| Citation: | Su Yan, Fu Zhongyang, Lai Xiaohe, Chen Yaoxin, Fu Jiayuan, Lin Chuan, Jia Mincai, Weng Kailiang, 2025. Geohazard Susceptibility Assessment of Riverside Highway Zones under Multiple Feature Spaces Adaptation Network. Earth Science, 50(10): 3823-3843. doi: 10.3799/dqkx.2025.140 | 
Riverside highway zones are prone to high risks of geohazards such as landslides due to proximity to water bodies, steep terrain, and frequent anthropogenic activities. However, current single-source domain transfer learning methods face limitations in geohazard susceptibility prediction when significant discrepancies exist between source and target domains in hydrogeological conditions (e.g., river density, rainfall intensity) and engineering disturbances (e.g., highway construction), often leading to negative transfer issues and reduced model generalizability. This study proposes a multi-source domain transfer learning framework based on a multiple feature spaces adaptation network (MFSAN). Focusing on three riverside highway zones in Fujian Province, China, nine environmental factors (including highway density and river density as core hydrogeological features) were extracted to construct a landslide spatial database. The susceptibility models from Anxi County (source domain 1) and Dehua County (source domain 2) were transferred to Youxi County (target domain) with unlabeled samples for cross-regional landslide susceptibility evaluation. Comparative analyses were conducted against non-transferable learning models (NTL) and single-source domain adaptive models (domain adaptive neural network, DANN). The results demonstrate: (1) The MFSAN model achieved a cross-regional prediction accuracy of 0.851, outperforming single-source transfer models with improvements of 3.61% in accuracy, 1.91% in AUC, and 9.64% in overall assessment metric (OA). (2) Historical landslide validation revealed that 79.2% of landslides occurred within high-to-extreme susceptibility zones predicted by MFSAN, the highest among all models. (3) MFSAN exhibited superior capability in capturing hydrogeological coupling effects unique to riverside environments. For instance, the concentration of hazard-prone sites within 3 km of highways (70%-83%) was accurately reflected in predictions. The MFSAN framework effectively integrates spatial features and disaster development patterns from multiple source domains, comprehensively capturing regional heterogeneity and providing an optimized solution for cross-regional geohazard susceptibility prediction. This approach demonstrates enhanced generalization capability and practical value for mitigating landslide risks in complex engineering environments.
	                | 
					 Ai, X., 2021. Construction of Earthquake Landslide Susceptibility Assessment Model Based on Machine Learning: A Case Study of Beijing Mountainous Area(Dissertation). Institute of Engineering Mechanics, China Earthquake Administration, Harbin (in Chinese with English abstract). 
						
					 | 
			
| 
					 Ayalew, L., Yamagishi, H., 2005. The Application of GIS-Based Logistic Regression for Landslide Susceptibility Mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1-2): 15-31.  https://doi.org/10.1016/j.geomorph.2004.06.010 
						
					 | 
			
| 
					 Chen, L., Ding, Y. L., Pirasteh, S., et al., 2022. Meta-Learning an Intermediate Representation for Few-Shot Prediction of Landslide Susceptibility in Large Areas. International Journal of Applied Earth Observation and Geoinformation, 110: 102807.  https://doi.org/10.1016/j.jag.2022.102807 
						
					 | 
			
| 
					 Du, J., Glade, T., Woldai, T., et al., 2020. Landslide Susceptibility Assessment Based on an Incomplete Landslide Inventory in the Jilong Valley, Tibet, Chinese Himalayas. Engineering Geology, 270: 105572.  https://doi.org/10.1016/j.enggeo.2020.105572 
						
					 | 
			
| 
					 Fu, Z. Y., Li, D. Q., Wang, S., et al., 2023. Landslide Susceptibility Assessment Based on Multitemporal Landslide Inventories and TrAdaBoost Transfer Learning. Earth Science, 48(5): 1935-1947(in Chinese with English abstract). 
						
					 | 
			
| 
					 Ghifary, M., Kleijn, W. B., Zhang, M. J., 2014. Domain Adaptive Neural Networks for Object Recognition. PRICAI 2014: Trends in Artificial Intelligence. Springer International Publishing, Cham: 898-904.  
						
					 | 
			
| 
					 Gretton, A., Borgwardt, K. M., Rasch, M. J., et al., 2012. A Kernel Two-Sample Test. Journal of Machine Learning Research, 13(1): 723-773.  https://doi.org/10.5555/2503308.2188410 
						
					 | 
			
| 
					 Huang, F. M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models. Earth Science, 45(12): 4535-4549(in Chinese with English abstract). 
						
					 | 
			
| 
					 Huang, J. B., 2013. Preliminary Studying of Landslide Critical Rainfall in Dehua County. Geology of Fujian, 32(1): 65-69(in Chinese with English abstract). 
						
