| Citation: | Wu Changyi, Lang Xinghai, Deng Yulin, Zhan Hongyu, Wang Xuhui, Li Chen, Zheng Hongshan, Gao Huanli, He Qing, Feng Dexin, Guo Baiqing, 2025. Diagenetic-Metallogenic Age and Mineralization Potential of Longsang Porphyry Cu-Mo Deposit, Gongbu Jiangda County, Xizang. Earth Science, 50(11): 4337-4354. doi: 10.3799/dqkx.2025.155 |
|
Burnham, A. D., Berry, A. J., Halse, H. R., et al., 2015. The Oxidation State of Europium in Silicate Melts as a Function of Oxygen Fugacity, Composition and Temperature. Chemical Geology, 411: 248-259. https://doi.org/10.1016/j.chemgeo.2015.07.002
|
|
Cao, K., Yang, Z. M., Hou, Z. Q., et al., 2021. Contrasting Porphyry Cu Fertilities in the Yidun Arc, Eastern Tibet: Insights from Zircon and Apatite Compositions and Implications for Exploration. Tectonomagmatic Influences on Metallogeny and Hydrothermal Ore Deposits: A Tribute to Jeremy P. Richards (Volume Ⅱ). Society of Economic Geologists Special Publication, 24(2): 231-255. https://doi.org/10.5382/sp.24.13
|
|
Chen, R., Liu, Y. L., Guo, L. S., et al., 2014. Geochronology and Geochemistry of the Tinggong Porphyry Copper Ore Deposit, Tibet. Acta Geologica Sinica-English Edition, 88(3): 780-800. https://doi.org/10.1111/1755-6724.1223
|
|
Ci, Q., Zheng, Y. Y., Wu, S., et al., 2025. Discovery and Significance of Beimulang Porphyry Cu-Mo Deposit, Xizang. Earth Science, 50(4): 1305-1318 (in Chinese with English abstract).
|
|
Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
|
|
Gao, Y. M., Chen, Y. C., Tang, J. X., et al., 2012. A Study of Diagenetic and Metallogenic Geochronology of the Dagbo Cu (Mo) Deposit in Quxur County of Tibet and Its Geological Implications. Acta Geoscientica Sinica, 33(4): 613-623 (in Chinese with English abstract).
|
|
He, Q., Lang, X. H., Wang, X. H., et al., 2023. Geological Characteristics, In-Situ Sulfur Isotope Composition, and Genesis of the Dongga Gold Deposit in Xiongcun Area, Tibet. Acta Geoscientica Sinica, 44(6): 1000-1016 (in Chinese with English abstract).
|
|
Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
|
|
Hou, Z. Q., Gao, Y. F., Meng, X. J., et al., 2004. Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen. Acta Petrologica Sinica, 20(2): 239-248 (in Chinese with English abstract).
|
|
Hou, Z. Q., Wang, R., Zhang, H. J., et al., 2023. Formation of Giant Copper Deposits in Tibet Driven by Tearing of the Subducted Indian Plate. Earth-Science Reviews, 243: 104482. https://doi.org/10.1016/j.earscirev.2023.104482
|
|
Huang, Q., Wu, S., Liu, X. F., et al., 2025. The Metallogenic Age of Tangge Skarn-Type Copper-Lead-Zinc Deposit in Xizang: Constraints from Garnet U-Pb Geochronology. Earth Science, 50(2): 621-638 (in Chinese with English abstract).
|
|
Huang, Y., Li, G. M., Ding, J., et al., 2017. Origin of the Newly Discovered Zhunuo Porphyry Cu-Mo-Au Deposit in the Western Part of the Gangdese Porphyry Copper Belt in the Southern Tibetan Plateau, SW China. Acta Geologica Sinica - English Edition, 91(1): 109-134. https://doi.org/10.1111/1755-6724.13066
|
|
Huang, Y. G., Han, F., Kang, Z. Q., et al., 2024. Geochronology and Geochemistry of the Linzizong Volcanic Succession, Namling Basin, Xizang. Earth Science, 49(3): 822-836 (in Chinese with English abstract).
|
|
Leng, Q. F., Tang, J. X., Zheng, W. B., et al., 2016. Zircon U-Pb and Molybdenite Re-Os Ages of the Lakange Porphyry Cu-Mo Deposit, Gangdese Porphyry Copper Belt, Southern Tibet, China. Resource Geology, 66(2): 163-182. https://doi.org/10.1111/rge.12091
|
|
Li, Q. Y., Yang, Z. M., Wang, R., et al., 2021. Zircon Trace Elemental and Hf-O Isotopic Compositions of the Miocene Magmaticsuite in the Giant Qulong Porphyry Copper Deposit, Southern Tibet. Acta Petrologica et Mineralogica, 40(6): 1023-1048 (in Chinese with English abstract).
