• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 10
    Oct.  2025
    Turn off MathJax
    Article Contents
    Zhao Fei, Shi Zhenming, Li Bo, Yu Songbo, Chen Jianfeng, 2025. Research on Dynamic Performance Optimization and Stability Evaluation of Seismic Pile-Cable Composite Structure for Bedding Rock Slope in Meizoseismal Areas. Earth Science, 50(10): 3943-3954. doi: 10.3799/dqkx.2025.162
    Citation: Zhao Fei, Shi Zhenming, Li Bo, Yu Songbo, Chen Jianfeng, 2025. Research on Dynamic Performance Optimization and Stability Evaluation of Seismic Pile-Cable Composite Structure for Bedding Rock Slope in Meizoseismal Areas. Earth Science, 50(10): 3943-3954. doi: 10.3799/dqkx.2025.162

    Research on Dynamic Performance Optimization and Stability Evaluation of Seismic Pile-Cable Composite Structure for Bedding Rock Slope in Meizoseismal Areas

    doi: 10.3799/dqkx.2025.162
    • Received Date: 2025-06-22
    • Publish Date: 2025-10-25
    • The seismic stability of rock slopes is a critical scientific issue in engineering construction in meizoseismal areas. Given the vulnerability of conventional retaining structures to failure under strong earthquakes, the development and optimization of seismic-resistant support structures have become a key research focus in engineering geology. This study investigates a soft-hard interbedded bedding rock slope along an expressway in Ludian County, Yunnan Province. Based on a self-developed seismic pile-cable (SPC) composite structure, simplified numerical models are established using the finite difference method FLAC3D to systematically optimize and evaluate the dynamic performance of the SPC composite structure. Key support parameters are selected for optimization, including those of the energy-dissipating anchor cable system and the composite anti-slide pile system. A parametric sensitivity analysis and stepwise optimization approach are employed, followed by a comprehensive assessment of the optimized seismic pile-cable (OSPC) composite structure from the perspectives of slope stability, seismic resistance, and economic efficiency. The results demonstrate that the OSPC composite structure exhibits superior seismic performance and cost-effectiveness compared to conventional pile-cable (CPC) and SPC composite structures. Specifically, it reduces the maximum permanent displacement and maximum shear strain increment of the slope by 53% and 24%, respectively, while decreasing the pile-top displacement of front and rear anti-slide piles by 85% and 99%, and additionally, the material consumption for concrete and anchor cables is reduced by 34% and 3%. The findings provide theoretical support for the seismic design of bedding rock slopes in meizoseismal areas, offering significant engineering application value.

       

    • loading
    • Chen, H., Chen, W. Y., Song, X. H., et al., 2020. Dynamic Response and Stability of Arc Anti-Slide Piles in Slope Reinforcement under Earthquake. Safety and Environmental Engineering, 27(4): 79-86, 101(in Chinese with English abstract).
      Chen, J. F., Du, C. C., Chen, S. X., et al., 2022. Mechanical Mechanism of Slopes Stabilized with Anti-Slide Piles and Prestressed Anchor Cable Frame Beams under Seismic Loading. Earth Science, 47(12): 4362-4372(in Chinese with English abstract).
      Chen, J. F., Du, C. C., Peng, M., et al., 2023. System Reliability Analysis of a Slope Stabilized with Anchor Cables and Piles under Seismic Loading. Acta Geotechnica, 18(8): 4493-4514. https://doi.org/10.1007/s11440-023-01812-9
      Ding, X. M., Liu, X. C., Wang, C. Y., et al., 2025. Seismic Response Characteristics of ECC Pile-Energy Dissipation Anchor Ductile Retaining Structure. Journal of Civil and Environmental Engineering, 47(2): 76-88(in Chinese with English abstract).
