• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 12
    Dec.  2025
    Turn off MathJax
    Article Contents
    Luo Ziqi, Liu Leilei, Zeng Zhixiong, Wang Tao, Li Jianguo, Sang Qinyang, 2025. Quantitative Risk Assessment of Solid Waste Landfill Slope Instability-Induced Disasters Based on Depth-Integrated Method and Uncertainty Analysis: A Case Study of Shenzhen's '12•20' Guangming Landslide. Earth Science, 50(12): 4984-4999. doi: 10.3799/dqkx.2025.147
    Citation: Luo Ziqi, Liu Leilei, Zeng Zhixiong, Wang Tao, Li Jianguo, Sang Qinyang, 2025. Quantitative Risk Assessment of Solid Waste Landfill Slope Instability-Induced Disasters Based on Depth-Integrated Method and Uncertainty Analysis: A Case Study of Shenzhen's "12•20" Guangming Landslide. Earth Science, 50(12): 4984-4999. doi: 10.3799/dqkx.2025.147

    Quantitative Risk Assessment of Solid Waste Landfill Slope Instability-Induced Disasters Based on Depth-Integrated Method and Uncertainty Analysis: A Case Study of Shenzhen's "12•20" Guangming Landslide

    doi: 10.3799/dqkx.2025.147
    • Received Date: 2025-05-01
    • Publish Date: 2025-12-25
    • Urban solid waste landfill-induced high-steep slope instability often leads to secondary disasters such as extensive building destruction and casualties. To quantitatively evaluate the disaster risk of artificial landfill landslides, this study takes Shenzhen's "12•20" Guangming landslide as a case study, employing the depth-integrated method-based Massflow software to construct a dynamic numerical model that reproduces the entire evolution process of landslide initiation, high-speed movement, and deposition. By coupling with impact pressure calculation methods for landslide masses, the destructive impact effects on surrounding buildings were quantitatively evaluated. An uncertainty analysis framework was introduced, treating geotechnical parameters and sliding surface properties as random variables. A probabilistic analysis model was developed through Latin hypercube sampling, revealing the statistical characteristics of landslide travel distance under multifactorial influences and establishing a correlation model between landslide motion exceedance probability and building impact damage. Building vulnerability was further considered when conducting risk assessments for structures and nearby personnel. The study demonstrates that the depth-integrated method effectively captures the dynamic evolution of landslides, with simulated failure surface morphology, travel distance (1 139 m), and deposition pattern highly consistent with field monitoring data; impact pressure from landslide masses on buildings exhibits a rapid rise to peak values followed by gradual attenuation, with peak pressure decreasing significantly with distance from the landslide source; probabilistic analysis of landslide travel distance based on parameter uncertainty shows the actual deposition zone entirely falls within the 95% confidence interval, and building damage areas align with hazard zoning results. The proposed risk assessment framework integrating depth-integrated modeling and uncertainty analysis provides a novel methodology for quantitative evaluation of engineered landfill landslides, offering significant theoretical and practical implications for solid waste landfill safety management in the context of "zero-waste city" development.

       

    • loading
    • Armanini, A., 1997. On the Dynamic Impact of Debris Flow. In: Armanini, A., Michiue, M., eds., Recent Developments on Debris Flows. Springer, Berlin, Heidelberg, 208-226.
      Chai, L. Y., Ke, Y., Wang, Y. Y., et al., 2025. "Earth Macro-Circulation" of Bulk Hard-to-Dispose Industrial Solid Waste for Its Ecological Return. Strategic Study of Chinese Academy of Engineerng, 27(3): 98-105(in Chinese with English abstract).
      Christen, M., Kowalski, J., Bartelt, P., 2010. RAMMS: Numerical Simulation of Dense Snow Avalanches in Three-Dimensional Terrain. Cold Regions Science and Technology, 63(1-2): 1-14. https://doi.org/10.1016/j.coldregions.2010.04.005
      Galasso, C., Pregnolato, M., Parisi, F., 2021. A Model Taxonomy for Flood Fragility and Vulnerability Assessment of Buildings. International Journal of Disaster Risk Reduction, 53: 101985. https://doi.org/10.1016/j.ijdrr.2020.101985
      Gao, Y., 2018. The Study on Long Run-out Mechanism of Artificial Landfill Landslide: Taking Shenzhen Guangming New District Landslide as an Example (Dissertaion). China University of Geosciences, Beijing(in Chinese with English abstract).
