• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 11
    Nov.  2025
    Turn off MathJax
    Article Contents
    Ma Jingya, Lü Yiwen, Wang Shuijiong, 2025. Geochemical Behaviors of Nickel Isotope in Marine Sediments. Earth Science, 50(11): 4459-4472. doi: 10.3799/dqkx.2025.159
    Citation: Ma Jingya, Lü Yiwen, Wang Shuijiong, 2025. Geochemical Behaviors of Nickel Isotope in Marine Sediments. Earth Science, 50(11): 4459-4472. doi: 10.3799/dqkx.2025.159

    Geochemical Behaviors of Nickel Isotope in Marine Sediments

    doi: 10.3799/dqkx.2025.159
    • Received Date: 2025-06-13
    • Publish Date: 2025-11-25
    • The nickel isotope system serves as a crucial tool for investigating the sources, migration, transformation, and cycling processes of nickel in the ocean. Marine sediments play a vital role in the geochemical cycling of nickel, functioning both as a "source" and a "sink" for the element. The nickel isotopic composition can record key information about the nickel cycling process in seawater. In this paper it systematically summarizes the nickel isotopic compositions of seawater and major marine reservoirs, including riverine inputs, hydrothermal systems, and diverse marine sediments (iron-manganese oxide deposits, anoxic sediments, and carbonate sediments). It analyzes nickel isotopic compositions and their interrelationships, and delves into the fractionation mechanisms of nickel isotopes between sediments and seawater and their implications for reconstructing palaeoceanographic environments. The findings demonstrate that nickel isotope possesses unique advantages in tracing changes in palaeoceanographic productivity, sulfur-rich environmental evolution, and the mass balance of the global nickel cycle.

       

    • loading
    • Alvarez, C. C., Quitté, G., Schott, J., et al., 2021. Nickel Isotope Fractionation as a Function of Carbonate Growth Rate during Ni Coprecipitation with Calcite. Geochimica et Cosmochimica Acta, 299: 184-198. https://doi.org/10.1016/j.gca.2021.02.019
      Archer, C., Vance, D., Milne, A., et al., 2020. The Oceanic Biogeochemistry of Nickel and Its Isotopes: New Data from the South Atlantic and the Southern Ocean Biogeochemical Divide. Earth and Planetary Science Letters, 535: 116118. https://doi.org/10.1016/j.epsl.2020.116118
      Atkins, A. L., Shaw, S., Peacock, C. L., 2016. Release of Ni from Birnessite during Transformation of Birnessite to Todorokite: Implications for Ni Cycling in Marine Sediments. Geochimica et Cosmochimica Acta, 189: 158-183. https://doi.org/10.1016/j.gca.2016.06.007
      Baransky, E. J., Hardisty, D. S., Rolison, J. M., et al., 2025. Assessing the Fidelity of Shallow-Water Carbonates as Records of the Ni Isotope Composition of Surface Seawater. Geochimica et Cosmochimica Acta, 402: 16-31. https://doi.org/10.1016/j.gca.2025.06.021
      Bian, X. P., Yang, S. C., Raad, R. J., et al., 2024a. Distribution and Cycling of Nickel and Nickel Isotopes in the Pacific Ocean. Geophysical Research Letters, 51(16): e2024GL111115. https://doi.org/10.1029/2024GL111115
      Bian, X. P., Yang, S. C., Raad, R. J., et al., 2024b. A Benthic Source of Isotopically Heavy Ni from Continental Margins and Implications for Global Ocean Ni Isotope Mass Balance. Earth and Planetary Science Letters, 645: 118951. https://doi.org/10.1016/j.epsl.2024.118951
