• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 10
    Oct.  2025
    Turn off MathJax
    Article Contents
    Wang Gaofeng, Bi Yuanhong, Li Hao, Gao Youlong, Tian Yuntao, Chen Zongliang, Li Ruidong, Cong Kai, Fan Xiaopeng, Dong Hanchuan, 2025. Developmental and Distribution Characteristics and Formation Mechanisms of Large-Scale Landslide Disaster Chains in Bailong River Basin. Earth Science, 50(10): 3885-3904. doi: 10.3799/dqkx.2025.151
    Citation: Wang Gaofeng, Bi Yuanhong, Li Hao, Gao Youlong, Tian Yuntao, Chen Zongliang, Li Ruidong, Cong Kai, Fan Xiaopeng, Dong Hanchuan, 2025. Developmental and Distribution Characteristics and Formation Mechanisms of Large-Scale Landslide Disaster Chains in Bailong River Basin. Earth Science, 50(10): 3885-3904. doi: 10.3799/dqkx.2025.151

    Developmental and Distribution Characteristics and Formation Mechanisms of Large-Scale Landslide Disaster Chains in Bailong River Basin

    doi: 10.3799/dqkx.2025.151
    • Received Date: 2025-06-14
    • Publish Date: 2025-10-25
    • The Bailong River Basin is situated between two major left-lateral strike-slip faults: the East Kunlun Fault and the West Qinling Fault. Its unique geological setting makes it one of China's regions most prone to and severely affected by geological disaster chains, presenting an extremely critical situation for disaster prevention and mitigation. Based on data collection, remote sensing interpretation, and field surveys, this study established a database of 132 large-scale landslide disaster chains and systematically investigated their developmental characteristics, distribution patterns, and formation mechanisms. The research findings indicate: (1) All landslide bodies are large-scale or larger, exhibiting significant scale effects. Landslides within the 1 000×104 -5 000×104 m3 range account for 40.2% in number and 44.8% in total volume. High-position accumulation landslides predominate, with 24.2% displaying a "three-segment" anti-sliding topography. Landslides developed in the Devonian and Silurian soft-hard interbedded strata prone to sliding constitute 65% of the total landslide area; (2) Deformation is primarily characterized by multistage retrogressive deformation (often with local tension cracking-push deformation), progressive thrust-type landslides along fracture zones, and composite large-scale accumulation landslides. Over 60% possess long-runout mechanisms, exhibiting features of high-intensity granular flows dominated by long-duration creep; (3) Spatially, the landslides exhibit a banded concentration along major active faults and linear distribution along river systems. 54.6% occur within 2 km of fracture zones, concentrated at fault offsets, bends, terminations, and intersections. Sliding directions are mostly parallel to fault strikes, with regional distribution controlled by NWW-NW trending and NE trending faults, coupled with the river network.(4) Their formation and development are primarily controlled by active faults, landslide-prone strata (including phyllite), and the differential mid-high mountain gorge topography. Regional long-duration (5-15 days) heavy rainfall is the main triggering factor, exhibiting a lag effect. The frequency and scale of disasters increased significantly 1.5 to 5 years after earthquakes. The research results provide important guidance for enhancing the understanding of the formation mechanisms of catastrophic landslide disaster chains in the northeastern margin of the Tibetan Plateau and improving disaster prevention and mitigation capabilities.

       

    • loading
    • Chang, Z. Y., Wang, J., Bai, S. B., et al., 2014. Appraisal of Active Tectonic in Bailongjiang Basin Based on DEM Data. Quaternary Sciences, 34(2): 292-301(in Chinese with English abstract).
      Chen, M., Wang, Y. S., Liang, R. F., et al., 2018. Research on Development and Distribution Rules of Largescale Landslides in Bailongjiang River Basin. Journal of Engineering Geology, 26(2): 325-333 (in Chinese with English abstract).
      Chen, N. S., Tian, S. F., Zhang, Y., et al., 2021. Soil Mass Domination in Debris-Flow Disasters and Strategy for Hazard Mitigation. Earth Science Frontiers, 28(4): 337-348 (in Chinese with English abstract).