      Fan, G., Zhang, J. J., Qi, S. C., et al., 2019. Dynamic Response of a Slope Reinforced by Double-Row Anti-Sliding Piles and Pre-Stressed Anchor Cables. Journal of Mountain Science, 16(1): 226-241. https://doi.org/10.1007/s11629-018-5041-z
      Feng, S., Wu, H. G., Ai, H., et al., 2018. Seismic Optimum Design and Experimental Research on Anti Slide Pile with Pre-Stressed Anchor Cable. Science Technology and Engineering, 18(12): 248-255(in Chinese with English abstract).
      Gupta, P., Mehndiratta, S., 2024. Exploring the Efficacy of Slope Stabilization Using Piles: A Comprehensive Review. Indian Geotechnical Journal, 1-18. https://doi.org/10.1007/s40098-024-01119-w
      He, M. C., Guo, P. F., 2018. On Problems of Rock Mechanics and Engineering in the Belt and Road and Their Countermeasures. Journal of Shaoxing University (Natural Science), 38(8): 1-9(in Chinese with English abstract).
      Hou, X. Q., Ren, J. X., Zheng, J. L., et al., 2024. Comparative Vibrating Table Test Study on Optimized Seismic Performance of H-Type Anti-Sliding Pile Structures. Chinese Journal of Rock Mechanics and Engineering, 43(12): 2892-2907(in Chinese with English abstract).
      Jia, Z. B., Tao, L. J., Bian, J., et al., 2022. Displacement Analysis of Slope Reinforced by Pile-Anchor Composite Structure under Seismic Loads. Earth Science, 47(12): 4513-4522(in Chinese with English abstract).
      Jia, Z. B., Tao, L. J., Bian, J., et al., 2022. Research on Influence of Anchor Cable Failure on Slope Dynamic Response. Soil Dynamics and Earthquake Engineering, 161: 107435. https://doi.org/10.1016/j.soildyn.2022.107435
      Li, N., Men, Y. M., Gao, O., et al., 2018. Seismic Behavior of the Landslide Supported by Micropiles. Chinese Journal of Rock Mechanics and Engineering, 37(9): 2144-2151(in Chinese with English abstract).
      Li, Q. Y., Shi, Z. M., Zhao, F., et al., 2023. Mechanical Performance Evaluation of Steel Fiber-Reinforced Concrete (FRC) Based on Multi-Mechanical Indicators from Split Hopkinson Pressure Bar (SHPB) Test. Journal of Building Engineering, 79: 107898. https://doi.org/10.1016/j.jobe.2023.107898
      Lian, J., Ding, X. M., Wen, H., et al., 2023. Dynamic Responses and Evolution Characteristics of Bedrock and Overburden Layer Slope with Space Anchor Cable Anti-Slide Piles Based on Large-Scale Shaking Table Test. Soil Dynamics and Earthquake Engineering, 175: 108245. https://doi.org/10.1016/j.soildyn.2023.108245
      Pai, L. F., Wu, H. G., 2021. Shaking Table Test of Comparison and Optimization of Seismic Performance of Slope Reinforcement with Multi-Anchor Piles. Soil Dynamics and Earthquake Engineering, 145: 106737. https://doi.org/10.1016/j.soildyn.2021.106737
      Pai, L. F., Wu, H. G., Guan, W., et al., 2022. Shaking Table Test for Seismic Optimization of Soil Slope Reinforced by New EPS Pile under Earthquake. Soil Dynamics and Earthquake Engineering, 154: 107140. https://doi.org/10.1016/j.soildyn.2021.107140
      Pai, L. F., Wu, H. G., Ma, H. M., 2021. Shaking Table Test Study on Seismic Optimization Comparisons of Multi-Anchor Piles for Strengthening Soil Slopes under Earthquake. Chinese Journal of Rock Mechanics and Engineering, 40(4): 751-765(in Chinese with English abstract).
      Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389(in Chinese with English abstract).
      Qi, H., Du, C. C., Peng, M., et al., 2024. Seismic Displacement of Bedding Slopes Stabilized with Anchor Cables and Piles Considering Dynamic Yield Acceleration. Bulletin of Engineering Geology and the Environment, 83(6): 208. https://doi.org/10.1007/s10064-024-03707-9
      Qi, S. W., 2006. Two Patterns of Dynamic Responses of Single-Free-Surface Slopes and Their Threshold Height. Chinese Journal of Geophysics, 49(2): 518-523(in Chinese with English abstract).