      Böning, P., Fröllje, H., Beck, M., et al., 2012. Underestimation of the Authigenic Fraction of Cu and Ni in Organic-Rich Sediments. Marine Geology, 323-325: 24-28. https://doi.org/10.1016/j.margeo.2012.07.004
      Böning, P., Shaw, T., Pahnke, K., et al., 2015. Nickel as Indicator of Fresh Organic Matter in Upwelling Sediments. Geochimica et Cosmochimica Acta, 162: 99-108. https://doi.org/10.1016/j.gca.2015.04.027
      Bruggmann, S., McManus, J., Archer, C., et al., 2024. Nickel's Behaviour in Marine Sediments under Aerobic to Anaerobic Diagenetic Conditions. Chemical Geology, 662: 122234. https://doi.org/10.1016/j.chemgeo.2024.122234
      Cameron, V., Vance, D., 2014. Heavy Nickel Isotope Compositions in Rivers and the Oceans. Geochimica et Cosmochimica Acta, 128: 195-211. https://doi.org/10.1016/j.gca.2013.12.007
      Cameron, V., Vance, D., Archer, C., et al., 2009. A Biomarker Based on the Stable Isotopes of Nickel. Proceedings of the National Academy of Sciences, 106(27): 10944-10948. https://doi.org/10.1073/pnas.0900726106
      Charbonnier, Q., Rickli, J., Archer, C., et al., 2024. The Influence of Secondary Weathering Processes on Dissolved Nickel Isotope Compositions under Cold Climatic Conditions-Observations from the Mackenzie Basin. Geochimica et Cosmochimica Acta, 364: 10-21. https://doi.org/10.1016/j.gca.2023.10.026
      Chen, C., Wang, J. S., Algeo, T. J., et al., 2023. Sulfate-Driven Anaerobic Oxidation of Methane Inferred from Trace-Element Chemistry and Nickel Isotopes of Pyrite. Geochimica et Cosmochimica Acta, 349: 81-95. https://doi.org/10.1016/j.gca.2023.04.002
      Ciscato, E. R., Bontognali, T. R. R., Vance, D., 2018. Nickel and Its Isotopes in Organic-Rich Sediments: Implications for Oceanic Budgets and a Potential Record of Ancient Seawater. Earth and Planetary Science Letters, 494: 239-250. https://doi.org/10.1016/j.epsl.2018.04.061
      Diehl, A., Bach, W., 2020. MARHYS (MARine HYdrothermal Solutions) Database: A Global Compilation of Marine Hydrothermal Vent Fluid, End Member, and Seawater Compositions. Geochemistry, Geophysics, Geosystems, 21(12): e2020GC009385. https://doi.org/10.1029/2020GC009385
      Elliott, T., Steele, R. C. J., 2017. The Isotope Geochemistry of Ni. Reviews in Mineralogy and Geochemistry, 82(1): 511-542. https://doi.org/10.2138/rmg.2017.82.12
      Fleischmann, S., Du, J. H., Chatterjee, A., et al., 2023. The Nickel Output to Abyssal Pelagic Manganese Oxides: A Balanced Elemental and Isotope Budget for the Oceans. Earth and Planetary Science Letters, 619: 118301. https://doi.org/10.1016/j.epsl.2023.118301
      Fleischmann, S., Scholz, F., Du, J. H., et al., 2025. Processes Controlling Nickel and Its Isotopes in Anoxic Sediments of a Seasonally Hypoxic Bay. Geochimica et Cosmochimica Acta, 391: 1-15. https://doi.org/10.1016/j.gca.2025.01.016
      Fujii, T., Moynier, F., Dauphas, N., et al., 2011. Theoretical and Experimental Investigation of Nickel Isotopic Fractionation in Species Relevant to Modern and Ancient Oceans. Geochimica et Cosmochimica Acta, 75(2): 469-482. https://doi.org/10.1016/j.gca.2010.11.003
      Gall, L., Williams, H. M., Siebert, C., et al., 2013. Nickel Isotopic Compositions of Ferromanganese Crusts and the Constancy of Deep Ocean Inputs and Continental Weathering Effects over the Cenozoic. Earth and Planetary Science Letters, 375: 148-155. https://doi.org/10.1016/j.epsl.2013.05.019
