• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 11
    Nov.  2025
    Turn off MathJax
    Article Contents
    Yuan Jing, Cao Yi, Tang Chunhua, Yan Junling, Zhou Yu, Qian Zhengjiang, Liu Xiaolong, Wang Mingyou, Sun Chao, 2025. Geochemical, Boron Isotope Characteristics and Geological Significance of Tourmaline from Tangyin Granitic Pegmatite in Yihuang, Jiangxi Province. Earth Science, 50(11): 4442-4458. doi: 10.3799/dqkx.2025.157
    Citation: Yuan Jing, Cao Yi, Tang Chunhua, Yan Junling, Zhou Yu, Qian Zhengjiang, Liu Xiaolong, Wang Mingyou, Sun Chao, 2025. Geochemical, Boron Isotope Characteristics and Geological Significance of Tourmaline from Tangyin Granitic Pegmatite in Yihuang, Jiangxi Province. Earth Science, 50(11): 4442-4458. doi: 10.3799/dqkx.2025.157

    Geochemical, Boron Isotope Characteristics and Geological Significance of Tourmaline from Tangyin Granitic Pegmatite in Yihuang, Jiangxi Province

    doi: 10.3799/dqkx.2025.157
    • Received Date: 2025-04-05
    • Publish Date: 2025-11-25
    • Granitic pegmatite is extensively developed in the Yihuang area of Jiangxi Province, and tourmaline is commonly found within granitic pegmatite and its surrounding rocks (biotite monzogranite). Three distinct types of tourmalines have been identified in Tangyin area: randomly disseminated tourmaline (Tur-G) in biotite monzogranite, unzoned tourmaline (Tur-PU) and zoned tourmaline (Tur-PZ) in granitic pegmatite. However, the classification and origin of tourmaline, as well as its implications for the genesis of granitic pegmatite, remain unclear. This study analyzed the major, trace elements, and boron isotopic compositions using EPMA and LA-(MC)-ICP-MS. From Tur-G type→Tur-PU type→Tur-PZ tourmalines core to rim, the concentrations of Al and Fe initially increase and subsequently decrease, whereas the concentrations of Mg, Na, Ca, Ti, Sc, V, Cr, Co, Ni, Sr, Ga, and rare earth elements exhibit an opposite trend, decreasing first and then increasing. The δ11B values for Tur-G, Tur-PU, Tur-PZ type tourmalines core and rim are -10.77‰--8.87‰, -10.59‰--8.73‰, -11.07‰--10.09‰, and -11.05‰- -8.95‰, respectively. It is believed that all tourmalines belong to the iron-magnesium tourmaline series within the alkaline tourmaline group and are of magmatic origin. Specifically, Tur-G, Tur-PU, and Tur-PZ tourmalines crystallized during the late granite melt, the early granitic pegmatite melt, and the late magma-hydrothermal stages, respectively. The changes in the Fe3+/Fe2+ ratio and V content of the tourmaline revealed that the oxygen fugacity of the magma melt exhibit a trend of initially decreasing and subsequently increasing. The concentrations of Mg, Na, Ca, Ti, Sc, V, Cr, Co, Ni, Sr, and Ga in the tourmaline reflect variations in elemental composition within the melt. The tourmaline found in both the Tangyin granitic pegmatite and biotite monzogranite exhibits a concentrated and comparable boron isotope composition, ranging from -11.07‰ to -8.73‰. This similarity suggests that both rock types originated from the same magma source, with the initial magma being derived from the partial melting of the continental crust, specifically calcium-poor and aluminum-rich metamorphic mudstone and sandstone.