      Gao, Y., Yin, Y. P., Li, B., 2021. Failure Process Simulation Analysis of the Shenzhen "12•20" CDW Landfill Landslide: A Case Study. Arabian Journal of Geosciences, 14(12): 1094. https://doi.org/10.1007/s12517-021-07429-0
      Gao, Y., Yin, Y. P., Li, B., et al., 2019. Post-Failure Behavior Analysis of the Shenzhen "12•20" CDW Landfill Landslide. Waste Management, 83: 171-183. https://doi.org/10.1016/j.wasman.2018.11.015
      He, X. R., Yin, Y. P., Zhao, L. M., et al., 2024. Disintegration and Fragmentation Effect of High Position Rock Landslide Debris Flow Based on Large Scale Physical Model Test. Earth Science, 49(7): 2650-2661(in Chinese with English abstract)
      Iverson, R. M., Ouyang, C. J., 2015. Entrainment of Bed Material by Earth-Surface Mass Flows: Review and Reformulation of Depth-Integrated Theory. Reviews of Geophysics, 53(1): 27-58. https://doi.org/10.1002/2013rg000447
      Jiang, S. H., Xiong, W., Zhu, G. Y., et al., 2024. Probabilitic Analysis of Reservoir Landslides Considering the Spatial Variation of Seepage Parameters under the Conditions of Rainstorm and Sudden Drop of Water Level. Earth Science, 49(5): 1679-1691(in Chinese with English abstract)
      Lacasse, S., Nadim, F., 2011. Learning to Live with Geohazards: From Research to Practice. GeoRisk 2011. American Society of Civil Engineers, Atlanta, Georgia, USA. 64-116. . https://doi.org/10.1061/41183(418)4
      Li, K., Cheng, Q. G., Lin, Q. W., et al., 2022. State of the Art on Rock Avalanche Dynamics from Granular Flow Mechanics. Earth Science, 47(3): 893-912(in Chinese with English abstract).
      Li, S., Peng, C., Wu, W., et al., 2020. Role of Baffle Shape on Debris Flow Impact in Step-Pool Channel: An SPH Study. Landslides, 17(9): 2099-2111. https://doi.org/10.1007/s10346-020-01410-w
      Ministry of Ecology and Environment of the People's Republic of China, 2024. China Statistical Yearbook on Ecology and Environment (2024). Ministry of Ecology and Environment of the People's Republic of China, Beijing(in Chinese).
      Mo, W. M., Fang, W. H., 2016. Empirical Vulnerability Functions of Building Contents to Flood Based on Post-Typhoon (Fitow, 201323) Questionnaire Survey in Yuyao, Zhejiang. Tropical Geography, 36(4): 633-641, 657(in Chinese with English abstract).
      Ouyang, C. J., He, S. M., Xu, Q., 2015. MacCormack-TVD Finite Difference Solution for Dam Break Hydraulics over Erodible Sediment Beds. Journal of Hydraulic Engineering, 141(5): 06014026. https://doi.org/10.1061/(asce)hy.1943-7900.0000986
      Ouyang, C. J., He, S. M., Xu, Q., et al., 2013. A MacCormack-TVD Finite Difference Method to Simulate the Mass Flow in Mountainous Terrain with Variable Computational Domain. Computers & Geosciences, 52: 1-10. https://doi.org/10.1016/j.cageo.2012.08.024
      Ouyang, C. J., Zhou, K. Q., Xu, Q., et al., 2017. Dynamic Analysis and Numerical Modeling of the 2015 Catastrophic Landslide of the Construction Waste Landfill at Guangming, Shenzhen, China. Landslides, 14(2): 705-718. https://doi.org/10.1007/s10346-016-0764-9
      Peng, C., Wang, S., Wu, W., et al., 2019. LOQUAT: An Open-Source GPU-Accelerated SPH Solver for Geotechnical Modeling. Acta Geotechnica, 14(5): 1269-1287. https://doi.org/10.1007/s11440-019-00839-1
      Sun, X. P., Zeng, P., Li, T. B., et al., 2021. Run-out Distance Exceedance Probability Evaluation and Hazard Zoning of an Individual Landslide. Landslides, 18(4): 1295-1308. https://doi.org/10.1007/s10346-020-01545-w
      Sun, X. P., Zeng, P., Li, T. B., et al., 2025. Probabilistic Vulnerability Evaluation of Buildings under Landslide Runout Impacts Considering the 3D Dynamic Interaction Processes. Engineering Geology, 354: 108164. https://doi.org/10.1016/j.enggeo.2025.108164
      Sun, X. P., Zeng, P., Zhang, T. L., et al., 2021. Assessment of Exceedance Probability of Landslide Run-out Distance and Hazard Zoning. Geological Bulletin of China, 40(9): 1560-1569(in Chinese with English abstract).
