xu, Y. G., Luo, Z. Y., Huang, X. L., et al., 2008. Zircon U-Pb and Hf Isotope Constraints on Crustal Melting Associated with the Emeishan Mantle Plume. Geochimica et Cosmochimica Acta, 72(13): 3084-3104. https://doi.org/10.1016/j.gca.2008.04.019
      Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2012. Large Igneous Province and Magmatic Arc Sourced Permian-Triassic Volcanogenic Sediments in China. Sedimentary Geology, 261/262: 120-131. https://doi.org/10.1016/j.sedgeo.2012.03.018
      Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2014. A Sedimentary Archive of Tectonic Switching from Emeishan Plume to Indosinian Orogenic Sources in SW China. Journal of the Geological Society, 171(2): 269-280. https://doi.org/10.1144/jgs2012-143
      Yu, W. C., Algeo, T. J., Du, Y. S., et al., 2016. Mixed Volcanogenic-Lithogenic Sources for Permian Bauxite Deposits in Southwestern Youjiang Basin, South China, and Their Metallogenic Significance. Sedimentary Geology, 341: 276-288. https://doi.org/10.1016/j.sedgeo.2016.04.016
      Yunnan Geological Bureau, 1966. 1: 200 000 Regional Geological Survey Report of Heqing Area, 35-46 (in Chinese).
      Zhang, Y. L., Wang, Z. Q., Wang, G., et al., 2016. Chromian Spinel, Zircon Age Constraints on the Provenance of Early Triassic Feixianguan Formation Sandstones from Huize Area, Upper Yangtze Region. Geological Review, 62(1): 54-72 (in Chinese with English abstract).
      Zhao, X. X., Coe, R. S., 1987. Palaeomagnetic Constraints on the Collision and Rotation of North and South China. Nature, 327(6118): 141-144. https://doi.org/10.1038/327141a0
      Zhong, H., Zhu, W. G., Chu, Z. Y., et al., 2007. SHRIMP U-Pb Zircon Geochronology, Geochemistry, and Nd-Sr Isotopic Study of Contrasting Granites in the Emeishan Large Igneous Province, SW China. Chemical Geology, 236(1-2): 112-133. https://doi.org/10.1016/j.chemgeo.2006.09.004
      Zhong, H., Zhu, W. G., Hu, R. Z., et al., 2009. Zircon U-Pb Age and Sr-Nd-Hf Isotope Geochemistry of the Panzhihua A-Type Syenitic Intrusion in the Emeishan Large Igneous Province, Southwest China and Implications for Growth of Juvenile Crust. Lithos, 110(1-4): 109-128. https://doi.org/10.1016/j.lithos.2008.12.006
      Zhong, S. H., Feng, C. Y., Seltmann, R., et al., 2018. Can Magmatic Zircon be Distinguished from Hydrothermal Zircon by Trace Element Composition? The Effect of Mineral Inclusions on Zircon Trace Element Composition. Lithos, 314/315: 646-657. https://doi.org/10.1016/j.lithos.2018.06.029
      Zhou, M. F., Zhao, J. H., Qi, L., et al., 2006. Zircon U-Pb Geochronology and Elemental and Sr-Nd Isotope Geochemistry of Permian Mafic Rocks in the Funing Area, SW China. Contributions to Mineralogy and Petrology, 151(1): 1-19. https://doi.org/10.1007/s00410-005-0030-y
      Zhou, Y. S., Yang, J. H., Huang, Y., et al., 2022. Provenance of the Lower Triassic Feixianguan Formation in Southwestern Guizhou Province and Reconstruction of Volcanic Denudation Sequence in the Emeishan Large Igneous Province. Acta Geologica Sinica, 96(7): 2348-2364 (in Chinese with English abstract).