       

    • loading
    • Chen, X. J., Yun, X. R., Lei, M., et al., 2022. Chemical and Boron Isotopic Composition of Tourmaline from the Gonghe Triassic Intermediate-Acid Intrusive Rocks, Qinghai and Its Implications for Evolution of the Magmatic-Hydrothermal System. Acta Petrologica Sinica, 38(11): 3359-3374 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.11.07
      Čopjaková, R., Prokop, J., Novák, M., et al., 2021. Hydrothermal Alteration of Tourmaline from Pegmatitic Rocks Enclosed in Serpentinites: Multistage Processes with Distinct Fluid Sources. Lithos, 380-381: 105823. https://doi.org/10.1016/j.lithos.2020.105823
      Dai, Z. W., Li, G. M., Ding, J., et al., 2019. Chemical and Boron Isotopic Composition, and Significance of Tourmaline from the Cuonadong Tourmaline Granite, Tibet. Earth Science, 44(6): 1849-1859 (in Chinese with English abstract).
      Drivenes, K., Larsen, R. B., Müller, A., et al., 2015. Late-Magmatic Immiscibility during Batholith Formation: Assessment of B Isotopes and Trace Elements in Tourmaline from the Land's End Granite, SW England. Contributions to Mineralogy and Petrology, 169(6): 56. https://doi.org/10.1007/s00410-015-1151-6
      Dutrow, B. L., Henry, D. J., 2011. Tourmaline: A Geologic DVD. Elements, 7(5): 301-306. https://doi.org/10.2113/gselements.7.5.301
      Dutrow, B. L., Henry, D. J., 2018. Tourmaline Compositions and Textures: Reflections of the Fluid Phase. Journal of Geosciences, 63(2): 99-110. https://doi.org/10.3190/jgeosci.256
      Fuchs, Y., Lagache, M., Linares, J., 1998. Fe-Tourmaline Synthesis Under Different T and fO2 Conditions. American Mineralogist, 83(5-6): 525-534. https://doi.org/10.2138/am-1998-5-612
      Gao, Y., Xu, Z., Tang, S., et al., 2025. Genesis of Caledonian Pegmatite-Type Lithium Deposits in Southern Jiangxi Province: Evidences from Cassiterite U-Pb Geochronology and Whole-Rock Petrogeochemistry. Acta Mineralogica Sinica, 45(4): 713-733 (in Chinese with English abstract). doi: 10.3724/j.1000-4734.2025.45.009
      Guo, C. L., Liu, Z. K., 2021. Caledonian Granites in South China: The Geological and Geochemical Characteristics on Their Petrogenesis and Mineralization. Journal of Earth Sciences and Environment, 43(6): 927-961 (in Chinese with English abstract).
      Guo, J., Yan, H. B., Ling, M. X., et al., 2020. Chemical Composition of Tourmaline in the Biotite Granite, the Dachang District: Insights into Magmatic-Hydrothermal Evolution. Acta Petrologica Sinica, 36(1): 171-183 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.01.16
      Guo, R. H., Hu, X. M., Garzanti, E., et al., 2021. Boron Isotope Composition of Detrital Tourmaline: A New Tool in Provenance Analysis. Lithos, 400-401: 106360. https://doi.org/10.1016/j.lithos.2021.106360
      Harlaux, M., Kouzmanov, K., Gialli, S., et al., 2020. Tourmaline as a Tracer of Late-Magmatic to Hydrothermal Fluid Evolution: The World-Class San Rafael Tin (-Copper) Deposit, Peru. Economic Geology, 115(8): 1665-1697. https://doi.org/10.5382/econgeo.4762
      He, S. W., Wang, K. X., Liu, X. D., et al., 2022. Genesis of the Yihuang Strong Peraluminous S-Type Granite in Jiangxi Province and Its Constraints on Early Paleozoic Intracontinental Orogeny in South China. Geological Bulletin of China, 41(5): 788-809 (in Chinese with English abstract).
      Henry, D. J., Guidotti, C. V., 1985. Tourmaline as a Petrogenetic Indicator Mineral: An Example from the Staurolite Grade Metapelites of NW Maine. American Mineralogist, 70(1-2): 1-15.
