• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 12
    Dec.  2025
    Turn off MathJax
    Article Contents
    Yu Bin, Peng Qiujian, Chen Long, Yang Zhiyi, 2025. Experimental Study on Critical Condition of Initiation of Debris Flow in Channel by Bed Failure Model. Earth Science, 50(12): 4970-4983. doi: 10.3799/dqkx.2025.139
    Citation: Yu Bin, Peng Qiujian, Chen Long, Yang Zhiyi, 2025. Experimental Study on Critical Condition of Initiation of Debris Flow in Channel by Bed Failure Model. Earth Science, 50(12): 4970-4983. doi: 10.3799/dqkx.2025.139

    Experimental Study on Critical Condition of Initiation of Debris Flow in Channel by Bed Failure Model

    doi: 10.3799/dqkx.2025.139
    • Received Date: 2025-01-02
    • Publish Date: 2025-12-25
    • The bed failure model is the important initiated model for debris flow in channel. However, there is no detail critical condition for bed failure model. In this paper, a series of laboratory experiments were carried out to study the initiation of debris flow by runoff in the channel. The experiments were conducted for the initiation models and critical condition with different particle size, saturated density, internal friction angle, and permeability coefficient. It was found that the slope threshold of debris flow initiation in bed failure model with no cohesion sediment increased with the increasing of sediment saturation density and internal friction. The minimum slope was about 17 degree in the experiments for the bed failure. When the bed slope is greater than the threshold slope, the thickness of the saturated layer of the bed failure decreases with the increase of the bed slope, the minimum sediment saturation thickness may be 0. The critical discharge of debris flow in fluvial transport model is much larger than that in bed failure model. The critical discharge of debris flow in bed failure model is the production of the permeability coefficient of sediment, the depth of saturated water and the width of channel.

       

