| Citation: | Ma Jingya, Lü Yiwen, Wang Shuijiong, 2025. Geochemical Behaviors of Nickel Isotope in Marine Sediments. Earth Science, 50(11): 4459-4472. doi: 10.3799/dqkx.2025.159 |
|
Alvarez, C. C., Quitté, G., Schott, J., et al., 2021. Nickel Isotope Fractionation as a Function of Carbonate Growth Rate during Ni Coprecipitation with Calcite. Geochimica et Cosmochimica Acta, 299: 184-198. https://doi.org/10.1016/j.gca.2021.02.019
|
|
Archer, C., Vance, D., Milne, A., et al., 2020. The Oceanic Biogeochemistry of Nickel and Its Isotopes: New Data from the South Atlantic and the Southern Ocean Biogeochemical Divide. Earth and Planetary Science Letters, 535: 116118. https://doi.org/10.1016/j.epsl.2020.116118
|
|
Atkins, A. L., Shaw, S., Peacock, C. L., 2016. Release of Ni from Birnessite during Transformation of Birnessite to Todorokite: Implications for Ni Cycling in Marine Sediments. Geochimica et Cosmochimica Acta, 189: 158-183. https://doi.org/10.1016/j.gca.2016.06.007
|
|
Baransky, E. J., Hardisty, D. S., Rolison, J. M., et al., 2025. Assessing the Fidelity of Shallow-Water Carbonates as Records of the Ni Isotope Composition of Surface Seawater. Geochimica et Cosmochimica Acta, 402: 16-31. https://doi.org/10.1016/j.gca.2025.06.021
|
|
Bian, X. P., Yang, S. C., Raad, R. J., et al., 2024a. Distribution and Cycling of Nickel and Nickel Isotopes in the Pacific Ocean. Geophysical Research Letters, 51(16): e2024GL111115. https://doi.org/10.1029/2024GL111115
|
|
Bian, X. P., Yang, S. C., Raad, R. J., et al., 2024b. A Benthic Source of Isotopically Heavy Ni from Continental Margins and Implications for Global Ocean Ni Isotope Mass Balance. Earth and Planetary Science Letters, 645: 118951. https://doi.org/10.1016/j.epsl.2024.118951
|
|
Böning, P., Fröllje, H., Beck, M., et al., 2012. Underestimation of the Authigenic Fraction of Cu and Ni in Organic-Rich Sediments. Marine Geology, 323-325: 24-28. https://doi.org/10.1016/j.margeo.2012.07.004
|
|
Böning, P., Shaw, T., Pahnke, K., et al., 2015. Nickel as Indicator of Fresh Organic Matter in Upwelling Sediments. Geochimica et Cosmochimica Acta, 162: 99-108. https://doi.org/10.1016/j.gca.2015.04.027
|
|
Bruggmann, S., McManus, J., Archer, C., et al., 2024. Nickel's Behaviour in Marine Sediments under Aerobic to Anaerobic Diagenetic Conditions. Chemical Geology, 662: 122234. https://doi.org/10.1016/j.chemgeo.2024.122234
|
|
Cameron, V., Vance, D., 2014. Heavy Nickel Isotope Compositions in Rivers and the Oceans. Geochimica et Cosmochimica Acta, 128: 195-211. https://doi.org/10.1016/j.gca.2013.12.007
|
|
Cameron, V., Vance, D., Archer, C., et al., 2009. A Biomarker Based on the Stable Isotopes of Nickel. Proceedings of the National Academy of Sciences, 106(27): 10944-10948. https://doi.org/10.1073/pnas.0900726106
|
|
Charbonnier, Q., Rickli, J., Archer, C., et al., 2024. The Influence of Secondary Weathering Processes on Dissolved Nickel Isotope Compositions under Cold Climatic Conditions-Observations from the Mackenzie Basin. Geochimica et Cosmochimica Acta, 364: 10-21. https://doi.org/10.1016/j.gca.2023.10.026
|
|
Chen, C., Wang, J. S., Algeo, T. J., et al., 2023. Sulfate-Driven Anaerobic Oxidation of Methane Inferred from Trace-Element Chemistry and Nickel Isotopes of Pyrite. Geochimica et Cosmochimica Acta, 349: 81-95. https://doi.org/10.1016/j.gca.2023.04.002
|
|
Ciscato, E. R., Bontognali, T. R. R., Vance, D., 2018. Nickel and Its Isotopes in Organic-Rich Sediments: Implications for Oceanic Budgets and a Potential Record of Ancient Seawater. Earth and Planetary Science Letters, 494: 239-250. https://doi.org/10.1016/j.epsl.2018.04.061
|
|
Diehl, A., Bach, W., 2020. MARHYS (MARine HYdrothermal Solutions) Database: A Global Compilation of Marine Hydrothermal Vent Fluid, End Member, and Seawater Compositions. Geochemistry, Geophysics, Geosystems, 21(12): e2020GC009385. https://doi.org/10.1029/2020GC009385
|
|