      Chong, Y., Chen, G., Meng, X. M., et al., 2022. Analysis of the Transformation Mechanism and Prediction of a Landslide Debris Flow Multi-Hazards Chain in an Alpine Canyon Area: A Case Study in Zhouqu. Journal of Lanzhou University (Natural Sciences), 58(3): 372-384(in Chinese with English abstract).
      Cui, P., Guo, J., 2021. Evolution Models, Risk Prevention and Control Countermeasures of the Valley Disaster Chain. Advanced Engineering Sciences, 53(3): 5-18(in Chinese with English abstract).
      Feng, J., Shang, X. J., Fan, M., et al., 2006. Geological Calamity Distribution and Critical Rainfall in Longnan Region of Gansu Province. Arid Meteorology, 24(4): 20-24 (in Chinese with English abstract).
      Feng, J., Zhang, R., Feng, R. J., 2011. Causes of the Post-Earthquake Geo-Calamities in Southern Gansu. Journal of Geological Hazards and Environment Preservation, 22(1): 5-9 (in Chinese with English abstract).
      Feng, Z., You, Y., Chen, L., et al., 2024. Numerical Simulation Study on Kinematic Post-Failure Process of Large-Scale Landslide in the Bailong River Basin. Journal of Catastrophology, 39(1): 45-50 (in Chinese with English abstract).
      Guo, C. B., Du, Y. B., Zhang, Y. S., et al., 2015. Geohazard Effects of the Xianshuihe Fault and Characteristics of Typical Landslides in Western Sichuan. Geological Bulletin of China, 34(1): 121-134 (in Chinese with English abstract).
      Guo, C. B., Ren, S. S., Li, X., et al., 2019. Development Characteristics and Reactivation Mechanism of the Jiangdingya Ancient Landslide in the Nanyu Town, Zhouqu County, Gansu Province. Geoscience, 33(1): 206-217(in Chinese with English abstract).
      Guo, C. B., Wu, R. A., Zhong, N., et al., 2024. Large Landslides along Active Tectonic Zones of Eastern Tibetan Plateau: Background and Mechanism of Landslide Formation. Earth Science, 49(12): 4635-4658 (in Chinese with English abstract).
      Guo, C. B., Yan, Y. Q., Zhang, Y. S., et al., 2022. Research Progress and Prospect of Failure Mechanism of Large Deep-Seated Creeping Landslides in Tibetan Plateau, China. Earth Science, 47(10): 3677-3700(in Chinese with English abstract).
      Guo, F. Y., Meng, X. M., Chen, G., et al., 2016. Geomorphology Evolution of Bailong River Basin and Its Impact on Geo-Hazard. Yangtze River, 47(7): 37-43, 49 (in Chinese with English abstract).
      Guo, F. Y., Song, X. L., Xie, Y., et al., 2015. A Discussion on the Geological Hazards Meteorological Warning System in Gansu Province. The Chinese Journal of Geological Hazard and Control, 26(1): 127-133 (in Chinese with English abstract).
      Han, J. L., Wu, S. R., Wang, H. B., 2007. Preliminary Study on Geological Hazard Chains. Earth Science Frontiers, 14(6): 11-23 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60001-9
      Hsü, K. J., 1975. Catastrophic Debris Streams (Sturzstroms) Generated by Rockfalls. Geological Society of America Bulletin, 86(1): 129-140. https://doi.org/10.1130/0016-7606(1975)86129:cdssgb>2.0.co;2 doi: 10.1130/0016-7606(1975)86129:cdssgb>2.0.co;2
      Huang, R. Q., 2004. Mechanism of Large Scale Landslides in Western China. Advance in Earth Sciences, 19(3): 443-450 (in Chinese with English abstract).
      Huang, R. Q., 2007. Large-Scale Landslides and Their Sliding Mechanisms in China since the 20th Century. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454 (in Chinese with English abstract).
      Liu, C. L., Qi, S. W., Tong, L. Q., et al., 2010. Great Landslides in Himalaya Mountain Area and Their Occurrence with Lithology. Journal of Engineering Geology, 18(5): 669-676 (in Chinese with English abstract).
      Liu, C. Z., Lyu, J. T., Tong, L. Q., et al., 2019. Research on Glacial/Rock Fall-Landslide-Debris Flows in Sedongpu Basin along Yarlung Zangbo River in Tibet. Geology in China, 46(2): 219-234(in Chinese with English abstract).
