| Citation: | Yu Bin, Peng Qiujian, Chen Long, Yang Zhiyi, 2025. Experimental Study on Critical Condition of Initiation of Debris Flow in Channel by Bed Failure Model. Earth Science, 50(12): 4970-4983. doi: 10.3799/dqkx.2025.139 |
|
Cannon, S. H., Gartner, J. E., Wilson, R. C., et al., 2008. Storm Rainfall Conditions for Floods and Debris Flows from Recently Burned Areas in Southwestern Colorado and Southern California. Geomorphology, 96(3-4): 250-269. https://doi.org/10.1016/j.geomorph.2007.03.019
|
|
Doerr, S. H., Ferreira, A. J. D., Walsh, R. P. D., et al., 2003. Soil Water Repellency as a Potential Parameter in Rainfall⁃Runoff Modelling: Experimental Evidence at Point to Catchment Scales from Portugal. Hydrological Processes, 17(2): 363-377. https://doi.org/10.1002/hyp.1129
|
|
Fredlund, D. G., Rahardjo, H., 1993. Soil Mechanics for Unsaturated Soils. John Wiley, New York.
|
|
Gregoretti, C., 2000. The Initiation of Debris Flow at High Slopes: Experimental Results. Journal of Hydraulic Research, 38(2): 83-88. https://doi.org/10.1080/00221680009498343
|
|
Lamb, M. P., Dietrich, W. E., Venditti, J. G., 2008. Is the Critical Shields Stress for Incipient Sediment Motion Dependent on Channel⁃Bed Slope? Journal of Geophysical Research: Earth Surface, 113(F2): 2007JF000831. https://doi.org/10.1029/2007jf000831
|
|
Lamb, M. P., Scheingross, J. S., Amidon, W. H., et al., 2011. A Model for Fire⁃Induced Sediment Yield by Dry Ravel in Steep Landscapes. Journal of Geophysical Research: Earth Surface, 116F3. https://doi.org/10.1029/2010JF001878
|
|
McGuire, L. A., Rengers, F. K., Kean, J. W., et al., 2017. Debris Flow Initiation by Runoff in a Recently Burned Basin: Is Grain⁃by⁃Grain Sediment Bulking or En Masse Failure to Blame? Geophysical Research Letters, 44(14): 7310-7319. https://doi.org/10.1002/2017gl074243
|
|
Palucis, M. C., Ulizio, T. P., Lamb, M. P., 2021. Debris Flow Initiation from Ravel⁃Filled Channel Bed Failure Following Wildfire in a Bedrock Landscape with Limited Sediment Supply. GSA Bulletin, 133(9-10): 2079-2096. https://doi.org/10.1130/b35822.1
|
|
Parise, M., Cannon, S. H., 2012. Wildfire Impacts on the Processes That Generate Debris Flows in Burned Watersheds. Natural Hazards, 61(1): 217-227. https://doi.org/10.1007/s11069⁃011⁃9769⁃9
|
|
Prancevic, J. P., Lamb, M. P., Fuller, B. M., 2014. Incipient Sediment Motion across the River to Debris⁃Flow Transition. Geology, 42(3): 191-194. https://doi.org/10.1130/g34927.1
|
|
Qi, X., Yu, B., Wang, T., 2014. Simulation Test of Impact of Gully Slope on Starting Model of Debris Flow. Water Resources and Power, 32(7): 116-119 (in Chinese with English abstract)
|
|
Shieh, C. L., Chen, Y. S., Tsai, Y. J., et al., 2009. Variability in Rainfall Threshold for Debris Flow after the Chi-Chi Earthquake in Central Taiwan, China. International Journal of Sediment Research, 24(2): 177-188. https://doi.org/10.1016/s1001⁃6279(09)60025⁃1
|
|
Takahashi, T., 1978. Mechanical Characteristics of Debris Flow. Journal of the Hydraulics Division, 104(8): 1153-1169. https://doi.org/10.1061/jyceaj.0005046
|
|
Tognacca, C., Bezzola, G. B., Minor, H. E., 2000. Threshold Criterion for Debris⁃Flow Initiation Due to Channel⁃Bed Bailure. In: Wieczorek, G. F., Naeser, N. D., eds., Debris⁃Flow Hazards Mitigation: Mechanics, Prediction, and Assessment. Balkema, Rotterdam, 89-97.
