| Citation: | Kong Shaofei, Qin Xujing, Wang Tingting, Xiang Xuan, Cao Juan, Jiang Weisi, Wang Shu, 2025. Research Progress on Physical-Chemical Characteristics, Influencing Factors, and Emission Inventory Estimation of Soluble Iron in Anthropogenic Atmospheric Aerosols. Earth Science, 50(9): 3422-3440. doi: 10.3799/dqkx.2025.161 | 
Soluble iron in atmospheric aerosols substantially influences marine primary productivity, climate change, secondary atmospheric pollution, and human health. Identifying sources and developing high-accuracy emission inventories of soluble iron are fundamental for refining biogeochemical models to simulate iron deposition fluxes and marine productivity, improving atmospheric chemistry transport models for secondary aerosol simulations and quantifying the sources and contributions of soluble iron affecting human health. This study systematically reviews the source apportionment of iron and soluble iron in atmospheric aerosols, the key factors and underlying mechanisms governing iron solubility, and recent methodological advances in sampling and characterization of combustion-derived iron-containing aerosols. With particular focus on emission inventory development for combustion-related soluble iron, we critically examine current methodologies and identify persistent challenges. It is expected the summarization here provides a basic dataset and theoretical frameworks for accurate assessment of iron's climatic, environmental and health impacts.
	                | 
					 Alpert, P. A., Dou, J., Arroyo, P. C., et al., 2021. Photolytic Radical Persistence Due to Anoxia in Viscous Aerosol Particles. Nature Communications, 12(1): 1769.  https://doi.org/10.1038/s41467-021-21913-x 
						
					 | 
			
| 
					 Baker, A. R., Jickells, T. D., 2006. Mineral Particle Size as a Control on Aerosol Iron Solubility. Geophysical Research Letters, 33(17): L17608.  https://doi.org/10.1029/2006GL026557 
						
					 | 
			
| 
					 Behrenfeld, M. J., Bale, A. J., Kolber, Z. S., et al., 1996. Confirmation of Iron Limitation of Phytoplankton Photosynthesis in the Equatorial Pacific Ocean. Nature, 383: 508-511.  https://doi.org/10.1038/383508a0 
						
					 | 
			
| 
					 Bond, T. C., Streets, D. G., Yarber, K. F., et al., 2004. A Technology-Based Global Inventory of Black and Organic Carbon Emissions from Combustion. Journal of Geophysical Research: Atmospheres, 109(D14): 2003JD003697.  https://doi.org/10.1029/2003jd003697 
						
					 | 
			
| 
					 Bowie, A. R., Lannuzel, D., Remenyi, T. A., et al., 2009. Biogeochemical Iron Budgets of the Southern Ocean South of Australia: Decoupling of Iron and Nutrient Cycles in the Subantarctic Zone by the Summertime Supply. Global Biogeochemical Cycles, 23(4): 2009GB003500.  https://doi.org/10.1029/2009gb003500 
						
					 | 
			
| 
					 Cartledge, B. T., Marcotte, A. R., Herckes, P., et al., 2015. The Impact of Particle Size, Relative Humidity, and Sulfur Dioxide on Iron Solubility in Simulated Atmospheric Marine Aerosols. Environmental Science & Technology, 49(12): 7179-7187.  https://doi.org/10.1021/acs.est.5b02452 
						
					 | 
			
| 
					 Castranova, V., Vallyathan, V., Ramsey, D. M., et al., 1997. Augmentation of Pulmonary Reactions to Quartz Inhalation by Trace Amounts of Iron-Containing Particles. Environmental Health Perspectives, 105: 1319-1324.  https://doi.org/10.2307/3433554 
						
					 | 
			
| 
					 Chen, H. H., Laskin, A., Baltrusaitis, J., et al., 2012. Coal Fly Ash as a Source of Iron in Atmospheric Dust. Environmental Science & Technology, 46(4): 2112-2120.  https://doi.org/10.1021/es204102f 
						
					 | 
			
| 
					 Chen, Y. Z., Wang, Z. Y., Fang, Z. Y., et al., 2024. Dominant Contribution of Non-Dust Primary Emissions and Secondary Processes to Dissolved Aerosol Iron. Environmental Science & Technology, 58(39): 17355-17363.  https://doi.org/10.1021/acs.est.4c05816 
						