      Henry, D. J., Novak, M., Hawthorne, F. C., et al., 2011. Nomenclature of the Tourmaline-Supergroup Minerals. American Mineralogist, 96(5-6): 895-913. https://doi.org/10.2138/am.2011.3636
      Henry, D. J., Dutrow, B. L., 2012. Tourmaline at Diagenetic to Low-Grade Metamorphic Conditions: Its Petrologic Applicability. Lithos, 154: 16-32. https://doi.org/10.1016/j.lithos.2012.08.013
      Hervig, R. L., Moore, G. M., Williams, L. B., et al., 2002. Isotopic and Elemental Partitioning of Boron between Hydrous Fluid and Silicate Melt. American Mineralogist, 87(5-6): 769-774. https://doi.org/10.2138/am-2002-5-620
      Hong, T., Zhai, M. G., Xu, X. W., et al., 2021. Tourmaline and Quartz in the Igneous and Metamorphic Rocks of the Tashisayi Granitic Batholith, Altyn Tagh, Northwestern China: Geochemical Variability Constraints on Metallogenesis. Lithos, 400-401: 106358. https://doi.org/10.1016/j.lithos.2021.106358
      Hou, K. J., Li, Y. H., Xiao, Y. K., et al., 2010. In Situ Boron Isotope Measurements of Natural Geological Materials by LA-MC-ICP-MS. Chinese Science Bulletin, 55(29): 3305-3311. https://doi.org/10.1007/s11434-010-4064-9
      Jiang, S. Y., Han, F., Shen, J. Z., et al., 1999. Chemical and Rb-Sr, Sm-Nd Isotopic Systematics of Tourmaline from the Dachang Sn-Polymetallic Ore Deposit, Guangxi Province, P. R. China. Chemical Geology, 157(1-2): 49-67. https://doi.org/10.1016/S0009-2541(98)00200-9
      Jiang, S. Y., Radvanec, M., Nakamura, E., et al., 2008. Chemical and Boron Isotopic Variations of Tourmaline in the Hnilec Granite-Related Hydrothermal System, Slovakia: Constraints on Magmatic and Metamorphic Fluid Evolution. Lithos, 106(1-2): 1-11. https://doi.org/10.1016/j.lithos.2008.04.004
      Jiang, S. Y., Yu, J. M., Lu, J. J., 2004. Trace and Rare-Earth Element Geochemistry in Tourmaline and Cassiterite from the Yunlong Tin Deposit, Yunnan, China: Implication for Migmatitic-Hydrothermal Fluid Evolution and Ore Genesis. Chemical Geology, 209(3-4): 193-213. https://doi.org/10.1016/j.chemgeo.2004.04.021
      Kalliomäki, H., Wagner, T., Fusswinkel, T., et al., 2017. Major and Trace Element Geochemistry of Tourmalines from Archean Orogenic Gold Deposits: Proxies for the Origin of Gold Mineralizing Fluids? Ore Geology Reviews, 91: 906-927. https://doi.org/10.1016/j.oregeorev.2017.08.014
      Li, L. G., Wang, L. X., Romer, R. L., et al., 2025. Using Tourmaline to Trace Li Mineralization in the Mufushan Granitic Batholith, South China. Chemical Geology, 671: 122485. https://doi.org/10.1016/j.chemgeo.2024.122485
      Li, Z. Z., Qin, K. Z., Pei, B., et al., 2020. Mineralogical Features of Tourmaline in Baiyinchagan Sn-Ag-Pb-Zn Deposit, Southern Great Xing'an Range, and Its Implications for Magmatic-Hydrothermal Evolution. Acta Petrologica Sinica, 36(12): 3797-3812 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.12.14
      Liu, T., Jiang, S. Y., Su, H. M., et al., 2023. Tourmaline as a Tracer of Magmatic-Hydrothermal Evolution and Potential Nb-Ta-(W-Sn) Mineralization from the Lingshan Granite Batholith, Jiangxi Province, Southeast China. Lithos, 438-439: 107016. https://doi.org/10.1016/j.lithos.2022.107016
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      London, D., 1999. Stability of Tourmaline in Pei Aluminous Granite Systems: The Boron Cycle from Anatexis to Hydrothermal Aureoles. European Journal of Mineralogy, 11(2): 253-262. https://doi.org/10.1127/ejm/11/2/0253