      Qi, S. W., He, J. X., Zhan, Z. F., 2022. A Single Surface Slope Effects on Seismic Response Based on Shaking Table Test and Numerical Simulation. Engineering Geology, 306: 106762. https://doi.org/10.1016/j.enggeo.2022.106762
      Qiao, J. W., Zheng, J. G., Liu, Z. H., et al., 2019. The Distribution and Major Engineering Problems of Special Soil and Rock along One Belt One Road. Journal of Catastrophology, 34(S1): 65-71(in Chinese with English abstract).
      Shi, Z. M., Xie, K. L., Yu, S. B., et al., 2024. Research Advance and Thinking on Energy Dissipation and Seismic Bolts. Earth Science, 49(2): 522-537(in Chinese with English abstract).
      Tian, J. J., Li, T. T., Pei, X. J., et al., 2024. Experimental Study on Multistage Seismic Damage Process of Bedding Rock Slope: A Case Study of the Xinmo Landslide. Journal of Earth Science, 35(5): 1594-1612. https://doi.org/10.1007/s12583-023-1829-z
      Wei, H., Tao, Z. G., He, M. C., et al., 2024. The Cumulative Damage Evolution Law of Multi-Anchor Circular Piles Reinforced Landslide under Earthquake Action. Rock Mechanics and Rock Engineering, 57(8): 6321-6336. https://doi.org/10.1007/s00603-024-03857-y
      Wu, W. Y., Xu, C., Wang, X. Q., et al., 2020. Landslides Triggered by the 3 August 2014 Ludian (China) Mw 6.2 Earthquake: An Updated Inventory and Analysis of Their Spatial Distribution. Journal of Earth Science, 31(4): 853-866. https://doi.org/10.1007/s12583-020-1297-7
      Xu, X., Huang, Y., 2021. Parametric Study of Structural Parameters Affecting Seismic Stability in Slopes Reinforced by Pile-Anchor Structures. Soil Dynamics and Earthquake Engineering, 147: 106789. https://doi.org/10.1016/j.soildyn.2021.106789
      Zhang, G. J., Sun, B., 2019. Seismic Action-Based Study on Optimization of Application of Anti-Slide Pile with Pre-Stressed Anchor Cable to Slope Reinforcement. Water Resources and Hydropower Engineering, 50(9): 148-153(in Chinese with English abstract).
      Zhang, J. J., Qu, H. L., Liao, Y., et al., 2012. Seismic Damage of Earth Structures of Road Engineering in the 2008 Wenchuan Earthquake. Environmental Earth Sciences, 65(4): 987-993. https://doi.org/10.1007/s12665-011-1519-5
      Zhao, F., Shi, Z. M., Chen, J. F., et al., 2022a. A Type of Anti-Slide Pile. 2022.11. 15. China, CN114197495B (in Chinese).
      Zhao, F., Yu, S. B., Li, B., et al., 2022b. Research Advances on Large-Scale Shaking Table Test for Rock Slopes under Earthquake. Earth Science, 47(12): 4498-4512(in Chinese with English abstract).
      Zhao, F., Shi, Z. M., Chen, J. F., et al., 2023. A Graded Yielding Self-Resetting Seismic Anchor Bolt and Installation Method. 2023.02. 07. China, CN114351699B (in Chinese).
      Zhao, F., Shi, Z. M., Li, Q. Y., et al., 2024. A Comprehensive Performance Evaluation and Optimization of Steel/Carbon Fiber-Reinforced Eco-Efficient Concrete (FREC) Utilizing Multi-Mechanical Indicators. Journal of Cleaner Production, 441: 140993. https://doi.org/10.1016/j.jclepro.2024.140993
      Zheng, W. B., Zhuang, X. Y., Cai, Y. C., 2012. On the Seismic Stability Analysis of Reinforced Rock Slope and Optimization of Prestressed Cables. Frontiers of Structural and Civil Engineering, 6(2): 132-146. https://doi.org/10.1007/s11709-012-0152-z
      Zheng, W. B., Zhuang, X. Y., Cai, Y. C., et al., 2012. Modeling of Prestressed Anchors in Rock Slope under Earthquake and Optimization of Anchor Arrangement. Chinese Journal of Geotechnical Engineering, 34(9): 1668-1676(in Chinese with English abstract).