					 | 
			
| 
					 Chuang, P. Y., Duvall, R. M., Shafer, M. M., et al., 2005. The Origin of Water Soluble Particulate Iron in the Asian Atmospheric Outflow. Geophysical Research Letters, 32(7): 2004GL021946.  https://doi.org/10.1029/2004gl021946 
						
					 | 
			
| 
					 Conway, T. M., Hamilton, D. S., Shelley, R. U., et al., 2019. Tracing and Constraining Anthropogenic Aerosol Iron Fluxes to the North Atlantic Ocean Using Iron Isotopes. Nature Communications, 10(1): 2628.  https://doi.org/10.1038/s41467-019-10457-w 
						
					 | 
			
| 
					 Cwiertny, D. M., Baltrusaitis, J., Hunter, G. J., et al., 2008. Characterization and Acid-Mobilization Study of Iron-Containing Mineral Dust Source Materials. Journal of Geophysical Research: Atmospheres, 113(D5): 2007JD009332.  https://doi.org/10.1029/2007jd009332 
						
					 | 
			
| 
					 Dentener, F. J., Carmichael, G. R., Zhang, Y., et al., 1996. Role of Mineral Aerosol as a Reactive Surface in the Global Troposphere. Journal of Geophysical Research: Atmospheres, 101(D17): 22869-22889 https://doi.org/10.1029/96JD01818 
						
					 | 
			
| 
					 Desboeufs, K. V., Sofikitis, A., Losno, R., et al., 2005. Dissolution and Solubility of Trace Metals from Natural and Anthropogenic Aerosol Particulate Matter. Chemosphere, 58(2): 195-203.  https://doi.org/10.1016/j.chemosphere.2004.02.025 
						
					 | 
			
| 
					 Du, Z. H., Xiao, Z. D., Zhang, Z., 2020. Studies of the Iron Biogeochemical Cycle in Snow and Ice from the Three Poles. Chinese Journal of Nature, 42(5): 413-420 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Flament, P., Mattielli, N., Aimoz, L., et al., 2008. Iron Isotopic Fractionation in Industrial Emissions and Urban Aerosols. Chemosphere, 73(11): 1793-1798.  https://doi.org/10.1016/j.chemosphere.2008.08.042 
						
					 | 
			
| 
					 Fu, H. B., Lin, J., Shang, G. F., et al., 2012. Solubility of Iron from Combustion Source Particles in Acidic Media Linked to Iron Speciation. Environmental Science & Technology, 46(20): 11119-11127.  https://doi.org/10.1021/es302558m 
						
					 | 
			
| 
					 Guo, J., Tilgner, A., Yeung, C., et al., 2014. Atmospheric Peroxides in a Polluted Subtropical Environment: Seasonal Variation, Sources and Sinks, and Importance of Heterogeneous Processes. Environmental Science & Technology, 48(3): 1443-1450.  https://doi.org/10.1021/es403229x 
						
					 | 
			
| 
					 Guo, L., 2013. Effects of Asian Dust on the Atmospheric Input of Trace Elements over the East China Sea (Dissertation). Fudan University, Shanghai (in Chinese with English abstract). 
						
					 | 
			
| 
					 Han, X. K., Dong, X. Y., Liu, C. Q., et al., 2023. Multiple Sulfur Isotopic Evidence for Sulfate Formation in Haze Pollution. Environmental Science & Technology, 57(49): 20647-20656.  https://doi.org/10.1021/acs.est.3c05072 
						
					 | 
			
| 
					 Hu, H., Liu, C., Yang, F., et al., 2023. Mechanism Changing Iron Solubility and Oxidative Potential Associated with PM2.5 during Outdoor-to-Indoor Transport. Atmospheric Environment, 308: 119879.  https://doi.org/10.1016/j.atmosenv.2023.119879 
						
					 | 
			
| 
					 Huang, R. J., Cheng, R., Jing, M., et al., 2018. Source-Specific Health Risk Analysis on Particulate Trace Elements: Coal Combustion and Traffic Emission as Major Contributors in Wintertime Beijing. Environmental Science & Technology, 52(19): 10967-10974.  https://doi.org/10.1021/acs.est.8b02091 
						