Elliott, T., Steele, R. C. J., 2017. The Isotope Geochemistry of Ni. Reviews in Mineralogy and Geochemistry, 82(1): 511-542. https://doi.org/10.2138/rmg.2017.82.12
|
|
Fleischmann, S., Du, J. H., Chatterjee, A., et al., 2023. The Nickel Output to Abyssal Pelagic Manganese Oxides: A Balanced Elemental and Isotope Budget for the Oceans. Earth and Planetary Science Letters, 619: 118301. https://doi.org/10.1016/j.epsl.2023.118301
|
|
Fleischmann, S., Scholz, F., Du, J. H., et al., 2025. Processes Controlling Nickel and Its Isotopes in Anoxic Sediments of a Seasonally Hypoxic Bay. Geochimica et Cosmochimica Acta, 391: 1-15. https://doi.org/10.1016/j.gca.2025.01.016
|
|
Fujii, T., Moynier, F., Dauphas, N., et al., 2011. Theoretical and Experimental Investigation of Nickel Isotopic Fractionation in Species Relevant to Modern and Ancient Oceans. Geochimica et Cosmochimica Acta, 75(2): 469-482. https://doi.org/10.1016/j.gca.2010.11.003
|
|
Gall, L., Williams, H. M., Siebert, C., et al., 2013. Nickel Isotopic Compositions of Ferromanganese Crusts and the Constancy of Deep Ocean Inputs and Continental Weathering Effects over the Cenozoic. Earth and Planetary Science Letters, 375: 148-155. https://doi.org/10.1016/j.epsl.2013.05.019
|
|
Gueguen, B., Rouxel, O., Ponzevera, E., et al., 2013. Nickel Isotope Variations in Terrestrial Silicate Rocks and Geological Reference Materials Measured by MC-ICP-MS. Geostandards and Geoanalytical Research, 37(3): 297-317. https://doi.org/10.1111/j.1751-908X.2013.00209.x
|
|
Gueguen, B., Rouxel, O., Rouget, M. L., et al., 2016. Comparative Geochemistry of Four Ferromanganese Crusts from the Pacific Ocean and Significance for the Use of Ni Isotopes as Paleoceanographic Tracers. Geochimica et Cosmochimica Acta, 189: 214-235. https://doi.org/10.1016/j.gca.2016.06.005
|
|
Gueguen, B., Sorensen, J. V., Lalonde, S. V., et al., 2018. Variable Ni Isotope Fractionation between Fe-Oxyhydroxides and Implications for the Use of Ni Isotopes as Geochemical Tracers. Chemical Geology, 481: 38-52. https://doi.org/10.1016/j.chemgeo.2018.01.023
|
|
Gueguen, B., Rouxel, O., Fouquet, Y., 2021. Nickel Isotopes and Rare Earth Elements Systematics in Marine Hydrogenetic and Hydrothermal Ferromanganese Deposits. Chemical Geology, 560: 119999. https://doi.org/10.1016/j.chemgeo.2020.119999
|
|
He, Z. W., Archer, C., Yang, S. Y., et al., 2023. Sedimentary Cycling of Zinc and Nickel and Their Isotopes on an Upwelling Margin: Implications for Oceanic Budgets and Paleoenvironment Proxies. Geochimica et Cosmochimica Acta, 343: 84-97. https://doi.org/10.1016/j.gca.2022.12.026
|
|
Hohl, S. V., Bian, X. P., Viehmann, S., et al., 2025. A Novel Biomarker for Deep-Time Methanogenesis- Perspectives from Nickel Isotope Fractionation in Modern Microbialites. Earth and Planetary Science Letters, 666: 119492. https://doi.org/10.1016/j.epsl.2025.119492
|
|
John, S. G., Kelly, R. L., Bian, X. P., et al., 2022. The Biogeochemical Balance of Oceanic Nickel Cycling. Nature Geoscience, 15(11): 906-912. https://doi.org/10.1038/s41561-022-01045-7
|
|
Little, S. H., Archer, C., McManus, J., et al., 2020. Towards Balancing the Oceanic Ni Budget. Earth and Planetary Science Letters, 547: 116461. https://doi.org/10.1016/j.epsl.2020.116461
|
|
Lemaitre, N., Du, J. H., de Souza, G. F., et al., 2022. The Essential Bioactive Role of Nickel in the Oceans: Evidence from Nickel Isotopes. Earth and Planetary Science Letters, 584: 117513. https://doi.org/10.1016/j.epsl.2022.117513
|
|
Parigi, R., Pakostova, E., Reid, J. W., et al., 2022. Nickel Isotope Fractionation as an Indicator of Ni Sulfide Precipitation Associated with Microbially Mediated Sulfate Reduction. Environmental Science & Technology, 56(12): 7954-7962. https://pubs.acs.org/doi/10.1021/acs.est.2c00523 doi: 10.1021/acs.est.2c00523
|
|
Porter, S. J., Selby, D., Cameron, V., 2014. Characterising the Nickel Isotopic Composition of Organic-Rich Marine Sediments. Chemical Geology, 387: 12-21. https://doi.org/10.1016/j.chemgeo.2014.07.017