|
|
van Asch, T. W. J., Yu, B., Hu, W., 2018. The Development of a 1⁃D Integrated Hydro⁃Mechanical Model Based on Flume Tests to Unravel Different Hydrological Triggering Processes of Debris Flows. Water, 10(7): 950. https://doi.org/10.3390/w10070950
|
|
Wang, X., Deng, Y., Feng, J. J., et al., 2018. Experimental Study on the Underwater Angle of Repose of Frozen Sediment in Static Water Conditions. Journal of Glaciology and Geocryology, 40(5): 979-984 (in Chinese with English abstract)
|
|
Wang, Y., Cui, P., Wang, Z. Y., et al., 2017. Threshold Criterion for Debris Flow Initiation in Seasonal Gullies. International Journal of Sediment Research, 32(2): 231-239. https://doi.org/10.1016/j.ijsrc.2017.03.003
|
|
Wang, Y., Hu, X. W., Wu, L. J., et al., 2022. Evolutionary History of Post⁃Fire Debris Flows in Ren'e Yong Valley in Sichuan Province of China. Landslides, 19(6): 1479-1490. https://doi.org/10.1007/s10346⁃022⁃01867⁃x
|
|
Xu, Q., 2010. The 13 August 2010 Catastrophic Debris Flows in Sichuan Province: Characteristics, Genetic Mechanism and Suggestions. Journal of Engineering Geology, 18(5): 596-608 (in Chinese with English abstract)
|
|
Yang, H. J., Yang, T. Q., Zhang, S. J., et al., 2020. Rainfall⁃Induced Landslides and Debris Flows in Mengdong Town, Yunnan Province, China. Landslides, 17(4): 931-941. https://doi.org/10.1007/s10346⁃019⁃01336⁃y
|
|
Yi, W., Yu, B., Hu, X. W., et al., 2024. On Early Warning of First Debris Flow after a Wildfire. Earth Science, 49(10): 3826-3840 (in Chinese with English abstract).
|
|
Yu, B., 2008. Study on the Mean Velocity of Viscous Debris Flows. Advances in Earth Science, 23(5): 524-532(in Chinese with English abstract).
|
|
Yu, B., Yang, L. W., Chang, M., et al., 2021. A New Prediction Model on Debris Flows Caused by Runoff Mechanism. Environmental Earth Sciences, 80(1): 26. https://doi.org/10.1007/s12665⁃020⁃09336⁃1
|
|
Yu, B., Yang, Z. Y., Peng, Q. J., 2024. Experimental Study on the Breaching of a Moraine Lake by Overflow. Journal of Glaciology and Geocryology, 46(5): 1463-1480(in Chinese with English abstract)
|
|
Zhang, S., Zhang, L. M., 2017. Impact of the 2008 Wenchuan Earthquake in China on Subsequent Long⁃Term Debris Flow Activities in the Epicentral Area. Geomorphology, 276: 86-103. https://doi.org/10.1016/j.geomorph.2016.10.009
|
|
Zhao, B. J., Yu, B., Chang, M., et al., 2021. Characteristics of Debris Flow in Narrow⁃Steep Channel. Journal of Sediment Research, (5): 61-67, 40(in Chinese with English abstract).
|
|
Zhao, C., 2020. Study on the Characteristics of Slope Erosion and Sediment Transport during Rainfall in Earthquake Area of Jiuzhaigou Valley (Dissertation). Chengdu University of Technology, Chengdu, 16-55(in Chinese with English abstract).
|
|
Zhou, C., Chang, M., Xu, L., et al., 2023. Failure Modes and Dynamic Characteristics of the Landslide Dams in Strong Earthquake Area. Earth Science, 48(8): 3115-3126(in Chinese with English abstract).
|
|
Zhuang, J. Q., Cui, P., Hu, K. H., et al., 2010. Research on Debris Flow Initiation Due to Bed Failure after Wenchuan Earthquake. Journal of Sichuan University (Engineering Science Edition), 42(5): 230-236(in Chinese with English abstract).
|
|
亓星, 余斌, 王涛, 2014. 沟道坡度对泥石流起动模式影响的模拟试验研究. 水电能源科学, 32(7): 116-119.
|
|
王鑫, 邓云, 冯镜洁, 等, 2018. 静水条件下冰冻泥沙水下休止角的试验研究. 冰川冻土, 40(5): 979-984.
|
|
许强, 2010. 四川省8·13特大泥石流灾害特点、成因与启示. 工程地质学报, 18(5): 596-608.
|
|
易伟, 余斌, 胡卸文, 等, 2024. 山火后首次泥石流预警. 地球科学, 49(10): 3826-3840. doi: 10.3799/dqkx.2023.145
|
|
余斌, 2008. 粘性泥石流的平均运动速度研究. 地球科学进展, 23(5): 524-532.
|
|
余斌, 杨治义, 彭秋建, 2024. 冰碛湖溢流溃决实验研究. 冰川冻土, 46(5): 1463-1480.
|
|
赵宾杰, 余斌, 常鸣, 等, 2021. 窄陡型泥石流沟特征研究. 泥沙研究, (5): 61-67, 40.
|
|
赵程, 2020. 九寨沟震后降雨作用下的坡面侵蚀与物质运移特征研究(硕士学位论文). 成都: 成都理工大学, 16-55.
|
|
周超, 常鸣, 徐璐, 等, 2023. 强震区沟道堰塞体失稳模式及其动力学特征. 地球科学, 48(8): 3115-3126. doi: 10.3799/dqkx.2021.127
|
|
庄建琦, 崔鹏, 胡凯衡, 等, 2010. 沟道松散物质起动形成泥石流实验研究. 四川大学学报(工程科学版), 42(5): 230-236.
|