• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 12
    Dec.  2025
    Turn off MathJax
    Article Contents
    Chen Weitao, Xu Jiahui, Wang Rui, Wang Ruizhen, Yang Hanshui, 2025. Hyperspectral Remote Sensing Inversion of Black Soil Organic Matter Content Based on Multi-Scale Feature Enhancement. Earth Science, 50(12): 4909-4918. doi: 10.3799/dqkx.2025.154
    Citation: Chen Weitao, Xu Jiahui, Wang Rui, Wang Ruizhen, Yang Hanshui, 2025. Hyperspectral Remote Sensing Inversion of Black Soil Organic Matter Content Based on Multi-Scale Feature Enhancement. Earth Science, 50(12): 4909-4918. doi: 10.3799/dqkx.2025.154

    Hyperspectral Remote Sensing Inversion of Black Soil Organic Matter Content Based on Multi-Scale Feature Enhancement

    doi: 10.3799/dqkx.2025.154
    • Received Date: 2025-03-29
    • Publish Date: 2025-12-25
    • The northeastern black soil region, recognized as a critical grain-producing area in China, has experienced a continuous decline in soil organic matter (SOM) content in recent years. The application of hyperspectral remote sensing technology for SOM content retrieval plays a crucial role in assessing the current status of black soil and implementing conservation measures. To address the low retrieval accuracy resulting from scale discrepancies in spatial and spectral characteristics of black soil, this study developed a remote sensing retrieval model with multi-scale feature enhancement. By constructing a multi-scale feature enhancement structure, spectral features were systematically extracted at different scales. Furthermore, skip connections were incorporated to effectively integrate initial spectral features with deep hierarchical features derived from convolutional networks, thereby strengthening the model's spectral representation capacity. When benchmarked against traditional methods such as partial least squares regression and random forest models, the proposed model demonstrates enhanced capability in capturing multi-scale black soil features and establishing spectral relationships. This advancement enables accurate SOM content retrieval under complex conditions, providing both theoretical significance and practical value for advancing intelligent remote sensing retrieval and sustainable conservation of black soil resources.

       