|
|
Li, Y., Selby, D., Condon, D., et al., 2017. Cyclic Magmatic-Hydrothermal Evolution in Porphyry Systems: High-Precision U-Pb and Re-Os Geochronology Constraints on the Tibetan Qulong Porphyry Cu-Mo Deposit. Economic Geology, 112(6): 1419-1440. https://doi.org/10.5382/econgeo.2017.4515
|
|
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
|
|
Loader, M. A., Nathwani, C. L., Wilkinson, J. J., et al., 2022. Controls on the Magnitude of Ce Anomalies in Zircon. Geochimica et Cosmochimica Acta, 328: 242-257. https://doi.org/10.1016/j.gca.2022.03.024
|
|
Loucks, R. R., 2014. Distinctive Composition of Copper-Ore-Forming Arcmagmas. Australian Journal of Earth Sciences, 61(1): 5-16. https://doi.org/10.1080/08120099.2013.865676
|
|
Loucks, R. R., Fiorentini, M. L., Henríquez, G. J., 2020. New Magmatic Oxybarometer Using Trace Elements in Zircon. Journal of Petrology, 61(3): egaa034. https://doi.org/10.1093/petrology/egaa034
|
|
Loucks, R. R., Henríquez, G. J., Fiorentini, M. L., 2024. Zircon and Whole-Rock Trace Element Indicators of Magmatic Hydration State and Oxidation State Discriminate Copper Ore-Forming from Barren Arc Magmas. Economic Geology, 119(3): 511-523. https://doi.org/10.5382/econgeo.5071
|
|
Lu, Y. J., Loucks, R. R., Fiorentini, M. L., et al., 2016. Zircon Compositions as a Pathfinder for Porphyry Cu±Mo±Au Deposits. Society of Economic Geologists Special Publication, 19: 329-347. https://doi.org/10.5382/SP.19.13
|
|
Shi, S. D., Chen, S. Y., Luo, S., et al., 2024. Petrogenesis and Metallogenic Significance of the Demingding Mo-Cu Porphyry Deposit in the Gangdese Belt, Xizang: Insights from U-Pb and Re-Os Geochronology and Geochemistry. Minerals, 14(12): 1232. https://doi.org/10.3390/min14121232
|
|
Shu, Q. H., Chang, Z. S., Lai, Y., et al., 2019. Zircon Trace Elements and Magma Fertility: Insights from Porphyry (-Skarn) Mo Deposits in NE China. Mineralium Deposita, 54(5): 645-656. https://doi.org/10.1007/s00126-019-00867-7
|
|
Sun, K. K., Deng, J., Wang, Q. F., et al., 2023. Formation of Sn-Rich Granitic Magma: A Case Study of the Highly Evolved Kafang Granite in the Gejiu Tin Polymetallic Ore District, South China. Mineralium Deposita, 58(2): 359-378. https://doi.org/10.1007/s00126-022-01130-2
|
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
|
Sun, X., Li, R. Y., Si, X. B., et al., 2024. Timing and Mechanism of Ore Precipitation in Porphyry Cu Systems: Insight from LA-ICP-MS Analysis of Fluid Inclusions and In Situ Oxygen Isotope Analysis of Hydrothermal Quartz at Zhunuo Porphyry Cu Deposit, China. Economic Geology, 119(3): 593-616. https://doi.org/10.5382/econgeo.5064
|
|
Tang, J. X., Lin, B., Yang, H. H., et al., 2024. Geological Characteristics and Prospecting Direction of Porphyry-Skarn-Epithermal Deposits in Xizang. Mineral Deposits, 43(6): 1223-126 (in Chinese with English abstract).
|
|
Wang, B. D., Xu, J. F., Chen, J. L., et al., 2010. Petrogenesis and Geochronology of the Ore-Bearing Porphyritic Rocks in Tangbula Porphyry Molybdenum Coopper Deposit in the Eastern Segment of the Gangdese Metallogenic Belt. Acta Petrologica Sinica, 26(6): 1820-1832 (in Chinese with English abstract).