					 | 
			
| 
					 Ito, A., 2013. Global Modeling Study of Potentially Bioavailable Iron Input from Shipboard Aerosol Sources to the Ocean. Global Biogeochemical Cycles, 27(1): 1-10.  https://doi.org/10.1029/2012gb004378 
						
					 | 
			
| 
					 Ito, A., 2015. Atmospheric Processing of Combustion Aerosols as a Source of Bioavailable Iron. Environmental Science & Technology Letters, 2(3): 70-75.  https://doi.org/10.1021/acs.estlett.5b00007 
						
					 | 
			
| 
					 Ito, A., Feng, Y., 2010. Role of Dust Alkalinity in Acid Mobilization of Iron. Atmospheric Chemistry and Physics, 10(19): 9237-9250.  https://doi.org/10.5194/acp-10-9237-2010 
						
					 | 
			
| 
					 Ito, A., Lin, G., Penner, J. E., 2018. Radiative Forcing by Light-Absorbing Aerosols of Pyrogenetic Iron Oxides. Scientific Reports,  8: 7347.  https://doi.org/10.1038/s41598-018-25756-3 
						
					 | 
			
| 
					 Ito, A., Miyakawa, T., 2023. Aerosol Iron from Metal Production as a Secondary Source of Bioaccessible Iron. Environmental Science & Technology, 57(10): 4091-4100.  https://doi.org/10.1021/acs.est.2c06472 
						
					 | 
			
| 
					 Ito, A., Myriokefalitakis, S., Kanakidou, M., et al., 2019. Pyrogenic Iron: The Missing Link to High Iron Solubility in Aerosols. Science Advances, 5(5): eaau7671.  https://doi.org/10.1126/sciadv.aau7671 
						
					 | 
			
| 
					 Ito, A., Shi, Z., 2016. Delivery of Anthropogenic Bioavailable Iron from Mineral Dust and Combustion Aerosols to the Ocean. Atmospheric Chemistry and Physics, 16(1): 85-99.  https://doi.org/10.5194/acp-16-85-2016 
						
					 | 
			
| 
					 Journet, E., Desboeufs, K. V., Caquineau, S., et al., 2008. Mineralogy as a Critical Factor of Dust Iron Solubility. Geophysical Research Letters, 35(7): 2007GL031589.  https://doi.org/10.1029/2007gl031589 
						
					 | 
			
| 
					 Kajino, M., Hagino, H., Fujitani, Y., et al., 2020. Modeling Transition Metals in East Asia and Japan and Its Emission Sources. GeoHealth, 4(9): e2020GH000259.  https://doi.org/10.1029/2020GH000259 
						
					 | 
			
| 
					 Kurisu, M., Sakata, K., Uematsu, M., et al., 2021. Contribution of Combustion Fe in Marine Aerosols over the Northwestern Pacific Estimated by Fe Stable Isotope Ratios. Atmospheric Chemistry and Physics, 21(20): 16027-16050.  https://doi.org/10.5194/acp-21-16027-2021 
						
					 | 
			
| 
					 Kurisu, M., Takahashi, Y., Iizuka, T., et al., 2016. Very Low Isotope Ratio of Iron in Fine Aerosols Related to Its Contribution to the Surface Ocean. Journal of Geophysical Research: Atmospheres, 121(18): 11119-11136.  https://doi.org/10.1002/2016jd024957 
						
					 | 
			
| 
					 Labatut, M., Lacan, F., Pradoux, C., et al., 2014. Iron Sources and Dissolved-Particulate Interactions in the Seawater of the Western Equatorial Pacific, Iron Isotope Perspectives. Global Biogeochemical Cycles, 28(10): 1044-1065.  https://doi.org/10.1002/2014gb004928 
						
					 | 
			
| 
					 Lei, Y. L., Li, D., Lu, D., et al., 2023. Insights into the Roles of Aerosol Soluble Iron in Secondary Aerosol Formation. Atmospheric Environment, 294: 119507.  https://doi.org/10.1016/j.atmosenv.2022.119507 
						
