| Citation: | Zhang Wuchang, Zhao Yuan, Liu Hongbin, Sun Jun, 2025. Long-Term Changes in Plankton Communities in Context of Global Warming. Earth Science, 50(11): 4551-4570. doi: 10.3799/dqkx.2025.163 |
|
Aarflot, J. M., Skjoldal, H. R., Dalpadado, P., et al., 2018. Contribution of Calanus Species to the Mesozooplankton Biomass in the Barents Sea. ICES Journal of Marine Science, 75(7): 2342-2354. https://doi.org/10.1093/icesjms/fsx221
|
|
Aberle, N., Bauer, B., Lewandowska, A., et al., 2012. Warming Induces Shifts in Microzooplankton Phenology and Reduces Time-Lags between Phytoplankton and Protozoan Production. Marine Biology, 159(11): 2441-2453. https://doi.org/10.1007/s00227-012-1947-0
|
|
Alcaraz, M., Felipe, J., Grote, U., et al., 2014. Life in a Warming Ocean: Thermal Thresholds and Metabolic Balance of Arctic Zooplankton. Journal of Plankton Research, 36(1): 3-10. https://doi.org/10.1093/plankt/fbt111
|
|
Atkinson, A., Hill, S. L., Pakhomov, E. A., et al., 2019. Krill (Euphausia Superba) Distribution Contracts Southward during Rapid Regional Warming. Nature Climate Change, 9(2): 142-147. https://doi.org/10.1038/s41558-018-0370-z
|
|
Atkinson, A., Hill, S. L., Reiss, C. S., et al., 2022. Stepping Stones towards Antarctica: Switch to Southern Spawning Grounds Explains an Abrupt Range Shift in Krill. Global Change Biology, 28(4): 1359-1375. https://doi.org/10.1111/gcb.16009
|
|
Atkinson, A., Siegel, V., Pakhomov, E., et al., 2004. Long-Term Decline in Krill Stock and Increase in Salps within the Southern Ocean. Nature, 432(7013): 100-103. https://doi.org/10.1038/nature02996
|
|
Balch, W. M., Gordon, H. R., Bowler, B. C., et al., 2005. Calcium Carbonate Measurements in the Surface Global Ocean Based on Moderate-Resolution Imaging Spectroradiometer Data. Journal of Geophysical Research: Oceans, 110(C7): 2004JC002560. https://doi.org/10.1029/2004JC002560
|
|
Basedow, S. L., Sundfjord, A., von Appen, W. J., et al., 2018. Seasonal Variation in Transport of Zooplankton into the Arctic Basin through the Atlantic Gateway, Fram Strait. Frontiers in Marine Science, 5: 194. https://doi.org/10.3389/fmars.2018.00194
|
|
Batchelder, H. P., Mackas, D. L., O'Brien, T. D., 2012. Spatial-Temporal Scales of Synchrony in Marine Zooplankton Biomass and Abundance Patterns: A World-Wide Comparison. Progress in Oceanography, 97/98/99/100: 15-30. https://doi.org/10.1016/j.pocean.2011.11.010
|
|
Batten, S. D., Abu-Alhaija, R., Chiba, S., et al., 2019. A Global Plankton Diversity Monitoring Program. Frontiers in Marine Science, 6: 321. https://doi.org/10.3389/fmars.2019.00321
|
|
Batten, S. D., Walne, A. W., 2011. Variability in Northwards Extension of Warm Water Copepods in the NE Pacific. Journal of Plankton Research, 33(11): 1643-1653. https://doi.org/10.1093/plankt/fbr065
|
|
Beaugrand, G., 2004. The North Sea Regime Shift: Evidence, Causes, Mechanisms and Consequences. Progress in Oceanography, 60(2/3/4): 245-262. https://doi.org/10.1016/j.pocean.2004.02.018
|
|
Beaugrand, G., Reid, P. C., Ibañez, F., et al., 2002. Reorganization of North Atlantic Marine Copepod Biodiversity and Climate. Science, 296(5573): 1692-1694. https://doi.org/10.1126/science.1071329
|
|
Bindoff, N. L., Cheung, W. W. L., Kairo, J. G., et al., 2019. Changing Ocean, Marine Ecosystems, and Dependent Communities. In: IPCC, ed., IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge University Press, Cambridge, 447-588.
