• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 12
    Dec.  2025
    Turn off MathJax
    Article Contents
    Cheng Tao, Tao Weixiang, Li Dan, Liu Xinyu, Zhang Cheng, 2025. Depositional Differences and Main Controlling Factors of Lacustrine Carbonate Sediments in Lower Cretaceous of Santos Basin, Brazil. Earth Science, 50(12): 4635-4651. doi: 10.3799/dqkx.2025.150
    Citation: Cheng Tao, Tao Weixiang, Li Dan, Liu Xinyu, Zhang Cheng, 2025. Depositional Differences and Main Controlling Factors of Lacustrine Carbonate Sediments in Lower Cretaceous of Santos Basin, Brazil. Earth Science, 50(12): 4635-4651. doi: 10.3799/dqkx.2025.150

    Depositional Differences and Main Controlling Factors of Lacustrine Carbonate Sediments in Lower Cretaceous of Santos Basin, Brazil

    doi: 10.3799/dqkx.2025.150
    • Received Date: 2025-02-19
    • Publish Date: 2025-12-25
    • The rift stage (Barremian-Aptian of the Early Cretaceous) of the Santos basin in Brazil is characterized by the development of world-class large-scale lacustrine carbonates deposition. At present, numerous oil and gas discoveries have been made in this field, making it a hot spot for global oil and gas exploration. The development degree of carbonate sediments is the key to the enrichment and accumulation of oil and gas in the basin. Drilling results reveal the development of "two phases and two types" of lacustrine carbonate sediments during the rift stage of the basin: shell limestone of Itapema (ITP) group in early fault-sag depression transition period (Late Barremian-Aptian) and microbial reef limestone of Barra Velha (BV) group in late sag depression period (Mid-Late Aptian). Although both of these "two phases and two types" lacustrine carbonate sediments are biogenic limestone, their genesis mechanisms and lithological combinations differ significantly. In order to clarify the sedimentary differences and main controlling factors of the "two phases and two types" lacustrine carbonate rocks, based on thin section, core, logging, seismic and other data, this paper conducts a systematic petrological and sedimentological study of two types of lacustrine carbonate sediments in the basin, combining micro and macro perspectives. Comprehensive research shows the development of large-scale lacustrine carbonate sediment in the Lower Cretaceous of the Santos basin in Brazil is mainly controlled by paleogeomorphology, paleolake water salinity and paleowater energy changes. Paleogeomorphology controls the distribution and development of sedimentary microfacies of lacustrine carbonate reservoirs, paleowater salinity controls the vertical evolution of lacustrine carbonate sediments types, and paleowater energy and water depth control the microfacies variation of lacustrine carbonate sediments. Finally, it was confirmed that the high-energy freshwater environment in the face of waves is a favorable background for the development of shell limestone reservoir in Itapema Formation, and the shallow medium-high energy semi saline-saline water environment in the face of waves is a favorable background for the development of stromatolitic limestone reservoir in Barra Velha Formation. This points out the directions for finding favorable reservoir development zones and has practical guiding significance for the oil and gas exploration in lacustrine carbonate rocks of Brazil.

       

    • loading
    • Adams, E. W., Grotzinger, J. P., Watters, W. A., et al., 2005. Digital Characterization of Thrombolite-Stromatolite Reef Distribution in a Carbonate Ramp System (Terminal Proterozoic, Nama Group, Namibia). AAPG Bulletin, 89(10): 1293-1318. https://doi.org/10.1306/06160505005
      Altenhofen, S. D., Rodrigues, A. G., Borghi, L., et al., 2024. Dynamic Re-Sedimentation of Lacustrine Carbonates in the Búzios Field, Pre-Salt Section of Santos Basin, Brazil. Journal of South American Earth Sciences, 138: 104863. https://doi.org/10.1016/j.jsames.2024.104863
      Chaboureau, A. C., Guillocheau, F., Robin, C., et al., 2013. Paleogeographic Evolution of the Central Segment of the South Atlantic during Early Cretaceous Times: Paleotopographic and Geodynamic Implications. Tectonophysics, 604: 191-223. https://doi.org/10.1016/j.tecto.2012.08.025
      Chafetz, H., Barth, J., Cook, M., et al., 2018. Origins of Carbonate Spherulites: Implications for Brazilian Aptian Pre-Salt Reservoir. Sedimentary Geology, 365: 21-33. https://doi.org/10.1016/j.sedgeo.2017.12.024
      Chang, H. K., Kowsmann, R. O., Figueiredo, A. M. F., et al., 1992. Tectonics and Stratigraphy of the East Brazil Rift System: an Overview. Tectonophysics, 213, 97-138. https://doi.org/10.1016/0040-1951(92)90253-3
      Chen, Z. H., Zha, M., Jin, Q., 2004. Application of Natural Gamma Ray Logging and Natural Gamma Spectrometry Logging to Recovering Paleoenvironment of Sedimentary Basin. Chinese Journal of Geophysics, 47(6): 1145-1150(in Chinese with English abstract).