      Meng, X. M., Chen, G., Guo, P., et al., 2013. Research of Landslides and Debris Flows in Bailong River Basin: Progrss and Prospect. Marine Geology & Quaternary Geology, 33(4): 1-15 (in Chinese with English abstract).
      Qi, T. J., Meng, X. M., Qing, F., et al., 2021. Distribution and Characteristics of Large Landslides in a Fault Zone: A Case Study of the NE Qinghai-Tibet Plateau. Geomorphology, 379: 107592. https://doi.org/10.1016/j.geomorph.2021.107592
      Shao, Y. X., Yuan, D. Y., He, W. G., et al., 2014. Seismic Hazard Assessment for Active Faults of Longnan City. China Earthquake Engineering Journal, 36(3): 645-655(in Chinese with English abstract).
      Su, Q., Liang, M. J., Yuan, D. Y., et al., 2016. Geomorphic Features of the Bailongjiang River Drainage Basin and Its Relationship with Geological Disaster. Earth Science, 41(10): 1758-1770(in Chinese with English abstract).
      Tang, H. M., Li, C. D., Hu, W., et al., 2022. What is the Physical Mechanism of Major Landslides? Earth Science, 47(10): 3902-3903 (in Chinese).
      Tang, Y. Y., 1992. The Effect of Neotectonic Movement on Formations of Landslide and Debris Flow in Southern Gansu. Journal of Lanzhou University (Natural Sciences), 28(4): 152-160(in Chinese).
      Tie, Y. B., Zhang, X. Z., Gong, L. F., et al., 2022. Research on the Pattern of Typical Geohazard Chains in the Southwest Mountainous Region, China. Journal of Geomechanics, 28(6): 1071-1080(in Chinese with English abstract).
      Wang, F. W., Chen, Y., Liu, W. C., et al., 2022. Dynamic Characteristics and Research Difficulties of High-Level Remote Landslide in Southeastern Tibet. Journal of Engineering Geology, 30(6): 1831-1841(in Chinese with English abstract).
      Wang, G. F., Li, H., Tian, Y. T., et al., 2023. Study on the Formation Mechanism and Risk Prediction of High-Level Accumulation Landslides in Bailongjiang River Basin, Gansu Province. Chinese Journal of Rock Mechanics and Engineering, 42(4): 1003-1018(in Chinese with English abstract).
      Wu, J., Chen, G., Meng, X. M., et al., 2022. Rainfall Threshold of Landslides in the Bailong River Basin, China. Mountain Research, 40(6): 875-886(in Chinese with English abstract).
      Wu, W. J., Wang, G. Y., Liu, X. R., et al., 2021. The Development Characteristics and Causes of the Yahuokou Landslide in Zhouqu County, Gansu Province. Journal of Glaciology and Geocryology, 43(2): 544-554(in Chinese with English abstract).
      Xu, Q., Zheng, G., Li, W. L., et al., 2018. Study on Successive Landslide Damming Events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018. Journal of Engineering Geology, 26(6): 1534-1551(in Chinese with English abstract).
      Yang, W. M., Huang, X., Zhang, C. S., et al., 2014. Deformation Behavior of Landslides and Their Formation Mechanism along Pingding-Huama Active Fault in Bailongjiang River Region. Journal of Jilin University (Earth Science Edition), 44(2): 574-583(in Chinese with English abstract).
      Yin, Y. P., Zhu, S. N., Li, B., 2021. High-Level Remote Geological Disasters in Qinghai-Tibet Plateau. Science Press, Beijing(in Chinese).
      Yu, J. X., Zheng, W. J., Yuan, D. Y., et al., 2012. Late Quaternary Active Characteristics and Slip-Rate of Pingding-Huama Fault, the Eastern Segment of Guanggaishan-Dieshan Fault Zone(West Qinling Mountain). Quaternary Sciences, 32(5): 957-967(in Chinese with English abstract).
      Yuan, B., He, F. G., Li, J. P., et al., 2012. Relationship between Debris Flow Activity and Precipitation Characteristics in Wudu Area, Gansu Province. Journal of Lanzhou University (Natural Sciences), 48(6): 15-20(in Chinese with English abstract).
