| Citation: | Yuan Jing, Cao Yi, Tang Chunhua, Yan Junling, Zhou Yu, Qian Zhengjiang, Liu Xiaolong, Wang Mingyou, Sun Chao, 2025. Geochemical, Boron Isotope Characteristics and Geological Significance of Tourmaline from Tangyin Granitic Pegmatite in Yihuang, Jiangxi Province. Earth Science, 50(11): 4442-4458. doi: 10.3799/dqkx.2025.157 |
|
Chen, X. J., Yun, X. R., Lei, M., et al., 2022. Chemical and Boron Isotopic Composition of Tourmaline from the Gonghe Triassic Intermediate-Acid Intrusive Rocks, Qinghai and Its Implications for Evolution of the Magmatic-Hydrothermal System. Acta Petrologica Sinica, 38(11): 3359-3374 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.11.07
|
|
Čopjaková, R., Prokop, J., Novák, M., et al., 2021. Hydrothermal Alteration of Tourmaline from Pegmatitic Rocks Enclosed in Serpentinites: Multistage Processes with Distinct Fluid Sources. Lithos, 380-381: 105823. https://doi.org/10.1016/j.lithos.2020.105823
|
|
Dai, Z. W., Li, G. M., Ding, J., et al., 2019. Chemical and Boron Isotopic Composition, and Significance of Tourmaline from the Cuonadong Tourmaline Granite, Tibet. Earth Science, 44(6): 1849-1859 (in Chinese with English abstract).
|
|
Drivenes, K., Larsen, R. B., Müller, A., et al., 2015. Late-Magmatic Immiscibility during Batholith Formation: Assessment of B Isotopes and Trace Elements in Tourmaline from the Land's End Granite, SW England. Contributions to Mineralogy and Petrology, 169(6): 56. https://doi.org/10.1007/s00410-015-1151-6
|
|
Dutrow, B. L., Henry, D. J., 2011. Tourmaline: A Geologic DVD. Elements, 7(5): 301-306. https://doi.org/10.2113/gselements.7.5.301
|
|
Dutrow, B. L., Henry, D. J., 2018. Tourmaline Compositions and Textures: Reflections of the Fluid Phase. Journal of Geosciences, 63(2): 99-110. https://doi.org/10.3190/jgeosci.256
|
|
Fuchs, Y., Lagache, M., Linares, J., 1998. Fe-Tourmaline Synthesis Under Different T and fO2 Conditions. American Mineralogist, 83(5-6): 525-534. https://doi.org/10.2138/am-1998-5-612
|
|
Gao, Y., Xu, Z., Tang, S., et al., 2025. Genesis of Caledonian Pegmatite-Type Lithium Deposits in Southern Jiangxi Province: Evidences from Cassiterite U-Pb Geochronology and Whole-Rock Petrogeochemistry. Acta Mineralogica Sinica, 45(4): 713-733 (in Chinese with English abstract). doi: 10.3724/j.1000-4734.2025.45.009
|
|
Guo, C. L., Liu, Z. K., 2021. Caledonian Granites in South China: The Geological and Geochemical Characteristics on Their Petrogenesis and Mineralization. Journal of Earth Sciences and Environment, 43(6): 927-961 (in Chinese with English abstract).
|
|
Guo, J., Yan, H. B., Ling, M. X., et al., 2020. Chemical Composition of Tourmaline in the Biotite Granite, the Dachang District: Insights into Magmatic-Hydrothermal Evolution. Acta Petrologica Sinica, 36(1): 171-183 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.01.16
|
|
Guo, R. H., Hu, X. M., Garzanti, E., et al., 2021. Boron Isotope Composition of Detrital Tourmaline: A New Tool in Provenance Analysis. Lithos, 400-401: 106360. https://doi.org/10.1016/j.lithos.2021.106360
|
|
Harlaux, M., Kouzmanov, K., Gialli, S., et al., 2020. Tourmaline as a Tracer of Late-Magmatic to Hydrothermal Fluid Evolution: The World-Class San Rafael Tin (-Copper) Deposit, Peru. Economic Geology, 115(8): 1665-1697. https://doi.org/10.5382/econgeo.4762
|
|
He, S. W., Wang, K. X., Liu, X. D., et al., 2022. Genesis of the Yihuang Strong Peraluminous S-Type Granite in Jiangxi Province and Its Constraints on Early Paleozoic Intracontinental Orogeny in South China. Geological Bulletin of China, 41(5): 788-809 (in Chinese with English abstract).