					 | 
			
| 
					 Li, J., Zhang, Y. L., Cao, F., et al., 2020. Stable Sulfur Isotopes Revealed a Major Role of Transition-Metal Ion-Catalyzed SO2 Oxidation in Haze Episodes. Environmental Science & Technology, 54(5): 2626-2634.  https://doi.org/10.1021/acs.est.9b07150 
						
					 | 
			
| 
					 Li, R., Zhang, H. H., Wang, F., et al., 2022. Mass Fractions, Solubility, Speciation and Isotopic Compositions of Iron in Coal and Municipal Waste Fly Ash. Science of the Total Environment, 838: 155974.  https://doi.org/10.1016/j.scitotenv.2022.155974 
						
					 | 
			
| 
					 Li, W. J., Xu, L., Liu, X. H., et al., 2017. Air Pollution-Aerosol Interactions Produce More Bioavailable Iron for Ocean Ecosystems. Science Advances, 3(3): e1601749.  https://doi.org/10.1126/sciadv.1601749 
						
					 | 
			
| 
					 Li, W., Ito, A., Wang, G., et al., 2025. Aqueous-phase Secondary Organic Aerosol Formation on Mineral Dust. National Science Review,  12(7): nwaf221.  https://doi.org/10.1093/nsr/nwaf221 
						
					 | 
			
| 
					 Liu, L., Li, W. J., Lin, Q. H., et al., 2022. Size-Dependent Aerosol Iron Solubility in an Urban Atmosphere. NPJ Climate and Atmospheric Science, 5: 53.  https://doi.org/10.1038/s41612-022-00277-z 
						
					 | 
			
| 
					 Liu, M., Matsui, H., Hamilton, D. S., et al., 2024. Representation of Iron Aerosol Size Distributions of Anthropogenic Emissions is Critical in Evaluating Atmospheric Soluble Iron Input to the Ocean. Atmospheric Chemistry and Physics, 24(22): 13115-13127.  https://doi.org/10.5194/acp-24-13115-2024 
						
					 | 
			
| 
					 López-García, P., Gelado-Caballero, M. D., Collado-Sánchez, C., et al., 2017. Solubility of Aerosol Trace Elements: Sources and Deposition Fluxes in the Canary Region. Atmospheric Environment, 148: 167-174.  https://doi.org/10.1016/j.atmosenv.2016.10.035 
						
					 | 
			
| 
					 Lu, B., Kong, S. F., Han, B., et al., 2011. Source Profile of TSP and PM10 from Coal-Fired Boilers. Journal of China Coal Society, 36(11): 1928-1933 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Luo, C., Mahowald, N., Bond, T., et al., 2008. Combustion Iron Distribution and Deposition. Global Biogeochemical Cycles, 22: 2007GB002964.  https://doi.org/10.1029/2007gb002964 
						
					 | 
			
| 
					 Mahowald, N. M., Hamilton, D. S., MacKey, K. R. M., et al., 2018. Aerosol Trace Metal Leaching and Impacts on Marine Microorganisms. Nature Communications, 9(1): 2614.  https://doi.org/10.1038/s41467-018-04970-7 
						
					 | 
			
| 
					 Majestic, B. J., Anbar, A. D., Herckes, P., 2009, Elemental and Iron Isotopic Composition of Aerosols Collected in a Parking Structure, Science of the Total Environment, 407(18): 5104-5109,  https://doi.org/10.1016/j.scitotenv.2009.05.053. 
						
					 | 
			
| 
					 Martin, J. H., 1990. Glacial-Interglacial CO2 Change: The Iron Hypothesis. Paleoceanography, 5(1): 1-13.  https://doi.org/10.1029/pa005i001p00001 
						
					 | 
			
| 
					 Martin, J. H., Coale, K. H., Johnson, K. S., et al., 1994. Testing the Iron Hypothesis in Ecosystems of the Equatorial Pacific Ocean. Nature, 371: 123-129.  https://doi.org/10.1038/371123a0 
						
					 | 
			
| 
					 Matsui, H., Mahowald, N. M., Moteki, N., et al., 2018. Anthropogenic Combustion Iron as a Complex Climate Forcer. Nature Communications, 9(1): 1593.  https://doi.org/10.1038/s41467-018-03997-0 
						