      Zhang, B., 2020. Fault Geometry and Deformation Partition of WNW-Trending Faults in the West Qinling Mountain(Dissertation). Institute of Geology, China Eathquake Administration, Beijing (in Chinese with English abstract).
      Zhang, Y. P., Zheng, W. J., Yuan, D. Y., et al., 2021. Geometrical Imagery and Kinematic Dissipation of the Late Cenozoic Active Faults in the West Qinling Belt: Implications for the Growth of the Tibetan Plateau. Journal of Geomechanics, 27(2): 159-177(in Chinese with English abstract).
      Zhang, Y. S., Guo, C. B., Yao, X., et al., 2016. Study on Geological Disaster Effect of Active Faults in the Eastern Margin of Qinghai-Tibet Plateau. Acta Geoscientica Sinica, 37(3): 277-286(in Chinese with English abstract).
      Zhang, Y. S., Ren, S. S., Li, J. Q., et al., 2023. Easy-to-Slip Geological Structure and High-Level Sliding Mechanism of Dorasi Landslide in Nujiang Structural Melange Belt. Earth Science, 48(12): 4668-4679(in Chinese with English abstract).
      Zhang, Y. S., Shi, J. S., Sun, P., et al., 2009. Coupling between Endogenic and Exogenic Geological Processes in the Wenchuan Earthquake and Example Analysis of Geo-Hazards. Journal of Geomechanics, 15(2): 131-141(in Chinese with English abstract).
      常直杨, 王建, 白世彪, 等, 2014. 基于DEM的白龙江流域构造活动定量分析. 第四纪研究, 34(2): 292-301.
      陈明, 王运生, 梁瑞锋, 等, 2018. 白龙江流域大型滑坡发育分布规律研究. 工程地质学报, 26(2): 325-333.
      陈宁生, 田树峰, 张勇, 等, 2021. 泥石流灾害的物源控制与高性能减灾. 地学前缘, 28(4): 337-348.
      种艳, 陈冠, 孟兴民, 等, 2022. 高山峡谷区滑坡-泥石流灾害链成灾模式与危险性评价: 以舟曲立节为例. 兰州大学学报(自然科学版), 58(3): 372-384.
      崔鹏, 郭剑, 2021. 沟谷灾害链演化模式与风险防控对策. 工程科学与技术, 53(3): 5-18.
      冯军, 尚学军, 樊明, 等, 2006. 陇南地质灾害降雨区划及临界雨量研究. 干旱气象, 24(4): 20-24.
      冯军, 张蓉, 冯瑞娟, 2011. 地震后陇南特大地质灾害成因分析. 地质灾害与环境保护, 22(1): 5-9.
      冯振, 游杨, 陈亮, 等, 2024. 白龙江流域大型高位滑坡成灾动力过程模拟研究. 灾害学, 39(1): 45-50.
      郭长宝, 杜宇本, 张永双, 等, 2015. 川西鲜水河断裂带地质灾害发育特征与典型滑坡形成机理. 地质通报, 34(1): 121-134.
      郭长宝, 任三绍, 李雪, 等, 2019. 甘肃舟曲南峪江顶崖古滑坡发育特征与复活机理. 现代地质, 33(1): 206-217.
      郭长宝, 吴瑞安, 钟宁, 等, 2024. 青藏高原东部活动构造带大型滑坡成灾背景与灾变机制. 地球科学, 49(12): 4635-4658. doi: 10.3799/dqkx.2024.124
      郭长宝, 闫怡秋, 张永双, 等, 2022. 青藏高原大型深层蠕滑型滑坡变形机制研究进展与展望. 地球科学, 47(10): 3677-3700. doi: 10.3799/dqkx.2022.249
      郭富赟, 孟兴民, 陈冠, 等, 2016. 白龙江流域地貌演化及其对地质灾害的影响. 人民长江, 47(7): 37-43, 49.
      郭富赟, 宋晓玲, 谢煜, 等, 2015. 甘肃地质灾害气象预警技术方法探讨. 中国地质灾害与防治学报, 26(1): 127-133.
      韩金良, 吴树仁, 汪华斌, 2007. 地质灾害链. 地学前缘, 14(6): 11-23.