      Sun, Y. J., Song, E. X., 2018. Dynamic Simulation of "12·20" Shenzhen Landslide. Chinese Journal of Geotechnical Engineering, 40(3): 441-448(in Chinese with English abstract).
      Tang, H. M., Li, C. D., Gong, W. P., et al., 2022. Fundamental Attribute and Research Approach of Landslide Evolution. Earth Science, 47(12): 4596-4608(in Chinese with English abstract).
      Wang, D., Wang, B., Yuan, W. H., et al., 2023. Investigation of Rainfall Intensity on the Slope Failure Process Using GPU-Accelerated Coupled MPM. Computers and Geotechnics, 163: 105718. https://doi.org/10.1016/j.compgeo.2023.105718
      Wang, K., Zhang, S. J., Wei, F. Q., et al., 2020. A Case Study of the Rapid and Long Runout Landslide at Hong'ao Waste Disposal Site in Shenzhen, China. KSCE Journal of Civil Engineering, 24(3): 727-739. https://doi.org/10.1007/s12205-020-1399-x
      Wang, S., Zeng, P., Li, T. B., et al., 2022. Initiation, Movement and Impact Simulation of Soil Landslide with Material Point Method. Journal of Engineering Geology, 30(4): 1362-1370(in Chinese with English abstract).
      Xing, A. G., Wang, G., Yin, Y. P., et al., 2014. Dynamic Analysis and Field Investigation of a Fluidized Landslide in Guanling, Guizhou, China. Engineering Geology, 181: 1-14. https://doi.org/10.1016/j.enggeo.2014.07.022
      Xu, Q., Peng, D. L., Li, W. L., et al., 2016. Study on Formation Mechanism of Diffuse Failure Landslide. Journal of Southwest Jiaotong University, 51(5): 995-1004(in Chinese with English abstract).
      Yan, Y. R., Liu, Z. Y., Feng, J., et al., 2023. Research on Transmission Tower Damage Assessment Caused by Earthquake and Landslide. Technology for Earthquake Disaster Prevention, 18(1): 107-117(in Chinese with English abstract).
      Yang, H., Huang, X. J., Thompson, J. R., et al., 2016. The Crushing Weight of Urban Waste. Science, 351(6274): 674. https://doi.org/10.1126/science.351.6274.674-a
      Yin, Y. P., Li, B., Wang, W. P., et al., 2016. Mechanism of the December 2015 Catastrophic Landslide at the Shenzhen Landfill and Controlling Geotechnical Risks of Urbanization. Engineering, 2(2): 230-249. https://doi.org/10.1016/J.ENG.2016.02.005
      Yubei District Emergency Management Bureau, 2023. Mud Collapse Occurs at a Waste Soil Site in Yubei District, Chongqing. 2023-12-05. http://www.ybq.gov.cn/bm/qyjj/bmdt/202312/t20231215_12712416.html(in Chinese).
      Zanchetta, G., Sulpizio, R., Pareschi, M. T., et al., 2004. Characteristics of May 5-6, 1998 Volcaniclastic Debris Flows in the Sarno Area (Campania, Southern Italy): Relationships to Structural Damage and Hazard Zonation. Journal of Volcanology and Geothermal Research, 133(1-4): 377-393. https://doi.org/10.1016/S0377-0273(03)00409-8
      Zeng, P., Su, Z. H., Fang, W. H., et al., 2022. Typhoon Flooding Loss Assessment in Haikou City Based on High Precision Building Type Data. Journal of Catastrophology, 37(4): 155-165(in Chinese with English abstract).