					 | 
			
| 
					 Mead, C., Herckes, P., Majestic, B. J., et al., 2013. Source Apportionment of Aerosol Iron in the Marine Environment Using Iron Isotope Analysis. Geophysical Research Letters, 40(21): 5722-5727.  https://doi.org/10.1002/2013gl057713 
						
					 | 
			
| 
					 Moteki, N., Adachi, K., Ohata, S., et al., 2017. Anthropogenic Iron Oxide Aerosols Enhance Atmospheric Heating. Nature Communications, 8: 15329.  https://doi.org/10.1038/ncomms15329 
						
					 | 
			
| 
					 Nguyen, T. B., Coggon, M. M., Flagan, R. C., et al., 2013. Reactive Uptake and Photo-Fenton Oxidation of Glycolaldehyde in Aerosol Liquid Water. Environmental Science & Technology, 47(9): 4307-4316.  https://doi.org/10.1021/es400538j 
						
					 | 
			
| 
					 Oakes, M., Ingall, E. D., Lai, B., et al., 2012. Iron Solubility Related to Particle Sulfur Content in Source Emission and Ambient Fine Particles. Environmental Science & Technology, 46(12): 6637-6644.  https://doi.org/10.1021/es300701c 
						
					 | 
			
| 
					 Ooki, A., Nishioka, J., Ono, T., et al., 2009. Size Dependence of Iron Solubility of Asian Mineral Dust Particles. Journal of Geophysical Research: Atmospheres, 114(D3): D03202.  https://doi.org/10.1029/2008JD010804 
						
					 | 
			
| 
					 Paris, R., Desboeufs, K. V., 2013. Effect of Atmospheric Organic Complexation on Iron-Bearing Dust Solubility. Atmospheric Chemistry and Physics, 13(9): 4895-4905.  https://doi.org/10.5194/acp-13-4895-2013 
						
					 | 
			
| 
					 Paris, R., Desboeufs, K. V., Formenti, P., et al., 2010. Chemical Characterisation of Iron in Dust and Biomass Burning Aerosols during AMMA-SOP0/DABEX: Implication for Iron Solubility. Atmospheric Chemistry and Physics, 10(9): 4273-4282.  https://doi.org/10.5194/acp-10-4273-2010 
						
					 | 
			
| 
					 Paris, R., Desboeufs, K. V., Journet, E., 2011. Variability of Dust Iron Solubility in Atmospheric Waters: Investigation of the Role of Oxalate Organic Complexation. Atmospheric Environment, 45(36): 6510-6517.  https://doi.org/10.1016/j.atmosenv.2011.08.068 
						
					 | 
			
| 
					 Pinedo-González, P., Hawco, N. J., Bundy, R. M., et al., 2020. Anthropogenic Asian Aerosols Provide Fe to the North Pacific Ocean. Proceedings of the National Academy of Sciences, 117(45): 27862-27868.  https://doi.org/10.1073/pnas.2010315117 
						
					 | 
			
| 
					 Rathod, S. D., Hamilton, D. S., Mahowald, N. M., et al., 2020. A Mineralogy-Based Anthropogenic Combustion-Iron Emission Inventory. Journal of Geophysical Research: Atmospheres, 125(17): e2019JD032114.  https://doi.org/10.1029/2019jd032114 
						
					 | 
			
| 
					 Reff, A., Bhave, P. V., Simon, H., et al., 2009. Emissions Inventory of PM2.5 Trace Elements across the United States.  Environmental Science & Technology, 43(15): 5790-5796.  https://doi.org/10.1021/es802930x 
						
					 | 
			
| 
					 Resing, J. A., Barrett, P. M., 2014. Ocean Chemistry: Fingerprints of a Trace Nutrient. Nature, 511(7508): 164-165.  https://doi.org/10.1038/nature13513 
						
					 | 
			
| 
					 Rubasinghege, G., Elzey, S., Baltrusaitis, J., et al., 2010. Reactions on Atmospheric Dust Particles: Surface Photochemistry and Size-Dependent Nanoscale Redox Chemistry. Journal of Physical Chemistry Letters, 1: 1729-1737.  https://doi.org/10.1021/jz100371d 
						
