| Citation: | Chen Weitao, Xu Jiahui, Wang Rui, Wang Ruizhen, Yang Hanshui, 2025. Hyperspectral Remote Sensing Inversion of Black Soil Organic Matter Content Based on Multi-Scale Feature Enhancement. Earth Science, 50(12): 4909-4918. doi: 10.3799/dqkx.2025.154 |
|
Angelopoulou, T., Tziolas, N., Balafoutis, A., et al., 2019. Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sensing, 11(6). https://doi.org/10.3390/rs11060676
|
|
Bai, Z. J., Chen, S. C., Hong, Y. S., et al., 2023. Estimation of Soil Inorganic Carbon with Visible Near-Infrared Spectroscopy Coupling of Variable Selection and Deep Learning in Arid Region of China. Geoderma, 437: 116589. https://doi.org/10.1016/j.geoderma.2023.116589
|
|
Chen, S. C., Richer-de-Forges, A. C., Leatitia Mulder, V., et al., 2021. Digital Mapping of the Soil Thickness of Loess Deposits over a Calcareous Bedrock in Central France. Catena, 198: 105062. https://doi.org/10.1016/j.catena.2020.105062
|
|
Chen, C. Q., Dai, H. M., Feng, Y. L., et al., 2022. Sentinel-2A Based Inversion of the Organic Matter Content of Soil in the Sunwu Area. Geophysical and Geochemical Exploration, 46(5): 1141-1148(in Chinese with English abstract).
|
|
Han, X. Z., Li, N., 2018. Research Progress of Black Soil in Northeast China. Scientia Geographica Sinica, 38(7): 1032-1041(in Chinese with English abstract).
|
|
İnik, O., İnik, Ö., Öztaş, T., et al., 2023. Prediction of Soil Organic Matter with Deep Learning. Arabian Journal for Science and Engineering, 48(8): 10227-10247. https://doi.org/10.1007/s13369-022-07575-x
|
|
Li, H. D., Liang, Y. Z., Xu, Q. S., et al., 2009. Key Wavelengths Screening Using Competitive Adaptive Reweighted Sampling Method for Multivariate Calibration. Analytica Chimica Acta, 648(1): 77-84. https://doi.org/10.1016/j.aca.2009.06.046
|
|
Li, Y. Y., Li, W., Liu, Y., et al., 2014. Study on the Prediction of Soil Organic Matter Content Based on Hyperspectral Remote Sensing. Chinese Journal of Soil Science, 45(6): 1313-1318(in Chinese with English abstract).
|
|
Liu, Y., Lu, Y. Y., Chen, D. Y., et al., 2023. Simultaneous Estimation of Multiple Soil Properties under Moist Conditions Using Fractional-Order Derivative of Vis-NIR Spectra and Deep Learning. Geoderma, 438: 116653. https://doi.org/10.1016/j.geoderma.2023.116653
|
|
Loiseau, T., Chen, S., Mulder, V. L., et al., 2019. Satellite Data Integration for Soil Clay Content Modelling at a National Scale. International Journal of Applied Earth Observation and Geoinformation, 82: 101905. https://doi.org/10.1016/j.jag.2019.101905
|
|
Odebiri, O., Mutanga, O., Odindi, J., 2022. Deep Learning-Based National Scale Soil Organic Carbon Mapping with Sentinel-3 Data. Geoderma, 411: 115695. https://doi.org/10.1016/j.geoderma.2022.115695
|
|
Qi, Y. B., Wang, Y. Y., Chen, Y., et al., 2017. Soil Organic Matter Prediction Based on Remote Sensing Data and Random Forest Model in Shaanxi Province. Journal of Natural Resources, 32(6): 1074-1086(in Chinese with English abstract).
|
|
Shen, Z. F., Ramirez-Lopez, L., Behrens, T., et al., 2022. Deep Transfer Learning of Global Spectra for Local Soil Carbon Monitoring. ISPRS Journal of Photogrammetry and Remote Sensing, 188: 190-200. https://doi.org/10.1016/j.isprsjprs.2022.04.009
|
|
Urbina-Salazar, D., Vaudour, E., Richer-de-Forges, A. C., et al., 2023. Sentinel-2 and Sentinel-1 Bare Soil Temporal Mosaics of 6-Year Periods for Soil Organic Carbon Content Mapping in Central France. Remote Sensing, 15(9): 2410. https://doi.org/10.3390/rs15092410
|
|
Wadoux, A. M. J., Padarian, J., Minasny, B., 2019. Multi-Source Data Integration for Soil Mapping Using Deep Learning. Soil, 5(1): 107-119. https://doi.org/10.5194/soil-5-107-2019
|
|
Wang, J. Y., Yang, W., Wang, Y. C., et al., 2022. A Hyperspectral Prediction Model for Organic Matter Content in Soil Developed from Loess-Like Parent Material in Liaoning Province. Chinese Journal of Soil Science, 53(6): 1320-1330(in Chinese with English abstract).