      Zi, J. W., Cawood, P. A., Fan, W. M., et al., 2012. Triassic Collision in the Paleo-Tethys Ocean Constrained by Volcanic Activity in SW China. Lithos, 144/145: 145-160. https://doi.org/10.1016/j.lithos.2012.04.020
      Zou, X. Y., Qin, K. Z., Han, X. L., et al., 2019. Insight into Zircon REE Oxy-Barometers: A Lattice Strain Model Perspective. Earth and Planetary Science Letters, 506: 87-96. https://doi.org/10.1016/j.epsl.2018.10.031
      Zhu, M., Chen, H. L., Yu, L., et al., 2018. Provenance of the Early Triassic in the Southwestern Sichuan Basin, Upper Yangtze, and Its Implications for Tectonic Evolution. Canadian Journal of Earth Sciences, 55(1): 70-83. https://doi.org/10.1139/cjes-2017-0092
      Zhu, M., Chen, H. L., Zhou, J., et al., 2016. Provenance of Early Triassic in Yanyuan Basin, Upper Yangtze and Its Implication for the Tectonic Evolution. Earth Science, 41(8): 1309-1321 (in Chinese with English abstract).
      崔克信, 2004. 中国西南区域古地理及其演化图集. 北京: 地震出版社.
      邓旭升, 杨江海, 何犇, 等, 2025. 黔西北下三叠统碎屑岩对峨眉山大火成岩省的响应. 沉积学报, 43(4): 1293-1307.
      高崇龙, 王剑, 刘明, 等, 2024. 准南侏罗‒白垩纪原型盆地边界变迁及其沉积物源响应. 地球科学, 49(1): 103-122.
      高秋灵, 2013. 华南二叠‒三叠之交的长英质火山作用. 武汉: 中国地质大学.
      韩超, 2023. 华南西缘晚二叠世‒早三叠世碎屑岩物源分析及其对古特提斯分支洋俯冲极性的约束(硕士学位论文). 成都: 成都理工大学.
      何斌, 徐义刚, 肖龙, 等, 2006. 峨眉山地幔柱上升的沉积响应及其地质意义. 地质论评, 52(1): 30-37.
      何谋惷, 丁振举, 王翔, 等, 2023. 湖北鹤峰走马镇地区牛蹄塘组岩石地球化学特征: 物源、古风化、沉积环境和构造背景. 地球科学, 48(9): 3280-3295.
      雷永良, 李本亮, 陈竹新, 等, 2010. 上扬子板块西部边界地区构造演化. 北京: 石油工业出版社.
      李长民, 2009. 锆石成因矿物学与锆石微区定年综述. 地质调查与研究, 32(3): 161-174.
      李朋武, 高锐, 管烨, 等, 2009. 古特提斯洋的闭合时代的古地磁分析: 松潘复理石杂岩形成的构造背景. 地球学报, 30(1): 39-50.
      马永生, 陈洪德, 王国力, 2009. 中国南方构造‒层序岩相古地理图集: 震旦记‒新近纪. 北京: 科学出版社.
      缪宇, 田瑜峰, 吴亮, 等, 2021. 上扬子西南待补地区飞仙关组年代学、岩石地球化学及其对Rodinia超大陆构造演化的指示. 地质学报, 95(12): 3739-3757.
      潘桂棠, 王立全, 李兴振, 等, 2001. 青藏高原区域构造格局及其多岛弧盆系的空间配置. 沉积与特提斯地质, 21(3): 1-26.
      四川省地质矿产研究所专题研究组, 1987. 盐源‒丽江地区三叠纪地层及沉积相. 北京: 地质出版社.
      宋芳, 何垚砚, 牛志军, 等, 2024. 华南板块东南部南华纪‒震旦纪沉积地层区域对比、物源特征及构造演化. 地球科学, 49(9): 3411-3427.
      王曼, 钟玉婷, 侯莹玲, 等, 2018. 华南地区二叠纪‒三叠纪界线酸性火山灰的源区与规模. 岩石学报, 34(1): 36-48.
      云南省地质局, 1966. 鹤庆地区1: 20万区域地质调查报告, 35-46.
      张英利, 王宗起, 王刚, 等, 2016. 上扬子会泽地区早三叠世飞仙关组砂岩物源特征: 来自重矿物铬尖晶石和碎屑锆石的限定. 地质论评, 62(1): 54-72.
      周寅生, 杨江海, 黄燕, 等, 2022. 黔西南下三叠统飞仙关组沉积物源分析对峨眉山大火成岩省火山剥蚀序列的重建约束. 地质学报, 96(7): 2348-2364.
      朱民, 陈汉林, 周静, 等, 2016. 上扬子西南盐源盆地早三叠世物源体系及构造意义. 地球科学, 41(8): 1309-1321. doi: 10.3799/dqkx.2016.106
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)

      Article views (127) PDF downloads(10) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return