      London, D., Manning, D. A. C., 1995. Chemical Variation and Significance of Tourmaline from Southwest England. Economic Geology, 90(3): 495-519. https://doi.org/10.2113/gsecongeo.90.3.495
      Maner, J. L., London, D., 2017. The Boron Isotopic Evolution of the Little Three Pegmatites, Ramona, CA. Chemical Geology, 460: 70-83. https://doi.org/10.1016/j.chemgeo.2017.04.016
      Marschall, H. R., Jiang, S. Y., 2011. Tourmaline Isotopes: No Element Left behind. Elements, 7(5): 313-319. https://doi.org/10.2113/gselements.7.5.313
      Meyer, C., Wunder, B., Meixner, A., et al., 2008. Boron-Isotope Fractionation between Tourmaline and Fluid: An Experimental Re-Investigation. Contributions to Mineralogy and Petrology, 156(2): 259-267. https://doi.org/10.1007/s00410-008-0285-1
      Pesquera, A., Torres-Ruiz, J., García-Casco, A., et al., 2013. Evaluating the Controls on Tourmaline Formation in Granitic Systems: A Case Study on Peraluminous Granites from the Central Iberian Zone (CIZ), Western Spain. Journal of Petrology, 54(3): 609-634. https://doi.org/10.1093/petrology/egs080
      Slack, J. F., Trumbull, R. B., 2011. Tourmaline as a Recorder of Ore-Forming Processes. Elements, 7(5): 321-326. https://doi.org/10.2113/gselements.7.5.321
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Trumbull, R. B., Slack, J. F., 2018. Boron Isotopes in the Continental Crust: Granites, Pegmatites, Felsic Volcanic Rocks, and Related Ore Deposits. Boron Isotopes: The Fifth Element, 249-272. https://doi.org/10.1007/978-3-319-64666-4_10
      van Hinsberg, V. J., Henry, D. J., Marschall, H. R., 2011. Tourmaline: An Ideal Indicator of Its Host Environment. The Canadian Mineralogist, 49(1): 1-16. https://doi.org/10.3749/canmin.49.1.1
      von Goerne, G., Franz, G., van Hinsberg, V. J., 2011. Experimental Determination of Na-Ca Distribution between Tourmaline and Fluid in the System CaO-Na2O-MgO-Al2O3-SiO2-B2O3-H2O. The Canadian Mineralogist, 49(1): 137-152. https://doi.org/10.3749/canmin.49.1.137
      Watenphul, A., Schlüter, J., Bosi, F., et al., 2016. Influence of the Octahedral Cationic-Site Occupancies on the Framework Vibrations of Li-Free Tourmalines, with Implications for Estimating Temperature and Oxygen Fugacity in Host Rocks. American Mineralogist, 101(11): 2554-2563. https://doi.org/10.2138/am-2016-5820
      Xia, Y. Q., Tuo, M. J., Li, N., et al., 2024. Mineral Characteristics of Mica and Tourmaline and Geological Implication for the Pegmatite-Type Lithium Mineralization, Dahongliutan Area, West Kunlun. Earth Science, 49(3): 922-938 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2023.213
      Yang, S. Y., Jiang, S. Y., Mao, Q., et al. 2022. Electron Probe Microanalysis in Geosciences: Analytical Procedures and Recent Advances. Atomic Spectroscopy, 43(2): 186-200. https://doi.org/10.46770/AS.2021.912
      Yang, S. Y., Jiang, S. Y., Zhao, K. D., et al., 2015. Tourmaline as a Recorder of Magmatic-Hydrothermal Evolution: An In Situ Major and Trace Element Analysis of Tourmaline from the Qitianling Batholith, South China. Contributions to Mineralogy and Petrology, 170(5-6): 42. https://doi.org/10.1007/s00410-015-1195-7
      Yuan, J., Tang, C. H., Zhou, Y., et al., 2024. Content Characteristics of Impurity Elements Analysis and Evaluation Method Discussion of High-Purity Quartz Raw Material of the Granite Pegmatite Type in Tangyin, Jiangxi Province. Journal of East China University of Technology (Natural Science), 47(1): 34-44 (in Chinese with English abstract).
