• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 11
    Nov.  2025
    Turn off MathJax
    Article Contents
    Wu Changyi, Lang Xinghai, Deng Yulin, Zhan Hongyu, Wang Xuhui, Li Chen, Zheng Hongshan, Gao Huanli, He Qing, Feng Dexin, Guo Baiqing, 2025. Diagenetic-Metallogenic Age and Mineralization Potential of Longsang Porphyry Cu-Mo Deposit, Gongbu Jiangda County, Xizang. Earth Science, 50(11): 4337-4354. doi: 10.3799/dqkx.2025.155
    Citation: Wu Changyi, Lang Xinghai, Deng Yulin, Zhan Hongyu, Wang Xuhui, Li Chen, Zheng Hongshan, Gao Huanli, He Qing, Feng Dexin, Guo Baiqing, 2025. Diagenetic-Metallogenic Age and Mineralization Potential of Longsang Porphyry Cu-Mo Deposit, Gongbu Jiangda County, Xizang. Earth Science, 50(11): 4337-4354. doi: 10.3799/dqkx.2025.155

    Diagenetic-Metallogenic Age and Mineralization Potential of Longsang Porphyry Cu-Mo Deposit, Gongbu Jiangda County, Xizang

    doi: 10.3799/dqkx.2025.155
    • Received Date: 2025-05-25
    • Publish Date: 2025-11-25
    • The Longsang deposit is a porphyry copper-molybdenum mining area where mineral exploration is currently underway in the eastern section of the Gangdese metallogenic belt. To further constrain the magmatic-mineralization age and evaluate the metallogenic potential of the ore-bearing intrusions, detailed field geological surveys, and drill core logging were conducted, and zircon U-Pb dating and trace element analysis were performed on the mineralized rock bodies of biotite granodiorite and biotite monzogranite porphyry, with Re-Os dating of molybdenite veins in this study. The results indicate that the ore-bearing intrusions in the Longsang deposit are of crystallization ages of (21.80±0.29) Ma and (21.68±0.23) Ma, while the molybdenite mineralization age is (19.1±0.6) Ma. Additionally, zircon trace elements exhibit high Ce/Nd, (Ce/Nd)/Y, and low Dy/Yb ratios, along with negative Eu anomalies and positive Ce anomalies, indicating that the magma had high oxygen fugacity and water content, which facilitated the enrichment and transport of ore-forming elements such as Cu and Mo. In conclusion, the Longsang deposit underwent diagenetic mineralization during the Miocene epoch, demonstrating significant mineralization potential. These findings provide valuable insights into the spatiotemporal distribution patterns of deposits in the eastern Gangdese belt, contributing to a deeper understanding of regional metallogeny.

       

    • loading
    • Burnham, A. D., Berry, A. J., Halse, H. R., et al., 2015. The Oxidation State of Europium in Silicate Melts as a Function of Oxygen Fugacity, Composition and Temperature. Chemical Geology, 411: 248-259. https://doi.org/10.1016/j.chemgeo.2015.07.002
      Cao, K., Yang, Z. M., Hou, Z. Q., et al., 2021. Contrasting Porphyry Cu Fertilities in the Yidun Arc, Eastern Tibet: Insights from Zircon and Apatite Compositions and Implications for Exploration. Tectonomagmatic Influences on Metallogeny and Hydrothermal Ore Deposits: A Tribute to Jeremy P. Richards (Volume Ⅱ). Society of Economic Geologists Special Publication, 24(2): 231-255. https://doi.org/10.5382/sp.24.13
      Chen, R., Liu, Y. L., Guo, L. S., et al., 2014. Geochronology and Geochemistry of the Tinggong Porphyry Copper Ore Deposit, Tibet. Acta Geologica Sinica-English Edition, 88(3): 780-800. https://doi.org/10.1111/1755-6724.1223
      Ci, Q., Zheng, Y. Y., Wu, S., et al., 2025. Discovery and Significance of Beimulang Porphyry Cu-Mo Deposit, Xizang. Earth Science, 50(4): 1305-1318 (in Chinese with English abstract).
      Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      Gao, Y. M., Chen, Y. C., Tang, J. X., et al., 2012. A Study of Diagenetic and Metallogenic Geochronology of the Dagbo Cu (Mo) Deposit in Quxur County of Tibet and Its Geological Implications. Acta Geoscientica Sinica, 33(4): 613-623 (in Chinese with English abstract).
      He, Q., Lang, X. H., Wang, X. H., et al., 2023. Geological Characteristics, In-Situ Sulfur Isotope Composition, and Genesis of the Dongga Gold Deposit in Xiongcun Area, Tibet. Acta Geoscientica Sinica, 44(6): 1000-1016 (in Chinese with English abstract).
      Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      Hou, Z. Q., Gao, Y. F., Meng, X. J., et al., 2004. Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen. Acta Petrologica Sinica, 20(2): 239-248 (in Chinese with English abstract).
      Hou, Z. Q., Wang, R., Zhang, H. J., et al., 2023. Formation of Giant Copper Deposits in Tibet Driven by Tearing of the Subducted Indian Plate. Earth-Science Reviews, 243: 104482. https://doi.org/10.1016/j.earscirev.2023.104482
      Huang, Q., Wu, S., Liu, X. F., et al., 2025. The Metallogenic Age of Tangge Skarn-Type Copper-Lead-Zinc Deposit in Xizang: Constraints from Garnet U-Pb Geochronology. Earth Science, 50(2): 621-638 (in Chinese with English abstract).
      Huang, Y., Li, G. M., Ding, J., et al., 2017. Origin of the Newly Discovered Zhunuo Porphyry Cu-Mo-Au Deposit in the Western Part of the Gangdese Porphyry Copper Belt in the Southern Tibetan Plateau, SW China. Acta Geologica Sinica - English Edition, 91(1): 109-134. https://doi.org/10.1111/1755-6724.13066
      Huang, Y. G., Han, F., Kang, Z. Q., et al., 2024. Geochronology and Geochemistry of the Linzizong Volcanic Succession, Namling Basin, Xizang. Earth Science, 49(3): 822-836 (in Chinese with English abstract).
      Leng, Q. F., Tang, J. X., Zheng, W. B., et al., 2016. Zircon U-Pb and Molybdenite Re-Os Ages of the Lakange Porphyry Cu-Mo Deposit, Gangdese Porphyry Copper Belt, Southern Tibet, China. Resource Geology, 66(2): 163-182. https://doi.org/10.1111/rge.12091
      Li, Q. Y., Yang, Z. M., Wang, R., et al., 2021. Zircon Trace Elemental and Hf-O Isotopic Compositions of the Miocene Magmaticsuite in the Giant Qulong Porphyry Copper Deposit, Southern Tibet. Acta Petrologica et Mineralogica, 40(6): 1023-1048 (in Chinese with English abstract).