      Cheng, T., Kang, H. Q., Bai, B., et al., 2018. Key Technologies and Their Application in Exploration of Pre-Salt Lacustrine Carbonate Rock in Santos Basin, Brazil. China Offshore Oil and Gas, 30(4): 27-35(in Chinese with English abstract).
      Claes, H., Miranda, T., Falcão, T. C., et al., 2021. Model for Calcite Spherulite Formation in Organic, Clay-Rich, Lacustrine Carbonate Shales (Barbalha Formation, Aptian, Araripe Basin, NE Brazil). Marine and Petroleum Geology, 128: 104988. https://doi.org/10.1016/j.marpetgeo.2021.104988
      Embry, A. F., Klovan, J. E., 1971. A Late Devonian Reef Tract on Northeastern Banks Island, N. W. T. . Bulletin of Canadian Petroleum Geology, 19: 730-781. https://doi.org/10.35767/gscpgbull.19.4.730
      Gomes, J. P., Bunevich, R. B., Tedeschi, L. R., et al., 2020. Facies Classification and Patterns of Lacustrine Carbonate Deposition of the Barra Velha Formation, Santos Basin, Brazilian Pre-Salt. Marine and Petroleum Geology, 113: 104176. https://doi.org/10.1016/j.marpetgeo.2019.104176
      He, S., Li, G. R., Wu, C. R., et al., 2022. Sedimentary Filling Characteristics and Controlling Factors of Lacustrine Microbial Carbonates Sequence in the Santos Basin, Brazil. Petroleum Exploration and Development, 49(4): 683-692(in Chinese with English abstract).
      Jia, H. C., Kang, H. Q., Liang, J. S., et al., 2021. Characteristic and Developmental Controlled Factors of Pre-Salt Lacustrine Carbonate, Santos Basin. Journal of Southwest Petroleum University (Science & Technology Edition), 43(2): 1-9(in Chinese with English abstract).
      Jia, J. Z., Kang, H. Q., Cai, W. J., et al., 2021. Characteristics of Pre-Salt Lacustrine Ostracods in the Great Campos Basin and Its Indicative Significance of Paleo Sedimentary Environment. China Offshore Oil and Gas, 33(6): 52-61(in Chinese with English abstract).
      Kang, H. Q., Cheng, T., Li, M. G., et al., 2016. Characteristics and Main Control Factors of Hydrocarbon Accumulation in Santos Basin, Brazil. China Offshore Oil and Gas, 28(4): 1-8(in Chinese with English abstract).
      Kang, H. Q., Lü, J., Cheng, T., 2018a. Depositional Environment of Stromatolitic Limestone of Pre-Salt Barra Velha Formation in Santos Basin, Brazil. Marine Origin Petroleum Geology, 23(1): 29-36(in Chinese with English abstract).
      Kang, H. Q., Lü, J., Cheng, T., 2018b. Characteristics of Subsalt Lacustrine Carbonate Reservoirs in Santos Basin, Brazil. Marine Geology & Quaternary Geology, 38(4): 170-178(in Chinese with English abstract).
      Kirkham, A., Tucker, M. E., 2018. Thrombolites, Spherulites and Fibrous Crusts (Holkerian, Purbeckian, Aptian): Context, Fabrics and Origins. Sedimentary Geology, 374: 69-84. https://doi.org/10.1016/j.sedgeo.2018.07.002
      Lima, B. E. M., De Ros, L. F., 2019. Deposition, Diagenetic and Hydrothermal Processes in the Aptian Pre-Salt Lacustrine Carbonate Reservoirs of the Northern Campos Basin, Offshore Brazil. Sedimentary Geology, 383: 55-81. https://doi.org/10.1016/j.sedgeo.2019.01.006
      Liu, S. Y., Hu, X. L., Li, J. B., 2011. Great Discovery and Its Significance for Exploration in Subsalt Reservoir in Santos Basin, Brazil. China Petroleum Exploration, 16(4): 74-81(in Chinese with English abstract).