      Zhang, K., Liu, X., Zhao, K. D., et al., 2024. Elemental and Boron Isotopic Variations of Tourmalines from the Miocene Leucogranite-Pegmatite in Kuju, Eastern Himalaya: Implications for the Evolution of Magmatic Melts. Acta Petrologica Sinica, 40(8): 2334-2352 (in Chinese with English abstract). doi: 10.18654/1000-0569/2024.08.04
      Zhao, H. D., Zhao, K. D., Palmer, M. R., et al., 2019. In-Situ Elemental and Boron Isotopic Variations of Tourmaline from the Sanfang Granite, South China: Insights into Magmatic-Hydrothermal Evolution. Chemical Geology, 504: 190-204. https://doi.org/10.1016/j.chemgeo.2018.11.013
      Zhao, Z. H., Ma, L., 2025. The Relationship between Granitic Pegmatites and Granites. Earth Science (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2025.018
      Zheng, B. Q., Chen, B., Sun, Y., 2023. Tracing the Evolution of the Pegmatite System and Its Interaction with the Country Rocks by Chemical and Boron Isotope Compositions of Tourmaline in the Qinghe Pegmatite from the Chinese Altay Orogen. Acta Petrologica Sinica, 39(1): 187-204 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.01.13
      陈希节, 贠晓瑞, 雷敏, 等, 2022. 青海共和盆地三叠纪中酸性侵入岩中电气石化学组成、硼同位素特征及对岩浆‒热液演化的启示. 岩石学报, 38(11): 3359-3374.
      代作文, 李光明, 丁俊, 等, 2019. 西藏错那洞电气石花岗岩中电气石化学组成、硼同位素特征及意义. 地球科学, 44(6): 1849-1859. doi: 10.3799/dqkx.2019.043
      高原, 徐喆, 唐石, 等, 2025. 赣南加里东期伟晶岩型锂矿成因: 来自锡石U-Pb年代学和岩石地球化学的证据. 矿物学报, 45(4): 713-733.
      郭春丽, 刘泽坤, 2021. 华南地区加里东期花岗岩: 成岩和成矿作用的地质与地球化学特征. 地球科学与环境学报, 43(6): 927-961.
      郭佳, 严海波, 凌明星, 等, 2020. 广西大厂地区黑云母花岗岩中电气石的化学组成及其对岩浆热液演化的指示. 岩石学报, 36(1): 171-183.
      何世伟, 王凯兴, 刘晓东, 等, 2022. 江西宜黄强过铝质S型花岗岩成因及其对华南早古生代陆内造山运动的制约. 地质通报, 41(5): 788-809.
      李真真, 秦克章, 裴斌, 等, 2020. 大兴安岭南段白音查干Sn-Ag-Zn-Pb矿床电气石矿物学特征及对岩浆‒热液演化过程的启示. 岩石学报, 36(12): 3797-3812.
      夏永旗, 庹明洁, 李诺, 等, 2024. 云母和电气石矿物化学特征对西昆仑大红柳滩地区伟晶岩型锂矿化的指示. 地球科学, 49(3): 922-938. doi: 10.3799/dqkx.2023.213
      袁晶, 唐春花, 周渝, 等, 2024. 江西棠阴花岗伟晶岩型高纯石英原料杂质元素含量特征研究及评价方法探讨. 东华理工大学学报(自然科学版), 47(1): 34-44.
      张凯, 刘欣, 赵葵东, 等, 2024. 喜马拉雅东段库局中新世淡色花岗岩‒伟晶岩中电气石的元素和硼同位素变化: 对岩浆熔体演化的见解. 岩石学报, 40(8): 2334-2352.
      赵振华, 马林, 2025. 花岗伟晶岩与花岗岩的关系. 地球科学, 1-65. doi: 10.3799/dqkx.2025.018
      郑贝琪, 陈斌, 孙杨, 2023. 阿尔泰青河伟晶岩中电气石成分和硼同位素对伟晶岩体系演化及其与围岩相互作用的示踪. 岩石学报, 39(1): 187-204.
    • 袁晶 附表.xlsx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)

      Article views (142) PDF downloads(14) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return