      Zhang, S., Liu, Y., Bate, B., et al., 2021. Quantitative Human Risk Analysis of 2015 Shenzhen Dump Failure Considering Influence of Urbanization. Journal of Mountain Science, 18(6): 1439-1457. https://doi.org/10.1007/s11629-020-6260-7
      Zhang, S., Wang, S. R., Lei, M. L., et al., 2024. Landslide Risk Level Assessment of a Landfill: A Case Study of a Landfill in Hangzhou. Environmental Sanitation Engineering, 32(1): 1-8(in Chinese with English abstract)
      Zhong, X. R., 2024. Study on Sudden Departure Mechanism of Low-Potential Energy Landslides on Account of Massing Energy by Spoon-Shape Terrain—Taking the Landslide of Hong'ao Village Construction Solid Waste Landfill in Guangming New District of Shenzhen, Guangdong, China. Chinese Journal of Rock Mechanics and Engineering, 43(10): 2485-2496(in Chinese with English abstract).
      柴立元, 柯勇, 王云燕, 等, 2025. 大宗难消纳工业固体废物"地球宏循环" 生态回归研究. 中国工程科学, 27(3): 98-105.
      重庆市渝北区应急管理局, 2023. 重庆市渝北区一弃土场发生泥浆坍塌. 2023-12-15. http://www.ybq.gov.cn/bm/qyjj/bmdt/202312/t20231215_12712416.html
      高杨, 2018. 人工堆填体滑坡远程滑动机理研究(博士学位论文). 北京: 中国地质大学.
      贺旭荣, 殷跃平, 赵立明, 等, 2024. 基于大型物理模型试验的高位岩质滑坡碎屑流解体破碎效应. 地球科学, 49(7): 2650-2661. doi: 10.3799/dqkx.2023.021
      蒋水华, 熊威, 朱光源, 等, 2024. 暴雨及水位骤降条件下渗流参数空间变异的水库滑坡概率分析. 地球科学, 49(5): 1679-1691. doi: 10.3799/dqkx.2022.361
      李坤, 程谦恭, 林棋文, 等, 2022. 高速远程滑坡颗粒流研究进展. 地球科学, 47(3): 893-912. doi: 10.3799/dqkx.2021.169
      莫婉媚, 方伟华, 2016. 浙江省余姚市室内财产洪水脆弱性曲线: 基于台风菲特(201323)灾后问卷调查. 热带地理, 36(4): 633-641, 657.
      孙小平, 曾鹏, 张天龙, 等, 2021. 滑坡运动距离超越概率评价及危险性区划. 地质通报, 40(9): 1560-1569.
      孙玉进, 宋二祥, 2018. "12·20"深圳滑坡动态模拟. 岩土工程学报, 40(3): 441-448.
      唐辉明, 李长冬, 龚文平, 等, 2022. 滑坡演化的基本属性与研究途径. 地球科学, 47(12): 4596-4608. doi: 10.3799/dqkx.2022.461
      王升, 曾鹏, 李天斌, 等, 2022. 土质滑坡失稳、运动及冲击压力物质点法模拟研究. 工程地质学报, 30(4): 1362-1370.
      许强, 彭大雷, 李为乐, 等, 2016. 溃散性滑坡成因机理初探. 西南交通大学学报, 51(5): 995-1004.
      严屹然, 刘泽宇, 冯杰, 等, 2023. 地震滑坡灾害下输电杆塔灾损评估研究. 震灾防御技术, 18(1): 107-117.
      曾鹏, 苏朝晖, 方伟华, 等, 2022. 基于高精度房屋类型数据的海口市台风次生洪涝灾害损失评估. 灾害学, 37(4): 155-165.
      张帅, 王帅茸, 雷孟麟, 等, 2024. 渣土填埋场滑坡风险等级评估: 以杭州某渣土场为例. 环境卫生工程, 32(1): 1-8.
      中华人民共和国生态环境部, 2024. 中国生态环境统计年报(2024). 北京: 中华人民共和国生态环境部.
      钟兴荣, 2024. 低势能滑坡束口聚能启程剧动机制研究: 以深圳光明新区红坳建筑弃渣场滑坡为例. 岩石力学与工程学报, 43(10): 2485-2496.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(8)

      Article views (262) PDF downloads(24) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return