|
|
Xu, X. B., Zhai, X. Y., 2023. Mapping Soil Organic Matter Content during the Bare Soil Period by Using Satellite Data and an Improved Deep Learning Network. Sustainability, 15(1): 323. https://doi.org/10.3390/su15010323
|
|
Xu, Z., Zhao, X. M., Guo, X., et al., 2019. Deep Learning Application for Predicting Soil Organic Matter Content by VIS-NIR Spectroscopy. Computational Intelligence and Neuroscience, 2019: 3563761. https://doi.org/10.1155/2019/3563761
|
|
Yang, P. M., Hu, J., Hu, B. F., et al., 2022. Estimating Soil Organic Matter Content in Desert Areas Using In Situ Hyperspectral Data and Feature Variable Selection Algorithms in Southern Xinjiang, China. Remote Sensing, 14(20): 5221. https://doi.org/10.3390/rs14205221
|
|
Zhang, X. L., Lin, T., Xu, J. F., et al., 2019. DeepSpectra: An End-to-End Deep Learning Approach for Quantitative Spectral Analysis. Analytica Chimica Acta, 1058: 48-57. https://doi.org/10.1016/j.aca.2019.01.002
|
|
Zhang, L., Cai, Y. Y., Huang, H. L., et al., 2022. A CNN-LSTM Model for Soil Organic Carbon Content Prediction with Long Time Series of MODIS-Based Phenological Variables. Remote Sensing, 14(18): 4441. https://doi.org/10.3390/rs14184441
|
|
Zhao, W. D., Wu, Z. L., Yin, Z. D., et al., 2022. Attention-Based CNN Ensemble for Soil Organic Carbon Content Estimation with Spectral Data. IEEE Geoscience and Remote Sensing Letters, 19: 1-5. https://doi.org/10.1109/lgrs.2022.3201266
|
|
Zhao, W. D., Wu, Z. L., Yin, Z. D., et al., 2023. Reducing Moisture Effects on Soil Organic Carbon Content Estimation in Vis-NIR Spectra with a Deep Learning Algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16: 7733-7748. https://doi.org/10.1109/jstars.2023.3287583
|
|
Zhao, R., Cui, X. M., Liu, C., 2020. Inversion Estimation of Soil Organic Matter Content Based on GF-5 Hyperspectral Remote Sensing Image. China Environmental Science, 40(8): 3539-3545(in Chinese with English abstract).
|
|
Zheng, M., Wang, X., Li, S. J., et al., 2022. Remote Sensing Inversion of Soil Organic Matter and Total Nitrogen in Black Soil Region. Scientia Geographica Sinica, 42(8): 1336-1347(in Chinese with English abstract).
|
|
Zhong, L., Guo, X., Xu, Z., et al., 2021. Soil Properties: Their Prediction and Feature Extraction from the LUCAS Spectral Library Using Deep Convolutional Neural Networks. Geoderma, 402: 115366. https://doi.org/10.1016/j.geoderma.2021.115366
|
|
陈超群, 戴慧敏, 冯雨林, 等, 2022. 基于Sentinel-2A的孙吴地区土壤有机质反演研究. 物探与化探, 46(5): 1141-1148.
|
|
韩晓增, 李娜, 2018. 中国东北黑土地研究进展与展望. 地理科学, 38(7): 1032-1041.
|
|
李媛媛, 李微, 刘远, 等, 2014. 基于高光谱遥感土壤有机质含量预测研究. 土壤通报, 45(6): 1313-1318.
|
|
齐雁冰, 王茵茵, 陈洋, 等, 2017. 基于遥感与随机森林算法的陕西省土壤有机质空间预测. 自然资源学报, 32(6): 1074-1086.
|
|
王荐一, 杨雯, 王玉川, 等, 2022. 辽宁省黄土状母质发育土壤有机质含量高光谱预测模型的构建. 土壤通报, 53(6): 1320-1330.
|
|
赵瑞, 崔希民, 刘超, 2020. GF-5高光谱遥感影像的土壤有机质含量反演估算研究. 中国环境科学, 40(8): 3539-3545.
|
|
郑淼, 王翔, 李思佳, 等, 2022. 黑土区土壤有机质和全氮含量遥感反演研究. 地理科学, 42(8): 1336-1347.
|