					 | 
			
| 
					 Salazar, J. R., Cartledge, B. T., Haynes, J. P., et al., 2020. Water-Soluble Iron Emitted from Vehicle Exhaust Is Linked to Primary Speciated Organic Compounds. Atmospheric Chemistry and Physics, 20(3): 1849-1860.  https://doi.org/10.5194/acp-20-1849-2020 
						
					 | 
			
| 
					 Schroth, A. W., Crusius, J., Sholkovitz, E. R., et al., 2009. Iron Solubility Driven by Speciation in Dust Sources to the Ocean. Nature Geoscience, 2: 337-340.  https://doi.org/10.1038/ngeo501 
						
					 | 
			
| 
					 See, S. W., Wang, Y. H., Balasubramanian, R., 2007. Contrasting Reactive Oxygen Species and Transition Metal Concentrations in Combustion Aerosols. Environmental Research, 103(3): 317-324.  https://doi.org/10.1016/j.envres.2006.08.012 
						
					 | 
			
| 
					 Shen, H. Q., Xue, L. K., Fan, G. L., et al., 2024. Trace Metals Reveal Significant Contribution of Coal Combustion to Winter Haze Pollution in Northern China. ACS ES&T Air, 1(7): 714-724.  https://doi.org/10.1021/acsestair.4c00050 
						
					 | 
			
| 
					 Shi, J. H., Guan, Y., Gao, H. W., et al., 2022. Aerosol Iron Solubility Specification in the Global Marine Atmosphere with Machine Learning. Environmental Science & Technology, 56(22): 16453-16461.  https://doi.org/10.1021/acs.est.2c05266 
						
					 | 
			
| 
					 Slikboer, S., Grandy, L., Blair, S. L., et al., 2015. Formation of Light Absorbing Soluble Secondary Organics and Insoluble Polymeric Particles from the Dark Reaction of Catechol and Guaiacol with Fe(Ⅲ). Environmental Science & Technology, 49(13): 7793-7801.  https://doi.org/10.1021/acs.est.5b01032 
						
					 | 
			
| 
					 Smith, R. D., 1980. The Trace Element Chemistry of Coal during Combustion and the Emissions from Coal-Fired Plants. Progress in Energy and Combustion Science, 6(1): 53-119.  https://doi.org/10.1016/0360-1285(80)90015-5 
						
					 | 
			
| 
					 Sullivan, R. C., Guazzotti, S. A., Sodeman, D. A., et al., 2007. Direct Observations of The Atmospheric Processing of Asian Mineral Dust. Atmospheric Chemistry and Physics, 7: 1213-1236.  https://doi.org/10.5194/ACP-7-1213-2007 
						
					 | 
			
| 
					 Sun, M. G., Qi, Y. X., Li, W. S., et al., 2024. Investigation of a Haze-to-Dust and Dust Swing Process at a Coastal City in Northern China Part Ⅱ: A Study on the Solubility of Iron and Manganese across Aerosol Sources and Secondary Processes. Atmospheric Environment, 328: 120532.  https://doi.org/10.1016/j.atmosenv.2024.120532 
						
					 | 
			
| 
					 Takahashi, Y., Furukawa, T., Kanai, Y., et al., 2013. Seasonal Changes in Fe Species and Soluble Fe Concentration in the Atmosphere in the Northwest Pacific Region Based on the Analysis of Aerosols Collected in Tsukuba, Japan. Atmospheric Chemistry and Physics, 13(15): 7695-7710.  https://doi.org/10.5194/acp-13-7695-2013 
						
					 | 
			
| 
					 Tang, Y. J., Jia, X. H., Li, R., et al., 2021. Dissolution Kinetics of Iron-Containing Particles: A Review. China Environmental Science, 41(4): 1555-1563 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Tao, W., Su, H., Zheng, G. J., et al., 2020. Aerosol pH and Chemical Regimes of Sulfate Formation in Aerosol Water during Winter Haze in the North China Plain. Atmospheric Chemistry and Physics, 20(20): 11729-11746.  https://doi.org/10.5194/acp-20-11729-2020 
						