      Li, Y., Selby, D., Condon, D., et al., 2017. Cyclic Magmatic-Hydrothermal Evolution in Porphyry Systems: High-Precision U-Pb and Re-Os Geochronology Constraints on the Tibetan Qulong Porphyry Cu-Mo Deposit. Economic Geology, 112(6): 1419-1440. https://doi.org/10.5382/econgeo.2017.4515
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Loader, M. A., Nathwani, C. L., Wilkinson, J. J., et al., 2022. Controls on the Magnitude of Ce Anomalies in Zircon. Geochimica et Cosmochimica Acta, 328: 242-257. https://doi.org/10.1016/j.gca.2022.03.024
      Loucks, R. R., 2014. Distinctive Composition of Copper-Ore-Forming Arcmagmas. Australian Journal of Earth Sciences, 61(1): 5-16. https://doi.org/10.1080/08120099.2013.865676
      Loucks, R. R., Fiorentini, M. L., Henríquez, G. J., 2020. New Magmatic Oxybarometer Using Trace Elements in Zircon. Journal of Petrology, 61(3): egaa034. https://doi.org/10.1093/petrology/egaa034
      Loucks, R. R., Henríquez, G. J., Fiorentini, M. L., 2024. Zircon and Whole-Rock Trace Element Indicators of Magmatic Hydration State and Oxidation State Discriminate Copper Ore-Forming from Barren Arc Magmas. Economic Geology, 119(3): 511-523. https://doi.org/10.5382/econgeo.5071
      Lu, Y. J., Loucks, R. R., Fiorentini, M. L., et al., 2016. Zircon Compositions as a Pathfinder for Porphyry Cu±Mo±Au Deposits. Society of Economic Geologists Special Publication, 19: 329-347. https://doi.org/10.5382/SP.19.13
      Shi, S. D., Chen, S. Y., Luo, S., et al., 2024. Petrogenesis and Metallogenic Significance of the Demingding Mo-Cu Porphyry Deposit in the Gangdese Belt, Xizang: Insights from U-Pb and Re-Os Geochronology and Geochemistry. Minerals, 14(12): 1232. https://doi.org/10.3390/min14121232
      Shu, Q. H., Chang, Z. S., Lai, Y., et al., 2019. Zircon Trace Elements and Magma Fertility: Insights from Porphyry (-Skarn) Mo Deposits in NE China. Mineralium Deposita, 54(5): 645-656. https://doi.org/10.1007/s00126-019-00867-7
      Sun, K. K., Deng, J., Wang, Q. F., et al., 2023. Formation of Sn-Rich Granitic Magma: A Case Study of the Highly Evolved Kafang Granite in the Gejiu Tin Polymetallic Ore District, South China. Mineralium Deposita, 58(2): 359-378. https://doi.org/10.1007/s00126-022-01130-2
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sun, X., Li, R. Y., Si, X. B., et al., 2024. Timing and Mechanism of Ore Precipitation in Porphyry Cu Systems: Insight from LA-ICP-MS Analysis of Fluid Inclusions and In Situ Oxygen Isotope Analysis of Hydrothermal Quartz at Zhunuo Porphyry Cu Deposit, China. Economic Geology, 119(3): 593-616. https://doi.org/10.5382/econgeo.5064
      Tang, J. X., Lin, B., Yang, H. H., et al., 2024. Geological Characteristics and Prospecting Direction of Porphyry-Skarn-Epithermal Deposits in Xizang. Mineral Deposits, 43(6): 1223-126 (in Chinese with English abstract).
      Wang, B. D., Xu, J. F., Chen, J. L., et al., 2010. Petrogenesis and Geochronology of the Ore-Bearing Porphyritic Rocks in Tangbula Porphyry Molybdenum Coopper Deposit in the Eastern Segment of the Gangdese Metallogenic Belt. Acta Petrologica Sinica, 26(6): 1820-1832 (in Chinese with English abstract).