      Zhou, H. F., Ye, F., Fu, W. X., et al., 2024. Dynamic Effect of Landslides Triggered by Earthquake: A Case Study in Moxi Town of Luding County, China. Journal of Earth Science, 35(1): 221-234. https://doi.org/10.1007/s12583-022-1806-y
      陈行, 陈文宇, 宋兴海, 等, 2020. 地震作用下弧形抗滑桩加固边坡的动力响应及稳定性分析. 安全与环境工程, 27(4): 79-86, 101.
      陈建峰, 杜长城, 陈思贤, 等, 2022. 地震作用下抗滑桩-预应力锚索框架组合结构受力机制. 地球科学, 47(12): 4362-4372. doi: 10.3799/dqkx.2022.325
      丁选明, 刘学成, 王春艳, 等, 2025. ECC桩-消能锚韧性支挡结构的地震响应规律. 土木与环境工程学报(中英文), 47(2): 76-88.
      冯帅, 吴红刚, 艾挥, 等, 2018. 预应力锚索抗滑桩抗震优化设计与试验研究. 科学技术与工程, 18(12): 248-255.
      何满潮, 郭鹏飞, 2018. "一带一路" 中的岩石力学与工程问题及对策探讨. 绍兴文理学院学报(自然科学), 38(8): 1-9.
      侯小强, 任继贤, 郑佳乐, 等, 2024. h型抗滑桩结构优化抗震性能对比振动台试验研究. 岩石力学与工程学报, 43(12): 2892-2907.
      贾志波, 陶连金, 边金, 等, 2022. 地震荷载下桩-锚组合结构加固边坡的位移解析. 地球科学, 47(12): 4513-4522. doi: 10.3799/dqkx.2022.278
      李楠, 门玉明, 高讴, 等, 2018. 微型桩群桩支护滑坡的地震动力响应研究. 岩石力学与工程学报, 37(9): 2144-2151.
      牌立芳, 吴红刚, 马惠民, 2021. 地震作用下多锚点桩加固土质边坡的抗震优化对比振动台试验研究. 岩石力学与工程学报, 40(4): 751-765.
      彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389.
      祁生文, 2006. 单面边坡的两种动力反应形式及其临界高度. 地球物理学报, 49(2): 518-523.
      乔建伟, 郑建国, 刘争宏, 等, 2019. "一带一路" 沿线特殊岩土分布与主要工程问题. 灾害学, 34(增刊1): 65-71.
      石振明, 谢可禄, 俞松波, 等, 2024. 消能抗震锚杆的研究进展与思考. 地球科学, 49(2): 522-537. doi: 10.3799/dqkx.2023.001
      张国军, 孙博, 2019. 基于地震作用的预应力锚索抗滑桩边坡加固应用优化研究. 水利水电技术, 50(9): 148-153.
      赵飞, 石振明, 陈建峰, 等, 2022a. 一种抗滑桩. 2022.11. 15. 中国, CN114197495B.
      赵飞, 俞松波, 李博, 等, 2022b. 地震作用下岩质边坡大型振动台试验研究进展. 地球科学, 47(12): 4498-4512. doi: 10.3799/dqkx.2022.317
      赵飞, 石振明, 陈建峰, 等, 2023. 一种分级让压自复位抗震锚杆及安装方法. 2023.02. 07. 中国, CN114351699B.
      郑文博, 庄晓莹, 蔡永昌, 等, 2012. 地震作用下预应力锚索对岩石边坡稳定性影响的模拟方法及锚索优化研究. 岩土工程学报, 34(9): 1668-1676.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(8)

      Article views (62) PDF downloads(4) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return