      黄润秋, 2004. 中国西部地区典型岩质滑坡机理研究. 地球科学进展, 19(3): 443-450.
      黄润秋, 2007.20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报, 26(3): 433–454.
      刘传正, 吕杰堂, 童立强, 等, 2019. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究. 中国地质, 46(2): 219-234.
      刘春玲, 祁生文, 童立强, 等, 2010. 喜马拉雅山地区重大滑坡灾害及其与地层岩性的关系研究. 工程地质学报, 18(5): 669-676.
      孟兴民, 陈冠, 郭鹏, 等, 2013. 白龙江流域滑坡泥石流灾害研究进展与展望. 海洋地质与第四纪地质, 33(4): 1-15.
      邵延秀, 袁道阳, 何文贵, 等, 2014. 陇南市活断层地震危险性评估. 地震工程学报, 36(3): 645-655.
      苏琦, 梁明剑, 袁道阳, 等, 2016. 白龙江流域构造地貌特征及其对滑坡泥石流灾害的控制作用. 地球科学, 41(10): 1758-1770. doi: 10.3799/dqkx.2016.527
      唐辉明, 李长冬, 胡伟, 等, 2022. 重大滑坡启滑的物理机制是什么?. 地球科学, 47(10): 3902-3903. doi: 10.3799/dqkx.2022.857
      唐永仪, 1992. 新构造运动在陇南滑坡泥石流形成中的作用. 兰州大学学报(自然科学版), 28(4): 152-160.
      铁永波, 张宪政, 龚凌枫, 等, 2022. 西南山区典型地质灾害链成灾模式研究. 地质力学学报, 28(6): 1071-1080.
      汪发武, 陈也, 刘伟超, 等, 2022. 藏东南高位远程滑坡动力学特征及研究难点. 工程地质学报, 30(6): 1831-1841.
      王高峰, 李浩, 田运涛, 等, 2023. 甘肃省白龙江流域典型高位堆积层滑坡成因机制研究及其危险性预测. 岩石力学与工程学报, 42(4): 1003-1018.
      吴杰, 陈冠, 孟兴民, 等, 2022. 白龙江流域滑坡降雨临界值. 山地学报, 40(6): 875-886.
      吴玮江, 王国亚, 刘兴荣, 等, 2021. 甘肃舟曲县牙豁口滑坡发育特征与成因分析. 冰川冻土, 43(2): 544-554.
      许强, 郑光, 李为乐, 等, 2018.2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究. 工程地质学报, 26(6): 1534-1551.
      杨为民, 黄晓, 张春山, 等, 2014. 白龙江流域坪定—化马断裂带滑坡特征及其形成演化. 吉林大学学报(地球科学版), 44(2): 574-583.
      殷跃平, 朱赛楠, 李滨, 等, 2021. 青藏高原高位远程地质灾害. 北京: 科学出版社.
      俞晶星, 郑文俊, 袁道阳, 等, 2012. 西秦岭西段光盖山-迭山断裂带坪定-化马断裂的新活动性与滑动速率. 第四纪研究, 32(5): 957-967.
      袁斌, 和法国, 李军鹏, 等, 2012. 甘肃武都区泥石流活动与降雨特征关系. 兰州大学学报(自然科学版), 48(6): 15-20.
      张波, 2020. 西秦岭NWW向断裂系的几何图像与变形分配(博士学位论文). 北京: 中国地震局地质研究所.
      张逸鹏, 郑文俊, 袁道阳, 等, 2021. 西秦岭晚新生代构造变形的几何图像、运动学特征及其动力机制. 地质力学学报, 27(2): 159-177.
      张永双, 郭长宝, 姚鑫, 等, 2016. 青藏高原东缘活动断裂地质灾害效应研究. 地球学报, 37(3): 277-286.
      张永双, 任三绍, 李金秋, 等, 2023. 怒江构造混杂岩带多拉寺滑坡的易滑地质结构及高位启滑运动机制. 地球科学, 48(12): 4668-4679. doi: 10.3799/dqkx.2023.017
      张永双, 石菊松, 孙萍, 等, 2009. 汶川地震内外动力耦合及灾害实例. 地质力学学报, 15(2): 131-141.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(2)

      Article views (86) PDF downloads(10) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return