					 | 
			
| 
					 Huang, J. H., 2020. Research on Data Mining Methods and Application of Main Control Factors of Collapse, Landslide and Debris Flow (Dissertation). Chongqing University, Chongqing(in Chinese with English abstract). 
						
					 | 
			
| 
					 Li, C. L., Liu, Y. S., Lai, S. H., et al., 2024. Landslide Susceptibility Analysis Based on the Coupling Model of Logistic Regression and Support Vector Machine. Journal of Natural Disasters, 33(2): 75-86(in Chinese with English abstract). 
						
					 | 
			
| 
					 Lv, J. C., Zhang, R., Shama, A., et al., 2024. Exploring the Spatial Patterns of Landslide Susceptibility Assessment Using Interpretable Shapley method: Mechanisms of Landslide Formation in the Sichuan-Tibet Region. Journal of Environmental Management, 366: 121921.  https://doi.org/10.1016/j.jenvman.2024.121921 
						
					 | 
			
| 
					 Lyu, C. H., Cheng, J. J., Hu, Y. G., et al., 2022. Online Fault Diagnosing of Rudders Based on Multi-Source Domain Deep Transfer Learning. Journal of Ordnance Equipment Engineering, 43(9): 60-67(in Chinese with English abstract). 
						
					 | 
			
| 
					 Ma, Y. B., Li, H. R., Wang, L., et al., 2022. Application of Machine Learning Method in Landslide Susceptibility Evaluation. Journal of Civil and Environmental Engineering, 44(1): 53-67(in Chinese with English abstract). 
						
					 | 
			
| 
					 Qiao, X. X., 2006. GIS-Based Geological Hazard Risk Assessment along Complex Mountainous Highways: A Case Study of the Ankang-Ziyang Section of GZ40 Expressway(Dissertation). Changan University, Xi'an (in Chinese with English abstract). 
						
					 | 
			
| 
					 Su, X. L., 2009. Discussion on the Environmental Factors of Geologic Hazards Caused by a Creep Landslip in Youxi County. Geology of Fujian, 28(4): 335-340(in Chinese with English abstract). 
						
					 | 
			
| 
					 Su, Y., Huang, S. X., Lai, X. H., et al., 2024. Evaluation of Trans-Regional Landslide Susceptibility of Reservoir Bank Based on Transfer Component Analysis. Earth Science, 49(5): 1636-1653(in Chinese with English abstract). 
						
					 | 
			
| 
					 Sun, D. L., 2019. Study on Landslide Susceptibility Zoning and Rainfall-Induced Landslide Prediction and Early Warning Based on Machine Learning(Dissertation). East China Normal University, Shanghai (in Chinese with English abstract). 
						
					 | 
			
| 
					 Sun, D. L., Gu, Q. Y., Wen, H. J., et al., 2023. Assessment of Landslide Susceptibility along Mountain Highways Based on Different Machine Learning Algorithms and Mapping Units by Hybrid Factors Screening and Sample Optimization. Gondwana Research, 123: 89-106.  https://doi.org/10.1016/j.gr.2022.07.013 
						
					 | 
			
| 
					 Sun, X. L., Ji, W. D., Wang, X., 2022. Natural Computation Method Based on Cosine Similarity Opposition Strategy. Information and Control, 51(6): 708-718(in Chinese with English abstract). 
						
					 | 
			
| 
					 Wang, H. J., Wang, L., Zhang, L. M., 2023. Transfer Learning Improves Landslide Susceptibility Assessment. Gondwana Research, 123: 238-254.  https://doi.org/10.1016/j.gr.2022.07.008 
						
					 | 
			
| 
					 Wang, Z. H., Goetz, J., Brenning, A., 2022. Transfer Learning for Landslide Susceptibility Modeling Using Domain Adaptation and Case-Based Reasoning. Geoscientific Model Development, 15(23): 8765-8784.  https://doi.org/10.5194/gmd-15-8765-2022 
						
					 | 
			
| 
					 Wattenberg, M., Viégas, F., Johnson, I., 2016. How to Use T-SNE Effectively. Distill, 1(10): e2.  https://doi.org/10.23915/distill.00002 
						
					 | 
			
| 
					 Wu, L. Y., Zeng, T. R., Liu, X. P., et al., 2024. Landslide Susceptibility Assessment Based on Ensemble Learning Modeling. Earth Science, 49(10): 3841-3854(in Chinese with English abstract). 
						
					 | 
			
| 
					 Wu, R. Z., Hu, X. D., Mei, H. B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330(in Chinese with English abstract). 
						
					 | 
			
| 
					 Xue, M. M., 2020. Evaluation Model of Random Forest and Support Vector Machine for Landslide Prone along Mountain Road (Dissertation). Chongqing University, Chongqing (in Chinese with English abstract). 
						