    • loading
    • Cannon, S. H., Gartner, J. E., Wilson, R. C., et al., 2008. Storm Rainfall Conditions for Floods and Debris Flows from Recently Burned Areas in Southwestern Colorado and Southern California. Geomorphology, 96(3-4): 250-269. https://doi.org/10.1016/j.geomorph.2007.03.019
      Doerr, S. H., Ferreira, A. J. D., Walsh, R. P. D., et al., 2003. Soil Water Repellency as a Potential Parameter in Rainfall⁃Runoff Modelling: Experimental Evidence at Point to Catchment Scales from Portugal. Hydrological Processes, 17(2): 363-377. https://doi.org/10.1002/hyp.1129
      Fredlund, D. G., Rahardjo, H., 1993. Soil Mechanics for Unsaturated Soils. John Wiley, New York. https://doi.org/10.1002/9780470172759
      Gregoretti, C., 2000. The Initiation of Debris Flow at High Slopes: Experimental Results. Journal of Hydraulic Research, 38(2): 83-88. https://doi.org/10.1080/00221680009498343
      Lamb, M. P., Dietrich, W. E., Venditti, J. G., 2008. Is the Critical Shields Stress for Incipient Sediment Motion Dependent on Channel⁃Bed Slope? Journal of Geophysical Research: Earth Surface, 113(F2): 2007JF000831. https://doi.org/10.1029/2007jf000831
      Lamb, M. P., Scheingross, J. S., Amidon, W. H., et al., 2011. A Model for Fire⁃Induced Sediment Yield by Dry Ravel in Steep Landscapes. Journal of Geophysical Research: Earth Surface, 116F3. https://doi.org/10.1029/2010JF001878
      McGuire, L. A., Rengers, F. K., Kean, J. W., et al., 2017. Debris Flow Initiation by Runoff in a Recently Burned Basin: Is Grain⁃by⁃Grain Sediment Bulking or En Masse Failure to Blame? Geophysical Research Letters, 44(14): 7310-7319. https://doi.org/10.1002/2017gl074243
      Palucis, M. C., Ulizio, T. P., Lamb, M. P., 2021. Debris Flow Initiation from Ravel⁃Filled Channel Bed Failure Following Wildfire in a Bedrock Landscape with Limited Sediment Supply. GSA Bulletin, 133(9-10): 2079-2096. https://doi.org/10.1130/b35822.1
      Parise, M., Cannon, S. H., 2012. Wildfire Impacts on the Processes That Generate Debris Flows in Burned Watersheds. Natural Hazards, 61(1): 217-227. https://doi.org/10.1007/s11069⁃011⁃9769⁃9
      Prancevic, J. P., Lamb, M. P., Fuller, B. M., 2014. Incipient Sediment Motion across the River to Debris⁃Flow Transition. Geology, 42(3): 191-194. https://doi.org/10.1130/g34927.1
      Qi, X., Yu, B., Wang, T., 2014. Simulation Test of Impact of Gully Slope on Starting Model of Debris Flow. Water Resources and Power, 32(7): 116-119 (in Chinese with English abstract)
      Shieh, C. L., Chen, Y. S., Tsai, Y. J., et al., 2009. Variability in Rainfall Threshold for Debris Flow after the Chi-Chi Earthquake in Central Taiwan, China. International Journal of Sediment Research, 24(2): 177-188. https://doi.org/10.1016/s1001⁃6279(09)60025⁃1
      Takahashi, T., 1978. Mechanical Characteristics of Debris Flow. Journal of the Hydraulics Division, 104(8): 1153-1169. https://doi.org/10.1061/jyceaj.0005046
      Tognacca, C., Bezzola, G. B., Minor, H. E., 2000. Threshold Criterion for Debris⁃Flow Initiation Due to Channel⁃Bed Bailure. In: Wieczorek, G. F., Naeser, N. D., eds., Debris⁃Flow Hazards Mitigation: Mechanics, Prediction, and Assessment. Balkema, Rotterdam, 89-97.
      van Asch, T. W. J., Yu, B., Hu, W., 2018. The Development of a 1⁃D Integrated Hydro⁃Mechanical Model Based on Flume Tests to Unravel Different Hydrological Triggering Processes of Debris Flows. Water, 10(7): 950. https://doi.org/10.3390/w10070950
      Wang, X., Deng, Y., Feng, J. J., et al., 2018. Experimental Study on the Underwater Angle of Repose of Frozen Sediment in Static Water Conditions. Journal of Glaciology and Geocryology, 40(5): 979-984 (in Chinese with English abstract)
      Wang, Y., Cui, P., Wang, Z. Y., et al., 2017. Threshold Criterion for Debris Flow Initiation in Seasonal Gullies. International Journal of Sediment Research, 32(2): 231-239. https://doi.org/10.1016/j.ijsrc.2017.03.003
      Wang, Y., Hu, X. W., Wu, L. J., et al., 2022. Evolutionary History of Post⁃Fire Debris Flows in Ren'e Yong Valley in Sichuan Province of China. Landslides, 19(6): 1479-1490. https://doi.org/10.1007/s10346⁃022⁃01867⁃x
      Xu, Q., 2010. The 13 August 2010 Catastrophic Debris Flows in Sichuan Province: Characteristics, Genetic Mechanism and Suggestions. Journal of Engineering Geology, 18(5): 596-608 (in Chinese with English abstract)
      Yang, H. J., Yang, T. Q., Zhang, S. J., et al., 2020. Rainfall⁃Induced Landslides and Debris Flows in Mengdong Town, Yunnan Province, China. Landslides, 17(4): 931-941. https://doi.org/10.1007/s10346⁃019⁃01336⁃y
      Yi, W., Yu, B., Hu, X. W., et al., 2024. On Early Warning of First Debris Flow after a Wildfire. Earth Science, 49(10): 3826-3840 (in Chinese with English abstract).
      Yu, B., 2008. Study on the Mean Velocity of Viscous Debris Flows. Advances in Earth Science, 23(5): 524-532(in Chinese with English abstract).
      Yu, B., Yang, L. W., Chang, M., et al., 2021. A New Prediction Model on Debris Flows Caused by Runoff Mechanism. Environmental Earth Sciences, 80(1): 26. https://doi.org/10.1007/s12665⁃020⁃09336⁃1
      Yu, B., Yang, Z. Y., Peng, Q. J., 2024. Experimental Study on the Breaching of a Moraine Lake by Overflow. Journal of Glaciology and Geocryology, 46(5): 1463-1480(in Chinese with English abstract)
      Zhang, S., Zhang, L. M., 2017. Impact of the 2008 Wenchuan Earthquake in China on Subsequent Long⁃Term Debris Flow Activities in the Epicentral Area. Geomorphology, 276: 86-103. https://doi.org/10.1016/j.geomorph.2016.10.009
      Zhao, B. J., Yu, B., Chang, M., et al., 2021. Characteristics of Debris Flow in Narrow⁃Steep Channel. Journal of Sediment Research, (5): 61-67, 40(in Chinese with English abstract).
      Zhao, C., 2020. Study on the Characteristics of Slope Erosion and Sediment Transport during Rainfall in Earthquake Area of Jiuzhaigou Valley (Dissertation). Chengdu University of Technology, Chengdu, 16-55(in Chinese with English abstract).
      Zhou, C., Chang, M., Xu, L., et al., 2023. Failure Modes and Dynamic Characteristics of the Landslide Dams in Strong Earthquake Area. Earth Science, 48(8): 3115-3126(in Chinese with English abstract).
      Zhuang, J. Q., Cui, P., Hu, K. H., et al., 2010. Research on Debris Flow Initiation Due to Bed Failure after Wenchuan Earthquake. Journal of Sichuan University (Engineering Science Edition), 42(5): 230-236(in Chinese with English abstract).
      亓星, 余斌, 王涛, 2014. 沟道坡度对泥石流起动模式影响的模拟试验研究. 水电能源科学, 32(7): 116-119.
      王鑫, 邓云, 冯镜洁, 等, 2018. 静水条件下冰冻泥沙水下休止角的试验研究. 冰川冻土, 40(5): 979-984.
      许强, 2010. 四川省8·13特大泥石流灾害特点、成因与启示. 工程地质学报, 18(5): 596-608.
      易伟, 余斌, 胡卸文, 等, 2024. 山火后首次泥石流预警. 地球科学, 49(10): 3826-3840. doi: 10.3799/dqkx.2023.145
      余斌, 2008. 粘性泥石流的平均运动速度研究. 地球科学进展, 23(5): 524-532.
      余斌, 杨治义, 彭秋建, 2024. 冰碛湖溢流溃决实验研究. 冰川冻土, 46(5): 1463-1480.
      赵宾杰, 余斌, 常鸣, 等, 2021. 窄陡型泥石流沟特征研究. 泥沙研究, (5): 61-67, 40.
      赵程, 2020. 九寨沟震后降雨作用下的坡面侵蚀与物质运移特征研究(硕士学位论文). 成都: 成都理工大学, 16-55.
      周超, 常鸣, 徐璐, 等, 2023. 强震区沟道堰塞体失稳模式及其动力学特征. 地球科学, 48(8): 3115-3126. doi: 10.3799/dqkx.2021.127
      庄建琦, 崔鹏, 胡凯衡, 等, 2010. 沟道松散物质起动形成泥石流实验研究. 四川大学学报(工程科学版), 42(5): 230-236.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(2)

      Article views (200) PDF downloads(14) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return