|
|
Henry, D. J., Guidotti, C. V., 1985. Tourmaline as a Petrogenetic Indicator Mineral: An Example from the Staurolite Grade Metapelites of NW Maine. American Mineralogist, 70(1-2): 1-15.
|
|
Henry, D. J., Novak, M., Hawthorne, F. C., et al., 2011. Nomenclature of the Tourmaline-Supergroup Minerals. American Mineralogist, 96(5-6): 895-913. https://doi.org/10.2138/am.2011.3636
|
|
Henry, D. J., Dutrow, B. L., 2012. Tourmaline at Diagenetic to Low-Grade Metamorphic Conditions: Its Petrologic Applicability. Lithos, 154: 16-32. https://doi.org/10.1016/j.lithos.2012.08.013
|
|
Hervig, R. L., Moore, G. M., Williams, L. B., et al., 2002. Isotopic and Elemental Partitioning of Boron between Hydrous Fluid and Silicate Melt. American Mineralogist, 87(5-6): 769-774. https://doi.org/10.2138/am-2002-5-620
|
|
Hong, T., Zhai, M. G., Xu, X. W., et al., 2021. Tourmaline and Quartz in the Igneous and Metamorphic Rocks of the Tashisayi Granitic Batholith, Altyn Tagh, Northwestern China: Geochemical Variability Constraints on Metallogenesis. Lithos, 400-401: 106358. https://doi.org/10.1016/j.lithos.2021.106358
|
|
Hou, K. J., Li, Y. H., Xiao, Y. K., et al., 2010. In Situ Boron Isotope Measurements of Natural Geological Materials by LA-MC-ICP-MS. Chinese Science Bulletin, 55(29): 3305-3311. https://doi.org/10.1007/s11434-010-4064-9
|
|
Jiang, S. Y., Han, F., Shen, J. Z., et al., 1999. Chemical and Rb-Sr, Sm-Nd Isotopic Systematics of Tourmaline from the Dachang Sn-Polymetallic Ore Deposit, Guangxi Province, P. R. China. Chemical Geology, 157(1-2): 49-67. https://doi.org/10.1016/S0009-2541(98)00200-9
|
|
Jiang, S. Y., Radvanec, M., Nakamura, E., et al., 2008. Chemical and Boron Isotopic Variations of Tourmaline in the Hnilec Granite-Related Hydrothermal System, Slovakia: Constraints on Magmatic and Metamorphic Fluid Evolution. Lithos, 106(1-2): 1-11. https://doi.org/10.1016/j.lithos.2008.04.004
|
|
Jiang, S. Y., Yu, J. M., Lu, J. J., 2004. Trace and Rare-Earth Element Geochemistry in Tourmaline and Cassiterite from the Yunlong Tin Deposit, Yunnan, China: Implication for Migmatitic-Hydrothermal Fluid Evolution and Ore Genesis. Chemical Geology, 209(3-4): 193-213. https://doi.org/10.1016/j.chemgeo.2004.04.021
|
|
Kalliomäki, H., Wagner, T., Fusswinkel, T., et al., 2017. Major and Trace Element Geochemistry of Tourmalines from Archean Orogenic Gold Deposits: Proxies for the Origin of Gold Mineralizing Fluids? Ore Geology Reviews, 91: 906-927. https://doi.org/10.1016/j.oregeorev.2017.08.014
|
|
Li, L. G., Wang, L. X., Romer, R. L., et al., 2025. Using Tourmaline to Trace Li Mineralization in the Mufushan Granitic Batholith, South China. Chemical Geology, 671: 122485. https://doi.org/10.1016/j.chemgeo.2024.122485
|
|
Li, Z. Z., Qin, K. Z., Pei, B., et al., 2020. Mineralogical Features of Tourmaline in Baiyinchagan Sn-Ag-Pb-Zn Deposit, Southern Great Xing'an Range, and Its Implications for Magmatic-Hydrothermal Evolution. Acta Petrologica Sinica, 36(12): 3797-3812 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.12.14
|
|
Liu, T., Jiang, S. Y., Su, H. M., et al., 2023. Tourmaline as a Tracer of Magmatic-Hydrothermal Evolution and Potential Nb-Ta-(W-Sn) Mineralization from the Lingshan Granite Batholith, Jiangxi Province, Southeast China. Lithos, 438-439: 107016. https://doi.org/10.1016/j.lithos.2022.107016
|
|
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
|
London, D., 1999. Stability of Tourmaline in Pei Aluminous Granite Systems: The Boron Cycle from Anatexis to Hydrothermal Aureoles. European Journal of Mineralogy, 11(2): 253-262. https://doi.org/10.1127/ejm/11/2/0253