      Gueguen, B., Rouxel, O., Ponzevera, E., et al., 2013. Nickel Isotope Variations in Terrestrial Silicate Rocks and Geological Reference Materials Measured by MC-ICP-MS. Geostandards and Geoanalytical Research, 37(3): 297-317. https://doi.org/10.1111/j.1751-908X.2013.00209.x
      Gueguen, B., Rouxel, O., Rouget, M. L., et al., 2016. Comparative Geochemistry of Four Ferromanganese Crusts from the Pacific Ocean and Significance for the Use of Ni Isotopes as Paleoceanographic Tracers. Geochimica et Cosmochimica Acta, 189: 214-235. https://doi.org/10.1016/j.gca.2016.06.005
      Gueguen, B., Sorensen, J. V., Lalonde, S. V., et al., 2018. Variable Ni Isotope Fractionation between Fe-Oxyhydroxides and Implications for the Use of Ni Isotopes as Geochemical Tracers. Chemical Geology, 481: 38-52. https://doi.org/10.1016/j.chemgeo.2018.01.023
      Gueguen, B., Rouxel, O., Fouquet, Y., 2021. Nickel Isotopes and Rare Earth Elements Systematics in Marine Hydrogenetic and Hydrothermal Ferromanganese Deposits. Chemical Geology, 560: 119999. https://doi.org/10.1016/j.chemgeo.2020.119999
      He, Z. W., Archer, C., Yang, S. Y., et al., 2023. Sedimentary Cycling of Zinc and Nickel and Their Isotopes on an Upwelling Margin: Implications for Oceanic Budgets and Paleoenvironment Proxies. Geochimica et Cosmochimica Acta, 343: 84-97. https://doi.org/10.1016/j.gca.2022.12.026
      Hohl, S. V., Bian, X. P., Viehmann, S., et al., 2025. A Novel Biomarker for Deep-Time Methanogenesis- Perspectives from Nickel Isotope Fractionation in Modern Microbialites. Earth and Planetary Science Letters, 666: 119492. https://doi.org/10.1016/j.epsl.2025.119492
      John, S. G., Kelly, R. L., Bian, X. P., et al., 2022. The Biogeochemical Balance of Oceanic Nickel Cycling. Nature Geoscience, 15(11): 906-912. https://doi.org/10.1038/s41561-022-01045-7
      Little, S. H., Archer, C., McManus, J., et al., 2020. Towards Balancing the Oceanic Ni Budget. Earth and Planetary Science Letters, 547: 116461. https://doi.org/10.1016/j.epsl.2020.116461
      Lemaitre, N., Du, J. H., de Souza, G. F., et al., 2022. The Essential Bioactive Role of Nickel in the Oceans: Evidence from Nickel Isotopes. Earth and Planetary Science Letters, 584: 117513. https://doi.org/10.1016/j.epsl.2022.117513
      Parigi, R., Pakostova, E., Reid, J. W., et al., 2022. Nickel Isotope Fractionation as an Indicator of Ni Sulfide Precipitation Associated with Microbially Mediated Sulfate Reduction. Environmental Science & Technology, 56(12): 7954-7962. https://pubs.acs.org/doi/10.1021/acs.est.2c00523 doi: 10.1021/acs.est.2c00523
      Porter, S. J., Selby, D., Cameron, V., 2014. Characterising the Nickel Isotopic Composition of Organic-Rich Marine Sediments. Chemical Geology, 387: 12-21. https://doi.org/10.1016/j.chemgeo.2014.07.017
      Ragsdale, S. W., 2009. Nickel-Based Enzyme Systems. Journal of Biological Chemistry, 284(28): 18571-18575. https://doi.org/10.1074/jbc.R900020200
      Revels, B. N., Rickli, J., Moura, C. A. V., et al., 2021. Nickel and Its Isotopes in the Amazon Basin: The Impact of the Weathering Regime and Delivery to the Oceans. Geochimica et Cosmochimica Acta, 293: 344-364. https://doi.org/10.1016/j.gca.2020.11.005
      Sorensen, J. V., Gueguen, B., Stewart, B. D., et al., 2020. Large Nickel Isotope Fractionation Caused by Surface Complexation Reactions with Hexagonal Birnessite. Chemical Geology, 537: 119481. https://doi.org/10.1016/j.chemgeo.2020.119481