      Luo, X. T., Wen, H. G., Peng, C., et al., 2020. Sedimentary Characteristics and High-Precision Sequence Division of Lacustrine Carbonate Rocks of BV Formation in L OilField of Santos Basin, Brazil. Lithologic Reservoirs, 32(3): 68-81(in Chinese with English abstract).
      Mercedes-Martín, R., Brasier, A. T., Rogerson, M., et al., 2017. A Depositional Model for Spherulitic Carbonates Associated with Alkaline, Volcanic Lakes. Marine and Petroleum Geology, 86: 168-191. https://doi.org/10.1016/j.marpetgeo.2017.05.032
      Moreira, J. L. P., Madeira, C. V., Gil, J. A., 2007. Bacia de Santos. Bol. Geociencias Petrobras, 15(2): 531-549.
      Moulin, M., Aslanian, D., Unternehr, P., 2010. A New Starting Point for the South and Equatorial Atlantic Ocean. Earth-Science Reviews, 98(1-2): 1-37. https://doi.org/10.1016/j.earscirev.2009.08.001
      Neves, I., Lupinacci, W. M., Ferreira, D. J. A., et al., 2019. Presalt Reservoirs of the Santos Basin: Cyclicity, Electrofacies, and Tectonic-Sedimentary Evolution. Interpretation, 7(4): SH33-SH43. https://doi.org/10.1190/int-2018-0237.1
      Rebelo, T. B., Batezelli, A., Mattos, N. H., et al., 2023. Sedimentary Processes and Paleoenvironment Reconstruction of the Barra Velha Formation, Santos Basin, Brazilian Pre-Salt. Marine and Petroleum Geology, 150: 106141. https://doi.org/10.1016/j.marpetgeo.2023.106141
      Rogerson, M., Mercedes-Martín, R., Brasier, A. T., et al., 2017. Are Spherulitic Lacustrine Carbonates an Expression of Large-Scale Mineral Carbonation? A Case Study from the East Kirkton Limestone, Scotland. Gondwana Research, 48: 101-109. https://doi.org/10.1016/j.gr.2017.04.007
      Sam, P., Kerr, J., Dempsey, A., et al., 2014. Large-Scale Carbonate Platform Development of Cay Sal Bank, Bahamas, and Implications for Associated Reef Geomorphology. Geomorphology, 222: 25-38. https://doi.org/10.1016/j.geomorph.2014.03.004
      Smith, R. J., 2000. Morphology and Ontogeny of Cretaceous Ostracods with Preserved Appendages from Brazil. Palaeontology, 43(1): 63-98. https://doi.org/10.1111/1475-4983.00119
      Thompson, D. L., Stilwell, J. D., Hall, M., 2015. Lacustrine Carbonate Reservoirs from Early Cretaceous Rift Lakes of Western Gondwana: Pre-Salt Coquinas of Brazil and West Africa. Gondwana Research, 28(1): 26-51. https://doi.org/10.1016/j.gr.2014.12.005
      Tome, M. E. T. R., Lima Filho, M. F., Neumann, V. H. M. L., 2014. Taxonomic Studies of Non-Marine Ostracods in the Lower Cretaceous (Aptian-Lower Albian) of Post-Rift Sequence from Jatobá and Araripe Basins (Northeast Brazil): Stratigraphic Implications. Cretaceous Research, 48: 153-176. https://doi.org/10.1016/j.cretres.2013.12.007
      Wang, Y., Wang, X. Z., Liao, J. H., et al., 2016. Cretaceous Lacustrine Algal Stromatolite Reef Characteristics and Controlling Factors, Santos Basin, Brazil. Acta Sedimentologica Sinica, 34(5): 819-829(in Chinese with English abstract).
      Warren, J. K., 2011. Evaporitic Source Rocks: Mesohaline Responses to Cycles of "Famine or Feast" in Layered Brines. Wiley, New York. https://doi.org/10.1002/9781444392326.ch16 http://www.a.cn/b.htm
      Wei, L. B., Zhao, J. X., Su, Z. T., et al., 2021. Distribution and Depositional Model of Microbial Carbonates in the Ordovician Middle Assemblage, Ordos Basin, NW China. Petroleum Exploration and Development, 48(6): 1162-1174(in Chinese with English abstract).