|
|
Wang, R., Weinberg, R. F., Collins, W. J., et al., 2018. Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet. Earth-Science Reviews, 181: 122-143. https://doi.org/10.1016/j.earscirev.2018.02.019
|
|
Wang, Y. F., Zhang, J. F., Jin, Z. M., et al., 2012a. Low Oxygen Fugacity Dependency for the Deformation of Partially Molten Lherzolite. Tectonophysics, 580: 114-123. https://doi.org/10.1016/j.tecto.2012.09.001
|
|
Wang, Z. H., Liu, Y. L., Liu, H. F., et al., 2012b. Geochronology and Geochemistry of the Bangpu Mo-Cu Porphyry Ore Deposit, Tibet. Ore Geology Reviews, 46: 95-105. https://doi.org/10.1016/j.oregeorev.2012.02.004
|
|
Yang, Z. M., Hou, Z. Q., White, N. C., et al., 2016. Geology of the Post-Collisional Porphyry Copper-Molybdenum Deposit at Qulong, Tibet. Ore Geology Reviews, 74: 151-169. https://doi.org/10.1016/j.oregeorev.2009.03.003
|
|
Zhao, M., Hou, Z. Q., Yang, Z. S., et al., 2025. Mineralization Age and Magmatic Origin of the Pujue Cu-Polymetallic Deposit in the Western Gangdese Belt: Implication for Regional Exploration. Acta Petrologica Sinica, 41(2): 600-620 (in Chinese with English abstract). doi: 10.18654/1000-0569/2025.02.14
|
|
Zheng, W. B., Tang, J. X., Zhong, K. H., et al., 2016. Geology of the Jiama Porphyry Copper-Polymetallic System, Lhasa Region, China. Ore Geology Reviews, 74: 151-169. https://doi.org/10.1016/j.oregeorev.2015.11.024
|
|
Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. https://doi.org/10.1016/j.jseaes.2013.03.029
|
|
Zheng, Y. Y., Wu, S., Ci, Q., et al., 2021. Cu-Mo-Au Metallogenesis and Minerogenetic Series during Superimposed Orogenesis Process in Gangdese. Earth Science, 46(06): 1909-1940 (in Chinese with English abstract).
|
|
Zhu, D. C., Wang, Q., Chung, S. L., et al., 2019. Gangdese Magmatism in Southern Tibet and India-Asia Convergence since 120 Ma. Geological Society, London, Special Publications, 483(1): 583-604. https://doi.org/10.1144/sp483.14
|
|
Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005
|
|
Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
|
|
次琼, 郑有业, 吴松, 等, 2025. 西藏北姆朗斑岩型铜钼矿床的发现及意义. 地球科学, 50(4): 1305-1318. doi: 10.3799/dqkx.2024.120
|
|
高一鸣, 陈毓川, 唐菊兴, 等, 2012. 西藏曲水县达布斑岩铜(钼)矿床成岩成矿年代学研究. 地球学报, 33(4): 613-623.
|
|
何青, 郎兴海, 王旭辉, 等, 2023. 西藏洞嘎金矿床地质特征、原位硫同位素组成及成因探讨. 地球学报, 44(6): 1000-1016.
|
|
侯增谦, 高永丰, 孟祥金, 等, 2004. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制. 岩石学报, 20(2): 239-248.
|
|
黄倩, 吴松, 刘晓峰, 等, 2025. 西藏唐格矽卡岩型铜铅锌矿床成矿时代: 来自石榴子石U-Pb年龄的约束. 地球科学, 50(2): 621-638. doi: 10.3799/dqkx.2024.017
|
|
黄永高, 韩飞, 康志强, 等, 2024. 西藏南木林盆地林子宗群火山岩年代学和地球化学特征. 地球科学, 49(3): 822-836. doi: 10.3799/dqkx.2022.196
|
|
李秋耘, 杨志明, 王瑞, 等, 2021. 西藏驱龙矿区中新世侵入岩锆石微量和Hf-O同位素研究. 岩石矿物学杂志, 40(6): 1023-1048.
|
|
唐菊兴, 林彬, 杨欢欢, 等, 2024. 西藏斑岩-矽卡岩-浅成低温热液型矿床地质特征及找矿方向. 矿床地质, 43(6): 1223-1265.
|
|
王保弟, 许继峰, 陈建林, 等, 2010. 冈底斯东段汤不拉斑岩Mo-Cu矿床成岩成矿时代与成因研究. 岩石学报, 26(6): 1820-1832.
|
|
赵苗, 侯增谦, 杨竹森, 等, 2025. 冈底斯带西段普觉铜多金属矿床形成时代、岩浆起源及区域勘查启示. 岩石学报, 41(2): 600-620.
|
|
郑有业, 吴松, 次琼, 等, 2021. 冈底斯复合造山带铜钼金多金属成矿作用与成矿系列. 地球科学, 46(6): 1909-1940. doi: 10.3799/dqkx.2020.392
|
吴昌毅 附表.docx
|
|