      Spivak-Birndorf, L. J., Wang, S. J., Bish, D. L., et al., 2018. Nickel Isotope Fractionation during Continental Weathering. Chemical Geology, 476: 316-326. https://doi.org/10.1016/j.chemgeo.2017.11.028
      Selden, C. R., Schilling, K., Basu, A., et al., 2025. Amino Acid Complexation Fractionates Nickel Isotopes: Implications for Tracing Nickel Cycling in the Environment. Environmental Science & Technology Letters, 12(3): 283-288. https://pubs.acs.org/doi/10.1021/acs.estlett.4c01060 doi: 10.1021/acs.estlett.4c01060
      Takano, S., Liao, W. H., Ho, T. Y., et al., 2022. Isotopic Evolution of Dissolved Ni, Cu, and Zn along the Kuroshio through the East China Sea. Marine Chemistry, 243: 104135. https://doi.org/10.1016/j.marchem.2022.104135
      Takano, S., Tanimizu, M., Hirata, T., et al., 2017. A Simple and Rapid Method for Isotopic Analysis of Nickel, Copper, and Zinc in Seawater Using Chelating Extraction and Anion Exchange. Analytica Chimica Acta, 967: 1-11. https://doi.org/10.1016/j.aca.2017.03.010
      Vance, D., Little, S. H., Archer, C., et al., 2016. The Oceanic Budgets of Nickel and Zinc Isotopes: The Importance of Sulfidic Environments as Illustrated by the Black Sea. Philosophical Transactions of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 374(2081): 20150294. https://doi.org/10.1098/rsta.2015.0294
      Wasylenki, L. E., Howe, H. D., Spivak-Birndorf, L. J., et al., 2015. Ni Isotope Fractionation during Sorption to Ferrihydrite: Implications for Ni in Banded Iron Formations. Chemical Geology, 400: 56-64. https://doi.org/10.1016/j.chemgeo.2015.02.007
      Wasylenki, L. E., Wells, R. M., Spivak-Birndorf, L. J., et al., 2024. Toward Mending the Marine Mass Balance Model for Nickel: Experimentally Determined Isotope Fractionation during Ni Sorption to Birnessite. Geochimica et Cosmochimica Acta, 379: 76-88. https://doi.org/10.1016/j.gca.2024.06.022
      Wang, R. M., Archer, C., Bowie, A. R., et al., 2019a. Zinc and Nickel Isotopes in Seawater from the Indian Sector of the Southern Ocean: The Impact of Natural Iron Fertilization versus Southern Ocean Hydrography and Biogeochemistry. Chemical Geology, 511: 452-464. https://doi.org/10.1016/j.chemgeo.2018.09.010
      Wang, S. J., Rudnick, R. L., Gaschnig, R. M., et al., 2019b. Methanogenesis Sustained by Sulfide Weathering during the Great Oxidation Event. Nature Geoscience, 12(4): 296-300. https://doi.org/10.1038/s41561-019-0320-z
      Wang, S. J., Wasylenki, L. E., 2017. Experimental Constraints on Reconstruction of Archean Seawater Ni Isotopic Composition from Banded Iron Formations. Geochimica et Cosmochimica Acta, 206: 137-150. https://doi.org/10.1016/j.gca.2017.02.023
      Yang, S. C., Hawco, N. J., Pinedo-González, P., et al., 2020. A New Purification Method for Ni and Cu Stable Isotopes in Seawater Provides Evidence for Widespread Ni Isotope Fractionation by Phytoplankton in the North Pacific. Chemical Geology, 547: 119662. https://doi.org/10.1016/j.chemgeo.2020.119662
      Yang, S. C., Kelly, R. L., Bian, X. P., et al., 2021. Lack of Redox Cycling for Nickel in the Water Column of the Eastern Tropical North Pacific Oxygen Deficient Zone: Insight from Dissolved and Particulate Nickel Isotopes. Geochimica et Cosmochimica Acta, 309: 235-250. https://doi.org/10.1016/j.gca.2021.07.004
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)

      Article views (184) PDF downloads(18) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return