      Wang, R., Weinberg, R. F., Collins, W. J., et al., 2018. Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet. Earth-Science Reviews, 181: 122-143. https://doi.org/10.1016/j.earscirev.2018.02.019
      Wang, Y. F., Zhang, J. F., Jin, Z. M., et al., 2012a. Low Oxygen Fugacity Dependency for the Deformation of Partially Molten Lherzolite. Tectonophysics, 580: 114-123. https://doi.org/10.1016/j.tecto.2012.09.001
      Wang, Z. H., Liu, Y. L., Liu, H. F., et al., 2012b. Geochronology and Geochemistry of the Bangpu Mo-Cu Porphyry Ore Deposit, Tibet. Ore Geology Reviews, 46: 95-105. https://doi.org/10.1016/j.oregeorev.2012.02.004
      Yang, Z. M., Hou, Z. Q., White, N. C., et al., 2016. Geology of the Post-Collisional Porphyry Copper-Molybdenum Deposit at Qulong, Tibet. Ore Geology Reviews, 74: 151-169. https://doi.org/10.1016/j.oregeorev.2009.03.003
      Zhao, M., Hou, Z. Q., Yang, Z. S., et al., 2025. Mineralization Age and Magmatic Origin of the Pujue Cu-Polymetallic Deposit in the Western Gangdese Belt: Implication for Regional Exploration. Acta Petrologica Sinica, 41(2): 600-620 (in Chinese with English abstract). doi: 10.18654/1000-0569/2025.02.14
      Zheng, W. B., Tang, J. X., Zhong, K. H., et al., 2016. Geology of the Jiama Porphyry Copper-Polymetallic System, Lhasa Region, China. Ore Geology Reviews, 74: 151-169. https://doi.org/10.1016/j.oregeorev.2015.11.024
      Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. https://doi.org/10.1016/j.jseaes.2013.03.029
      Zheng, Y. Y., Wu, S., Ci, Q., et al., 2021. Cu-Mo-Au Metallogenesis and Minerogenetic Series during Superimposed Orogenesis Process in Gangdese. Earth Science, 46(06): 1909-1940 (in Chinese with English abstract).
      Zhu, D. C., Wang, Q., Chung, S. L., et al., 2019. Gangdese Magmatism in Southern Tibet and India-Asia Convergence since 120 Ma. Geological Society, London, Special Publications, 483(1): 583-604. https://doi.org/10.1144/sp483.14
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      次琼, 郑有业, 吴松, 等, 2025. 西藏北姆朗斑岩型铜钼矿床的发现及意义. 地球科学, 50(4): 1305-1318. doi: 10.3799/dqkx.2024.120
      高一鸣, 陈毓川, 唐菊兴, 等, 2012. 西藏曲水县达布斑岩铜(钼)矿床成岩成矿年代学研究. 地球学报, 33(4): 613-623.
      何青, 郎兴海, 王旭辉, 等, 2023. 西藏洞嘎金矿床地质特征、原位硫同位素组成及成因探讨. 地球学报, 44(6): 1000-1016.
      侯增谦, 高永丰, 孟祥金, 等, 2004. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制. 岩石学报, 20(2): 239-248.
      黄倩, 吴松, 刘晓峰, 等, 2025. 西藏唐格矽卡岩型铜铅锌矿床成矿时代: 来自石榴子石U-Pb年龄的约束. 地球科学, 50(2): 621-638. doi: 10.3799/dqkx.2024.017
      黄永高, 韩飞, 康志强, 等, 2024. 西藏南木林盆地林子宗群火山岩年代学和地球化学特征. 地球科学, 49(3): 822-836. doi: 10.3799/dqkx.2022.196
      李秋耘, 杨志明, 王瑞, 等, 2021. 西藏驱龙矿区中新世侵入岩锆石微量和Hf-O同位素研究. 岩石矿物学杂志, 40(6): 1023-1048.
      唐菊兴, 林彬, 杨欢欢, 等, 2024. 西藏斑岩-矽卡岩-浅成低温热液型矿床地质特征及找矿方向. 矿床地质, 43(6): 1223-1265.
      王保弟, 许继峰, 陈建林, 等, 2010. 冈底斯东段汤不拉斑岩Mo-Cu矿床成岩成矿时代与成因研究. 岩石学报, 26(6): 1820-1832.
      赵苗, 侯增谦, 杨竹森, 等, 2025. 冈底斯带西段普觉铜多金属矿床形成时代、岩浆起源及区域勘查启示. 岩石学报, 41(2): 600-620.
      郑有业, 吴松, 次琼, 等, 2021. 冈底斯复合造山带铜钼金多金属成矿作用与成矿系列. 地球科学, 46(6): 1909-1940. doi: 10.3799/dqkx.2020.392
    • 吴昌毅 附表.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(2)

      Article views (135) PDF downloads(15) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return