|
|
London, D., Manning, D. A. C., 1995. Chemical Variation and Significance of Tourmaline from Southwest England. Economic Geology, 90(3): 495-519. https://doi.org/10.2113/gsecongeo.90.3.495
|
|
Maner, J. L., London, D., 2017. The Boron Isotopic Evolution of the Little Three Pegmatites, Ramona, CA. Chemical Geology, 460: 70-83. https://doi.org/10.1016/j.chemgeo.2017.04.016
|
|
Marschall, H. R., Jiang, S. Y., 2011. Tourmaline Isotopes: No Element Left behind. Elements, 7(5): 313-319. https://doi.org/10.2113/gselements.7.5.313
|
|
Meyer, C., Wunder, B., Meixner, A., et al., 2008. Boron-Isotope Fractionation between Tourmaline and Fluid: An Experimental Re-Investigation. Contributions to Mineralogy and Petrology, 156(2): 259-267. https://doi.org/10.1007/s00410-008-0285-1
|
|
Pesquera, A., Torres-Ruiz, J., García-Casco, A., et al., 2013. Evaluating the Controls on Tourmaline Formation in Granitic Systems: A Case Study on Peraluminous Granites from the Central Iberian Zone (CIZ), Western Spain. Journal of Petrology, 54(3): 609-634. https://doi.org/10.1093/petrology/egs080
|
|
Slack, J. F., Trumbull, R. B., 2011. Tourmaline as a Recorder of Ore-Forming Processes. Elements, 7(5): 321-326. https://doi.org/10.2113/gselements.7.5.321
|
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
|
Trumbull, R. B., Slack, J. F., 2018. Boron Isotopes in the Continental Crust: Granites, Pegmatites, Felsic Volcanic Rocks, and Related Ore Deposits. Boron Isotopes: The Fifth Element, 249-272. https://doi.org/10.1007/978-3-319-64666-4_10
|
|
van Hinsberg, V. J., Henry, D. J., Marschall, H. R., 2011. Tourmaline: An Ideal Indicator of Its Host Environment. The Canadian Mineralogist, 49(1): 1-16. https://doi.org/10.3749/canmin.49.1.1
|
|
von Goerne, G., Franz, G., van Hinsberg, V. J., 2011. Experimental Determination of Na-Ca Distribution between Tourmaline and Fluid in the System CaO-Na2O-MgO-Al2O3-SiO2-B2O3-H2O. The Canadian Mineralogist, 49(1): 137-152. https://doi.org/10.3749/canmin.49.1.137
|
|
Watenphul, A., Schlüter, J., Bosi, F., et al., 2016. Influence of the Octahedral Cationic-Site Occupancies on the Framework Vibrations of Li-Free Tourmalines, with Implications for Estimating Temperature and Oxygen Fugacity in Host Rocks. American Mineralogist, 101(11): 2554-2563. https://doi.org/10.2138/am-2016-5820
|
|
Xia, Y. Q., Tuo, M. J., Li, N., et al., 2024. Mineral Characteristics of Mica and Tourmaline and Geological Implication for the Pegmatite-Type Lithium Mineralization, Dahongliutan Area, West Kunlun. Earth Science, 49(3): 922-938 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2023.213
|
|
Yang, S. Y., Jiang, S. Y., Mao, Q., et al. 2022. Electron Probe Microanalysis in Geosciences: Analytical Procedures and Recent Advances. Atomic Spectroscopy, 43(2): 186-200. https://doi.org/10.46770/AS.2021.912
|
|
Yang, S. Y., Jiang, S. Y., Zhao, K. D., et al., 2015. Tourmaline as a Recorder of Magmatic-Hydrothermal Evolution: An In Situ Major and Trace Element Analysis of Tourmaline from the Qitianling Batholith, South China. Contributions to Mineralogy and Petrology, 170(5-6): 42. https://doi.org/10.1007/s00410-015-1195-7
|
|
Yuan, J., Tang, C. H., Zhou, Y., et al., 2024. Content Characteristics of Impurity Elements Analysis and Evaluation Method Discussion of High-Purity Quartz Raw Material of the Granite Pegmatite Type in Tangyin, Jiangxi Province. Journal of East China University of Technology (Natural Science), 47(1): 34-44 (in Chinese with English abstract).