|
|
Ragsdale, S. W., 2009. Nickel-Based Enzyme Systems. Journal of Biological Chemistry, 284(28): 18571-18575. https://doi.org/10.1074/jbc.R900020200
|
|
Revels, B. N., Rickli, J., Moura, C. A. V., et al., 2021. Nickel and Its Isotopes in the Amazon Basin: The Impact of the Weathering Regime and Delivery to the Oceans. Geochimica et Cosmochimica Acta, 293: 344-364. https://doi.org/10.1016/j.gca.2020.11.005
|
|
Sorensen, J. V., Gueguen, B., Stewart, B. D., et al., 2020. Large Nickel Isotope Fractionation Caused by Surface Complexation Reactions with Hexagonal Birnessite. Chemical Geology, 537: 119481. https://doi.org/10.1016/j.chemgeo.2020.119481
|
|
Spivak-Birndorf, L. J., Wang, S. J., Bish, D. L., et al., 2018. Nickel Isotope Fractionation during Continental Weathering. Chemical Geology, 476: 316-326. https://doi.org/10.1016/j.chemgeo.2017.11.028
|
|
Selden, C. R., Schilling, K., Basu, A., et al., 2025. Amino Acid Complexation Fractionates Nickel Isotopes: Implications for Tracing Nickel Cycling in the Environment. Environmental Science & Technology Letters, 12(3): 283-288. https://pubs.acs.org/doi/10.1021/acs.estlett.4c01060 doi: 10.1021/acs.estlett.4c01060
|
|
Takano, S., Liao, W. H., Ho, T. Y., et al., 2022. Isotopic Evolution of Dissolved Ni, Cu, and Zn along the Kuroshio through the East China Sea. Marine Chemistry, 243: 104135. https://doi.org/10.1016/j.marchem.2022.104135
|
|
Takano, S., Tanimizu, M., Hirata, T., et al., 2017. A Simple and Rapid Method for Isotopic Analysis of Nickel, Copper, and Zinc in Seawater Using Chelating Extraction and Anion Exchange. Analytica Chimica Acta, 967: 1-11. https://doi.org/10.1016/j.aca.2017.03.010
|
|
Vance, D., Little, S. H., Archer, C., et al., 2016. The Oceanic Budgets of Nickel and Zinc Isotopes: The Importance of Sulfidic Environments as Illustrated by the Black Sea. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 374(2081): 20150294. https://doi.org/10.1098/rsta.2015.0294
|
|
Wasylenki, L. E., Howe, H. D., Spivak-Birndorf, L. J., et al., 2015. Ni Isotope Fractionation during Sorption to Ferrihydrite: Implications for Ni in Banded Iron Formations. Chemical Geology, 400: 56-64. https://doi.org/10.1016/j.chemgeo.2015.02.007
|
|
Wasylenki, L. E., Wells, R. M., Spivak-Birndorf, L. J., et al., 2024. Toward Mending the Marine Mass Balance Model for Nickel: Experimentally Determined Isotope Fractionation during Ni Sorption to Birnessite. Geochimica et Cosmochimica Acta, 379: 76-88. https://doi.org/10.1016/j.gca.2024.06.022
|
|
Wang, R. M., Archer, C., Bowie, A. R., et al., 2019a. Zinc and Nickel Isotopes in Seawater from the Indian Sector of the Southern Ocean: The Impact of Natural Iron Fertilization versus Southern Ocean Hydrography and Biogeochemistry. Chemical Geology, 511: 452-464. https://doi.org/10.1016/j.chemgeo.2018.09.010
|
|
Wang, S. J., Rudnick, R. L., Gaschnig, R. M., et al., 2019b. Methanogenesis Sustained by Sulfide Weathering during the Great Oxidation Event. Nature Geoscience, 12(4): 296-300. https://doi.org/10.1038/s41561-019-0320-z
|
|
Wang, S. J., Wasylenki, L. E., 2017. Experimental Constraints on Reconstruction of Archean Seawater Ni Isotopic Composition from Banded Iron Formations. Geochimica et Cosmochimica Acta, 206: 137-150. https://doi.org/10.1016/j.gca.2017.02.023
|
|
Yang, S. C., Hawco, N. J., Pinedo-González, P., et al., 2020. A New Purification Method for Ni and Cu Stable Isotopes in Seawater Provides Evidence for Widespread Ni Isotope Fractionation by Phytoplankton in the North Pacific. Chemical Geology, 547: 119662. https://doi.org/10.1016/j.chemgeo.2020.119662
|
|
Yang, S. C., Kelly, R. L., Bian, X. P., et al., 2021. Lack of Redox Cycling for Nickel in the Water Column of the Eastern Tropical North Pacific Oxygen Deficient Zone: Insight from Dissolved and Particulate Nickel Isotopes. Geochimica et Cosmochimica Acta, 309: 235-250. https://doi.org/10.1016/j.gca.2021.07.004
|