					 | 
			
| 
					 Yang, S. K., Kong, X. G., Wang, Q. B., et al., 2022. Mechanical Fault Diagnosis Based on Multi-Source Domain Deep Transfer Learning. Journal of Vibration and Shock, 41(9): 32-40(in Chinese with English abstract). 
						
					 | 
			
| 
					 Yao, J. Y., Qin, S. W., Qiao, S. S., et al., 2022. Application of a Two-Step Sampling Strategy Based on Deep Neural Network for Landslide Susceptibility Mapping. Bulletin of Engineering Geology and the Environment, 81(4): 148.  https://doi.org/10.1007/s10064-022-02615-0 
						
					 | 
			
| 
					 Ye, L. Z., 2011. Characteristics of Geo-Hazards and Their Influence Factors in Anxi, Fujian Province. Journal of Geological Hazards and Environment Preservation, 22(2): 46–49(in Chinese with English abstract). 
						
					 | 
			
| 
					 Zhu, Y. C., Zhuang, F. Z., Wang, D. Q., 2019. Aligning Domain-Specific Distribution and Classifier for Cross-Domain Classification from Multiple Sources. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence. AAAI Press, Honolulu, Hawaii, USA, 5989-5996.  
						
					 | 
			
| 
					 艾骁, 2021. 基于机器学习的地震滑坡易发性评估模型构建: 以北京市山区为例(博士学位论文). 哈尔滨: 中国地震局工程力学研究所. 
					
					 | 
			
| 
					 付智勇, 李典庆, 王顺, 等, 2023. 基于多时空滑坡编录和TrAdaBoost迁移学习的滑坡易发性评价. 地球科学, 48(5): 1935-1947. doi:  10.3799/dqkx.2023.013  
					
					 | 
			
| 
					 黄发明, 叶舟, 姚池, 等, 2020. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响. 地球科学, 45(12): 4535-4549. doi:  10.3799/dqkx.2020.247 
					
					 | 
			
| 
					 黄健豪, 2020. 崩滑流灾害主控因子数据挖掘方法与应用研究(硕士学位论文). 重庆: 重庆大学. 
					
					 | 
			
| 
					 黄俊宝, 2013. 德化县滑坡成灾临界降雨量研究. 福建地质, 32(1): 65-69. 
					
					 | 
			
| 
					 李成林, 刘严松, 赖思翰, 等, 2024. 基于逻辑回归和支持向量机耦合模型的滑坡易发性分析. 自然灾害学报, 33(2): 75-86. 
					
					 | 
			
| 
					 吕丞辉, 程进军, 胡阳光, 等, 2022. 基于多源域深度迁移学习的舵机在线故障诊断. 兵器装备工程学报, 43(9): 60-67. 
					
					 | 
			
| 
					 马彦彬, 李红蕊, 王林, 等, 2022. 机器学习方法在滑坡易发性评价中的应用. 土木与环境工程学报(中英文), 44(1): 53-67. 
					
					 | 
			
| 
					 乔晓霞, 2006. 基于GIS的复杂山区高速公路沿线地质灾害危险性评价研究: 以GZ40高速公路安康至紫阳山区段为例(硕士学位论文). 西安: 长安大学. 
					
					 | 
			
| 
					 苏兴来, 2009. 尤溪县蠕动滑坡地质灾害环境因素探讨. 福建地质, 28(4): 335-340. 
					
					 | 
			
| 
					 苏燕, 黄绍翔, 赖晓鹤, 等, 2024. 基于迁移成分分析的库岸跨区域滑坡易发性评价. 地球科学, 49(5): 1636-1653. doi:  10.3799/dqkx.2022.453 
					
					 | 
			
| 
					 孙德亮, 2019. 基于机器学习的滑坡易发性区划与降雨诱发滑坡预报预警研究(博士学位论文). 上海: 华东师范大学. 
					
					 | 
			
| 
					 孙小琳, 季伟东, 王旭, 2022. 基于余弦相似度反向策略的自然计算方法. 信息与控制, 51(6): 708-718. 
					
					 | 
			
| 
					 邬礼扬, 曾韬睿, 刘谢攀, 等, 2024. 基于集成学习建模的滑坡易发性评价. 地球科学, 49(10): 3841-3854. doi:  10.3799/dqkx.2022.451 
					
					 | 
			
| 
					 吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. doi:  10.3799/dqkx.2020.032  
					
					 | 
			
| 
					 薛蒙蒙, 2020. 山区道路沿线滑坡易发性随机森林和支持向量机评价模型(硕士学位论文). 重庆: 重庆大学. 
					
					 | 
			
| 
					 杨胜康, 孔宪光, 王奇斌, 等, 2022. 基于多源域深度迁移学习的机械故障诊断. 振动与冲击, 41(9): 32-40. 
					
					 | 
			
| 
					 叶龙珍, 2011. 福建省安溪县地质灾害发育特征及影响因素分析. 地质灾害与环境保护, 22(2): 46-49. 
					
					 |