					 | 
			
| 
					 Thomas, D. A., Coggon, M. M., Lignell, H., et al., 2016. Real-Time Studies of Iron Oxalate-Mediated Oxidation of Glycolaldehyde as a Model for Photochemical Aging of Aqueous Tropospheric Aerosols. Environmental Science & Technology, 50(22): 12241-12249.  https://doi.org/10.1021/acs.est.6b03588 
						
					 | 
			
| 
					 Ueda, S., Iwamoto, Y., Taketani, F., et al., 2023. Morphological Features and Water Solubility of Iron in Aged Fine Aerosol Particles over the Indian Ocean. Atmospheric Chemistry and Physics, 23(17): 10117-10135.  https://doi.org/10.5194/acp-23-10117-2023 
						
					 | 
			
| 
					 Waeles, M., Baker, A. R., Jickells, T., et al., 2007. Global Dust Teleconnections: Aerosol Iron Solubility and Stable Isotope Composition. Environmental Chemistry, 4(4): 233-237.  https://doi.org/10.1071/en07013 
						
					 | 
			
| 
					 Wang, R., Balkanski, Y., Boucher, O., et al., 2015. Sources, Transport and Deposition of Iron in the Global Atmosphere. Atmospheric Chemistry and Physics, 15(11): 6247-6270.  https://doi.org/10.5194/acp-15-6247-2015 
						
					 | 
			
| 
					 Wang, W. G., Liu, M. Y., Wang, T. T., et al., 2021. Sulfate Formation Is Dominated by Manganese-Catalyzed Oxidation of SO2 on Aerosol Surfaces during Haze Events. Nature Communications, 12(1): 1993.  https://doi.org/10.1038/s41467-021-22091-6 
						
					 | 
			
| 
					 Wang, X., Shen, Z. X., Huang, S. S., et al., 2022a. Water-Soluble Iron in PM2.5 in Winter over Six Chinese Megacities: Distributions, Sources, and Environmental Implications. Environmental Pollution, 314: 120329.  https://doi.org/10.1016/j.envpol.2022.120329 
						
					 | 
			
| 
					 Wang, Y. T., Wu, L. B., Hu, W., et al., 2022b. Stable Iron Isotopic Composition of Atmospheric Aerosols: An Overview. NPJ Climate and Atmospheric Science, 5: 75.  https://doi.org/10.1038/s41612-022-00299-7 
						
					 | 
			
| 
					 Wang, Y., Zhang, Y. X., Qi, B., et al., 2023. Variation and Influencing Factors of Iron Solubility in Fine Particulate Matter in Hangzhou. China Environmental Science, 43(1): 115-121 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Watson, A. J., Bakker, D. C., Ridgwell, A. J., et al., 2000. Effect of Iron Supply on Southern Ocean CO2 Uptake and Implications for Glacial Atmospheric CO2. Nature, 407(6805): 730-733.  https://doi.org/10.1038/35037561 
						
					 | 
			
| 
					 Wei, J. L., Yu, H. R., Wang, Y. X., et al., 2019. Complexation of Iron and Copper in Ambient Particulate Matter and Its Effect on the Oxidative Potential Measured in a Surrogate Lung Fluid. Environmental Science & Technology, 53(3): 1661-1671.  https://doi.org/10.1021/acs.est.8b05731 
						
					 | 
			
| 
					 Weis, J., Chase, Z. N., Schallenberg, C., et al., 2024. One-Third of Southern Ocean Productivity Is Supported by Dust Deposition. Nature, 629(8012): 603-608.  https://doi.org/10.1038/s41586-024-07366-4 
						
					 | 
			
| 
					 Winton, V. H. L., Edwards, R., Bowie, A. R., et al., 2016. Dry Season Aerosol Iron Solubility in Tropical Northern Australia. Atmospheric Chemistry and Physics, 16(19): 12829-12848.  https://doi.org/10.5194/acp-16-12829-2016 
						
					 | 
			
| 
					 Xie, T. T., 2021. Geochemical Characteristics, Iron Dissolution and Biological Activity of Iron Bearing Minerals in Particulate Matters from Xuanwei Coal Combustion (Dissertation). Shanghai University, Shanghai (in Chinese with English abstract). 
						