      Whalen, M. T., Day, J., Eberli, G. P., et al., 2002. Microbial Carbonates as Indicators of Environmental Change and Biotic Crises in Carbonate Systems: Examples from the Late Devonian, Alberta Basin, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 181(1-3): 127-151. https://doi.org/10.1016/s0031-0182(01)00476-x
      Wright, V. P., 1992. A Revised Classification of Limestones. Sedimentary Geology, 76(3-4): 177-185. https://doi.org/10.1016/0037-0738(92)90082-3
      Wright, V. P., Barnett, A. J., 2019. The Textural Evolution and Ghost Matrices of the Cretaceous Barra Velha Formation Carbonates from the Santos Basin, Offshore Brazil. Facies, 66(1): 7. https://doi.org/10.1007/s10347-019-0591-2
      Xiao, H. Y., Liao, L. B., Ji, J. F., et al., 2014. Sedimentary Records and Paleoclimate Evolution of the Great Barrier Reef, Australia during the Past 150 000 Years. Earth Science Frontiers, 21(2): 323-330(in Chinese with English abstract).
      Zhu, Y. X., Zhang, Z. M., Zhang, D. M., 2022. Sedimentary Environment and Genesis of the Early Cretaceous Microbial Carbonates in Santos Basin, Brazil. Acta Petrologica Sinica, 38(9): 2619-2633(in Chinese with English abstract).
      陈中红, 查明, 金强, 2004. 自然伽玛及自然伽玛能谱测井在沉积盆地古环境反演中的应用. 地球物理学报, 47(6): 1145-1150.
      程涛, 康洪全, 白博, 等, 2018. 巴西桑托斯盆地盐下湖相碳酸盐岩勘探关键技术及其应用. 中国海上油气, 30(4): 27-35.
      何赛, 李国蓉, 吴昌荣, 等, 2022. 巴西桑托斯盆地湖相微生物碳酸盐岩层序沉积特征及控制因素. 石油勘探与开发, 49(4): 683-692.
      贾怀存, 康洪全, 梁建设, 等, 2021. 桑托斯盆地湖相碳酸盐岩储层特征及控制因素. 西南石油大学学报(自然科学版), 43(2): 1-9.
      贾建忠, 康洪全, 蔡文杰, 等, 2021. 大坎波斯盆地盐下湖相介形虫特征及其古环境指示意义. 中国海上油气, 33(6): 52-61.
      康洪全, 程涛, 李明刚, 等, 2016. 巴西桑托斯盆地油气成藏特征及主控因素分析. 中国海上油气, 28(4): 1-8.
      康洪全, 吕杰, 程涛, 2018a. 桑托斯盆地白垩系盐下Barra Velha组叠层石灰岩沉积环境探讨. 海相油气地质, 23(1): 29-36.
      康洪全, 吕杰, 程涛, 等, 2018b. 巴西桑托斯盆地盐下湖相碳酸盐岩储层特征. 海洋地质与第四纪地质, 38(4): 170-178.
      刘深艳, 胡孝林, 李进波, 2011. 巴西桑托斯盆地盐下大发现及其勘探意义. 中国石油勘探, 16(4): 74-81. .
      罗晓彤, 文华国, 彭才, 等, 2020. 巴西桑托斯盆地L油田BV组湖相碳酸盐岩沉积特征及高精度层序划分. 岩性油气藏, 32(3): 68-81.
      王颖, 王晓州, 廖计华, 等, 2016. 巴西桑托斯盆地白垩系湖相藻叠层石礁特征及主控因素分析. 沉积学报, 34(5): 819-829.
      魏柳斌, 赵俊兴, 苏中堂, 等, 2021. 鄂尔多斯盆地奥陶系中组合微生物碳酸盐岩分布规律及沉积模式. 石油勘探与开发, 48(6): 1162-1174.
      肖海漪, 廖立兵, 季峻峰, 等, 2014. 澳大利亚大堡礁海域近15万年沉积记录及古气候演化. 地学前缘, 21(2): 323-330.
      朱奕璇, 张忠民, 张德民, 2022. 巴西桑托斯盆地早白垩世微生物碳酸盐岩沉积环境与成因. 岩石学报, 38(9): 2619-2633.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(2)

      Article views (275) PDF downloads(24) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return