|
|
Zhang, K., Liu, X., Zhao, K. D., et al., 2024. Elemental and Boron Isotopic Variations of Tourmalines from the Miocene Leucogranite-Pegmatite in Kuju, Eastern Himalaya: Implications for the Evolution of Magmatic Melts. Acta Petrologica Sinica, 40(8): 2334-2352 (in Chinese with English abstract). doi: 10.18654/1000-0569/2024.08.04
|
|
Zhao, H. D., Zhao, K. D., Palmer, M. R., et al., 2019. In-Situ Elemental and Boron Isotopic Variations of Tourmaline from the Sanfang Granite, South China: Insights into Magmatic-Hydrothermal Evolution. Chemical Geology, 504: 190-204. https://doi.org/10.1016/j.chemgeo.2018.11.013
|
|
Zhao, Z. H., Ma, L., 2025. The Relationship between Granitic Pegmatites and Granites. Earth Science (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2025.018
|
|
Zheng, B. Q., Chen, B., Sun, Y., 2023. Tracing the Evolution of the Pegmatite System and Its Interaction with the Country Rocks by Chemical and Boron Isotope Compositions of Tourmaline in the Qinghe Pegmatite from the Chinese Altay Orogen. Acta Petrologica Sinica, 39(1): 187-204 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.01.13
|
|
陈希节, 贠晓瑞, 雷敏, 等, 2022. 青海共和盆地三叠纪中酸性侵入岩中电气石化学组成、硼同位素特征及对岩浆‒热液演化的启示. 岩石学报, 38(11): 3359-3374.
|
|
代作文, 李光明, 丁俊, 等, 2019. 西藏错那洞电气石花岗岩中电气石化学组成、硼同位素特征及意义. 地球科学, 44(6): 1849-1859. doi: 10.3799/dqkx.2019.043
|
|
高原, 徐喆, 唐石, 等, 2025. 赣南加里东期伟晶岩型锂矿成因: 来自锡石U-Pb年代学和岩石地球化学的证据. 矿物学报, 45(4): 713-733.
|
|
郭春丽, 刘泽坤, 2021. 华南地区加里东期花岗岩: 成岩和成矿作用的地质与地球化学特征. 地球科学与环境学报, 43(6): 927-961.
|
|
郭佳, 严海波, 凌明星, 等, 2020. 广西大厂地区黑云母花岗岩中电气石的化学组成及其对岩浆热液演化的指示. 岩石学报, 36(1): 171-183.
|
|
何世伟, 王凯兴, 刘晓东, 等, 2022. 江西宜黄强过铝质S型花岗岩成因及其对华南早古生代陆内造山运动的制约. 地质通报, 41(5): 788-809.
|
|
李真真, 秦克章, 裴斌, 等, 2020. 大兴安岭南段白音查干Sn-Ag-Zn-Pb矿床电气石矿物学特征及对岩浆‒热液演化过程的启示. 岩石学报, 36(12): 3797-3812.
|
|
夏永旗, 庹明洁, 李诺, 等, 2024. 云母和电气石矿物化学特征对西昆仑大红柳滩地区伟晶岩型锂矿化的指示. 地球科学, 49(3): 922-938. doi: 10.3799/dqkx.2023.213
|
|
袁晶, 唐春花, 周渝, 等, 2024. 江西棠阴花岗伟晶岩型高纯石英原料杂质元素含量特征研究及评价方法探讨. 东华理工大学学报(自然科学版), 47(1): 34-44.
|
|
张凯, 刘欣, 赵葵东, 等, 2024. 喜马拉雅东段库局中新世淡色花岗岩‒伟晶岩中电气石的元素和硼同位素变化: 对岩浆熔体演化的见解. 岩石学报, 40(8): 2334-2352.
|
|
赵振华, 马林, 2025. 花岗伟晶岩与花岗岩的关系. 地球科学, 1-65. doi: 10.3799/dqkx.2025.018
|
|
郑贝琪, 陈斌, 孙杨, 2023. 阿尔泰青河伟晶岩中电气石成分和硼同位素对伟晶岩体系演化及其与围岩相互作用的示踪. 岩石学报, 39(1): 187-204.
|
袁晶 附表.xlsx
|
|