					 | 
			
| 
					 Yang, C., Zhang, C. Y., Luo, X. S., et al., 2020. Isomerization and Degradation of Levoglucosan via the Photo-Fenton Process: Insights from Aqueous-Phase Experiments and Atmospheric Particulate Matter. Environmental Science & Technology, 54(19): 11789-11797.  https://doi.org/10.1021/acs.est.0c02499 
						
					 | 
			
| 
					 Yang, J. W., Ma, L., He, X., et al., 2023. Measurement Report: Abundance and Fractional Solubilities of Aerosol Metals in Urban Hong Kong-Insights into Factors that Control Aerosol Metal Dissolution in an Urban Site in South China. Atmospheric Chemistry and Physics, 23(2): 1403-1419.  https://doi.org/10.5194/acp-23-1403-2023 
						
					 | 
			
| 
					 Ye, D. N., Klein, M., Mulholland, J. A., et al., 2018. Estimating Acute Cardiovascular Effects of Ambient PM2.5 Metals. Environmental Health Perspectives, 126(2): 027007.  https://doi.org/10.1289/EHP2182 
						
					 | 
			
| 
					 Zhang, S., Li, D. P., Ge, S. S., et al., 2024a. Elucidating the Mechanism on the Transition-Metal Ion-Synergetic- Catalyzed Oxidation of SO2 with Implications for Sulfate Formation in Beijing Haze. Environmental Science & Technology, 58(6): 2912-2921.  https://doi.org/10.1021/acs.est.3c08411 
						
					 | 
			
| 
					 Zhang, T. L., Liu, J. Y., Xiang, Y. X., et al., 2024b. Quantifying Anthropogenic Emission of Iron in Marine Aerosol in the Northwest Pacific with Shipborne Online Measurements. Science of the Total Environment, 912: 169158.  https://doi.org/10.1016/j.scitotenv.2023.169158 
						
					 | 
			
| 
					 Zhang, T. L., Zheng, M., 2024. Atmospheric Iron in Chinese Marginal Seas and the Northwest Pacific: A Review. China Environmental Science, 44(2): 602-619 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Zhi, M. K., Wang, G. C., Xu, L., et al., 2025. How Acid Iron Dissolution in Aged Dust Particles Responds to the Buffering Capacity of Carbonate Minerals during Asian Dust Storms. Environmental Science & Technology, 59(12): 6167-6178.  https://doi.org/10.1021/acs.est.4c12370 
						
					 | 
			
| 
					 Zhu, Y. H., Li, W. J., Wang, Y., et al., 2022. Sources and Processes of Iron Aerosols in a Megacity in Eastern China. Atmospheric Chemistry and Physics, 22(4): 2191-2202.  https://doi.org/10.5194/acp-22-2191-2022 
						
					 | 
			
| 
					 杜志恒, 效存德, 张震, 2020. 铁生物地球化学循环: 三极雪冰研究进展. 自然杂志, 42(5): 413-420. 
					
					 | 
			
| 
					 郭琳, 2013. 亚洲沙尘的长途传输对东海气溶胶中痕量元素及其沉降的影响(硕士学位论文). 上海: 复旦大学. 
					
					 | 
			
| 
					 陆炳, 孔少飞, 韩斌, 等, 2011. 燃煤锅炉排放颗粒物成分谱特征研究. 煤炭学报, 36(11): 1928-1933. 
					
					 | 
			
| 
					 唐钰婧, 贾小红, 李锐, 等, 2021. 含铁颗粒物的溶解动力学研究进展. 中国环境科学, 41(4): 1555-1563. 
					
					 | 
			
| 
					 王玥, 张银晓, 齐冰, 等, 2023. 杭州市大气细颗粒物中铁溶解度的变化特征及影响因素. 中国环境科学, 43(1): 115-121. 
					
					 | 
			
| 
					 谢婷婷, 2021. 宣威煤燃烧排放颗粒物中含铁矿物的地球化学特征、溶铁规律以及生物活性研究(博士学位论文). 上海: 上海大学. 
					
					 | 
			
| 
					 张天乐, 郑玫, 2024. 中国近海及西北太平洋气溶胶铁的研究进展. 中国环境科学, 44(2): 602-619. 
					
					 |