    • loading
    • Angelopoulou, T., Tziolas, N., Balafoutis, A., et al., 2019. Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sensing, 11(6). https://doi.org/10.3390/rs11060676
      Bai, Z. J., Chen, S. C., Hong, Y. S., et al., 2023. Estimation of Soil Inorganic Carbon with Visible Near-Infrared Spectroscopy Coupling of Variable Selection and Deep Learning in Arid Region of China. Geoderma, 437: 116589. https://doi.org/10.1016/j.geoderma.2023.116589
      Chen, S. C., Richer-de-Forges, A. C., Leatitia Mulder, V., et al., 2021. Digital Mapping of the Soil Thickness of Loess Deposits over a Calcareous Bedrock in Central France. Catena, 198: 105062. https://doi.org/10.1016/j.catena.2020.105062
      Chen, C. Q., Dai, H. M., Feng, Y. L., et al., 2022. Sentinel-2A Based Inversion of the Organic Matter Content of Soil in the Sunwu Area. Geophysical and Geochemical Exploration, 46(5): 1141-1148(in Chinese with English abstract).
      Han, X. Z., Li, N., 2018. Research Progress of Black Soil in Northeast China. Scientia Geographica Sinica, 38(7): 1032-1041(in Chinese with English abstract).
      İnik, O., İnik, Ö., Öztaş, T., et al., 2023. Prediction of Soil Organic Matter with Deep Learning. Arabian Journal for Science and Engineering, 48(8): 10227-10247. https://doi.org/10.1007/s13369-022-07575-x
      Li, H. D., Liang, Y. Z., Xu, Q. S., et al., 2009. Key Wavelengths Screening Using Competitive Adaptive Reweighted Sampling Method for Multivariate Calibration. Analytica Chimica Acta, 648(1): 77-84. https://doi.org/10.1016/j.aca.2009.06.046
      Li, Y. Y., Li, W., Liu, Y., et al., 2014. Study on the Prediction of Soil Organic Matter Content Based on Hyperspectral Remote Sensing. Chinese Journal of Soil Science, 45(6): 1313-1318(in Chinese with English abstract).
      Liu, Y., Lu, Y. Y., Chen, D. Y., et al., 2023. Simultaneous Estimation of Multiple Soil Properties under Moist Conditions Using Fractional-Order Derivative of Vis-NIR Spectra and Deep Learning. Geoderma, 438: 116653. https://doi.org/10.1016/j.geoderma.2023.116653
      Loiseau, T., Chen, S., Mulder, V. L., et al., 2019. Satellite Data Integration for Soil Clay Content Modelling at a National Scale. International Journal of Applied Earth Observation and Geoinformation, 82: 101905. https://doi.org/10.1016/j.jag.2019.101905
      Odebiri, O., Mutanga, O., Odindi, J., 2022. Deep Learning-Based National Scale Soil Organic Carbon Mapping with Sentinel-3 Data. Geoderma, 411: 115695. https://doi.org/10.1016/j.geoderma.2022.115695
      Qi, Y. B., Wang, Y. Y., Chen, Y., et al., 2017. Soil Organic Matter Prediction Based on Remote Sensing Data and Random Forest Model in Shaanxi Province. Journal of Natural Resources, 32(6): 1074-1086(in Chinese with English abstract).
      Shen, Z. F., Ramirez-Lopez, L., Behrens, T., et al., 2022. Deep Transfer Learning of Global Spectra for Local Soil Carbon Monitoring. ISPRS Journal of Photogrammetry and Remote Sensing, 188: 190-200. https://doi.org/10.1016/j.isprsjprs.2022.04.009
      Urbina-Salazar, D., Vaudour, E., Richer-de-Forges, A. C., et al., 2023. Sentinel-2 and Sentinel-1 Bare Soil Temporal Mosaics of 6-Year Periods for Soil Organic Carbon Content Mapping in Central France. Remote Sensing, 15(9): 2410. https://doi.org/10.3390/rs15092410
      Wadoux, A. M. J., Padarian, J., Minasny, B., 2019. Multi-Source Data Integration for Soil Mapping Using Deep Learning. Soil, 5(1): 107-119. https://doi.org/10.5194/soil-5-107-2019
      Wang, J. Y., Yang, W., Wang, Y. C., et al., 2022. A Hyperspectral Prediction Model for Organic Matter Content in Soil Developed from Loess-Like Parent Material in Liaoning Province. Chinese Journal of Soil Science, 53(6): 1320-1330(in Chinese with English abstract).
      Xu, X. B., Zhai, X. Y., 2023. Mapping Soil Organic Matter Content during the Bare Soil Period by Using Satellite Data and an Improved Deep Learning Network. Sustainability, 15(1): 323. https://doi.org/10.3390/su15010323
      Xu, Z., Zhao, X. M., Guo, X., et al., 2019. Deep Learning Application for Predicting Soil Organic Matter Content by VIS-NIR Spectroscopy. Computational Intelligence and Neuroscience, 2019: 3563761. https://doi.org/10.1155/2019/3563761
      Yang, P. M., Hu, J., Hu, B. F., et al., 2022. Estimating Soil Organic Matter Content in Desert Areas Using In Situ Hyperspectral Data and Feature Variable Selection Algorithms in Southern Xinjiang, China. Remote Sensing, 14(20): 5221. https://doi.org/10.3390/rs14205221
      Zhang, X. L., Lin, T., Xu, J. F., et al., 2019. DeepSpectra: An End-to-End Deep Learning Approach for Quantitative Spectral Analysis. Analytica Chimica Acta, 1058: 48-57. https://doi.org/10.1016/j.aca.2019.01.002
      Zhang, L., Cai, Y. Y., Huang, H. L., et al., 2022. A CNN-LSTM Model for Soil Organic Carbon Content Prediction with Long Time Series of MODIS-Based Phenological Variables. Remote Sensing, 14(18): 4441. https://doi.org/10.3390/rs14184441
      Zhao, W. D., Wu, Z. L., Yin, Z. D., et al., 2022. Attention-Based CNN Ensemble for Soil Organic Carbon Content Estimation with Spectral Data. IEEE Geoscience and Remote Sensing Letters, 19: 1-5. https://doi.org/10.1109/lgrs.2022.3201266
      Zhao, W. D., Wu, Z. L., Yin, Z. D., et al., 2023. Reducing Moisture Effects on Soil Organic Carbon Content Estimation in Vis-NIR Spectra with a Deep Learning Algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16: 7733-7748. https://doi.org/10.1109/jstars.2023.3287583
      Zhao, R., Cui, X. M., Liu, C., 2020. Inversion Estimation of Soil Organic Matter Content Based on GF-5 Hyperspectral Remote Sensing Image. China Environmental Science, 40(8): 3539-3545(in Chinese with English abstract).
      Zheng, M., Wang, X., Li, S. J., et al., 2022. Remote Sensing Inversion of Soil Organic Matter and Total Nitrogen in Black Soil Region. Scientia Geographica Sinica, 42(8): 1336-1347(in Chinese with English abstract).
      Zhong, L., Guo, X., Xu, Z., et al., 2021. Soil Properties: Their Prediction and Feature Extraction from the LUCAS Spectral Library Using Deep Convolutional Neural Networks. Geoderma, 402: 115366. https://doi.org/10.1016/j.geoderma.2021.115366
      陈超群, 戴慧敏, 冯雨林, 等, 2022. 基于Sentinel-2A的孙吴地区土壤有机质反演研究. 物探与化探, 46(5): 1141-1148.
      韩晓增, 李娜, 2018. 中国东北黑土地研究进展与展望. 地理科学, 38(7): 1032-1041.
      李媛媛, 李微, 刘远, 等, 2014. 基于高光谱遥感土壤有机质含量预测研究. 土壤通报, 45(6): 1313-1318.
      齐雁冰, 王茵茵, 陈洋, 等, 2017. 基于遥感与随机森林算法的陕西省土壤有机质空间预测. 自然资源学报, 32(6): 1074-1086.
      王荐一, 杨雯, 王玉川, 等, 2022. 辽宁省黄土状母质发育土壤有机质含量高光谱预测模型的构建. 土壤通报, 53(6): 1320-1330.
      赵瑞, 崔希民, 刘超, 2020. GF-5高光谱遥感影像的土壤有机质含量反演估算研究. 中国环境科学, 40(8): 3539-3545.
      郑淼, 王翔, 李思佳, 等, 2022. 黑土区土壤有机质和全氮含量遥感反演研究. 地理科学, 42(8): 1336-1347.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(4)

      Article views (180) PDF downloads(11) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return