|
|
Borkman, D. G., Fofonoff, P., Smayda, T. J., et al., 2018. Changing Acartia spp. Phenology and Abundance during a Warming Period in Narragansett Bay, Rhode Island, USA: 1972-1990. Journal of Plankton Research, 40(5): 580-594. https://doi.org/10.1093/plankt/fby029
|
|
Both, C., Van Asch, M., Bijlsma, R. G., et al., 2009. Climate Change and Unequal Phenological Changes across Four Trophic Levels: Constraints or Adaptations? Journal of Animal Ecology, 78(1): 73-83. https://doi.org/10.1111/j.1365-2656.2008.01458.x
|
|
Brown, M., Kawaguchi, S., Candy, S., et al., 2010. Temperature Effects on the Growth and Maturation of Antarctic Krill (Euphausia superba). Deep Sea Research Part II: Topical Studies in Oceanography, 57(7/8): 672-682. https://doi.org/10.1016/j.dsr2.2009.10.016
|
|
Chaikin, S., Dubiner, S., Belmaker, J., 2022. Cold-Water Species Deepen to Escape Warm Water Temperatures. Global Ecology and Biogeography, 31(1): 75-88. https://doi.org/10.1111/geb.13414
|
|
Chavez, F. P., Ryan, J., Lluch-Cota, S. E., et al., 2003. From Anchovies to Sardines and Back: Multidecadal Change in the Pacific Ocean. Science, 299(5604): 217-221. https://doi.org/10.1126/science.1075880
|
|
Chivers, W. J., Edwards, M., Hays, G. C., 2020. Phenological Shuffling of Major Marine Phytoplankton Groups over the Last Six Decades. Diversity and Distributions, 26(5): 536-548. https://doi.org/10.1111/ddi.13028
|
|
Chivers, W. J., Walne, A. W., Hays, G. C., 2017. Mismatch between Marine Plankton Range Movements and the Velocity of Climate Change. Nature Communications, 8: 14434. https://doi.org/10.1038/ncomms14434
|
|
Chust, G., Castellani, C., Licandro, P., et al., 2014. Are Calanus spp. Shifting Poleward in the North Atlantic? A Habitat Modelling Approach. ICES Journal of Marine Science, 71(2): 241-253. https://doi.org/10.1093/icesjms/fst147
|
|
Conversi, A., Dakos, V., Gårdmark, A., et al., 2015. A Holistic View of Marine Regime Shifts. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1659): 20130279. https://doi.org/10.1098/rstb.2013.0279
|
|
Dalpadado, P., Ingvaldsen, R. B., Stige, L. C., et al., 2012. Climate Effects on Barents Sea Ecosystem Dynamics. ICES Journal of Marine Science, 69(7): 1303-1316. https://doi.org/10.1093/icesjms/fss063
|
|
Davis, A. J., Jenkinson, L. S., Lawton, J. H., et al., 1998. Making Mistakes When Predicting Shifts in Species Range in Response to Global Warming. Nature, 391(6669): 783-786. https://doi.org/10.1038/35842
|
|
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., et al., 2008. Impacts of Climate Warming on Terrestrial Ectotherms across Latitude. Proceedings of the National Academy of Sciences of the United States of America, 105(18): 6668-6672. https://doi.org/10.1073/pnas.0709472105
|
|
Dulvy, N. K., Rogers, S. I., Jennings, S., et al., 2008. Climate Change and Deepening of the North Sea Fish Assemblage: A Biotic Indicator of Warming Seas. Journal of Applied Ecology, 45(4): 1029-1039. https://doi.org/10.1111/j.1365-2664.2008.01488.x
|
|
Duarte, C. M., Cebrián, J., Marbà, N., 1992. Uncertainty of Detecting Sea Change. Nature, 356(6366): 190. https://doi.org/10.1038/356190a0
|
|
Dupont, N., Bagøien, E., Melle, W., 2017. Inter-Annual Variability in Spring Abundance of Adult Calanus finmarchicus from the Overwintering Population in the Southeastern Norwegian Sea. Progress in Oceanography, 152: 75-85. https://doi.org/10.1016/j.pocean.2017.02.004
|
|
Edwards, M., Richardson, A. J., 2004. Impact of Climate Change on Marine Pelagic Phenology and Trophic Mismatch. Nature, 430(7002): 881-884. https://doi.org/10.1038/nature02808
|
|
Ekman, S., 1953. Zoogeography of the Sea, vol. 9. Sidgwick & Jackson, London, 417.
|
|
Ershova, E. A., Kosobokova, K. N., Banas, N. S., et al., 2021. Sea Ice Decline Drives Biogeographical Shifts of Key Calanus Species in the Central Arctic Ocean. Global Change Biology, 27(10): 2128-2143. https://doi.org/10.1111/gcb.15562
|
|
Falkenhaug, T., Broms, C., Bagøien, E., et al., 2022. Temporal Variability of Co-Occurring Calanus finmarchicus and C. helgolandicus in Skagerrak. Frontiers in Marine Science, 9: 779335. https://doi.org/10.3389/fmars.2022.779335
|
|
Field, C., Behrenfeld, M., Randerson, J., et al., 1998. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science, 281(5374): 237-240. https://doi.org/10.1126/science.281.5374.237
|
|
Fox-Kemper, B., Hewitt, H. T., Xiao, C., et al., 2021. Ocean, Cryosphere and Sea Level Change. In: Masson-Delmotte, V., Zhai, P., Pirani, A., et al., eds., Climate Change 2021: The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1211-1362.
|
|
García-Soto, C., Caesar, L., Cazenave, A., et al., 2021. Chapter 05 Trends in the Physical and Chemical State of the Ocean. In: United Nations, ed., World Ocean Assessment Ⅱ. United Nations, New York, 83-103.
|
|
Grandremy, N., Bourriau, P., Daché, E., et al., 2024. Metazoan Zooplankton in the Bay of Biscay: A 16-Year Record of Individual Sizes and Abundances Obtained Using the ZooScan and ZooCAM Imaging Systems. Earth System Science Data, 16(3): 1265-1282. https://doi.org/10.5194/essd-16-1265-2024
|
|
Gushing, D. H., Dickson, R. R., 1977. The Biological Response in the Sea to Climatic Changes. In: Russell, F. S., Yonge, M., eds., Advances in Marine Biology, vol. 14. Academic Press, Cambridge, 1-122.
|
|
Hampton, S. E., Gray, D. K., Izmest'eva, L. R., et al., 2014. The Rise and Fall of Plankton: Long-Term Changes in the Vertical Distribution of Algae and Grazers in Lake Baikal, Siberia. PLoS One, 9(2): e88920. https://doi.org/10.1371/journal.pone.0088920
|
|
Hare, S. R., Mantua, N. J., 2000. Empirical Evidence for North Pacific Regime Shifts in 1977 and 1989. Progress in Oceanography, 47(2-4): 103-145. https://doi.org/10.1016/S0079-6611(00)00033-1
|
|
Hastings, R. A., Rutterford, L. A., Freer, J. J., et al., 2020. Climate Change Drives Poleward Increases and Equatorward Declines in Marine Species. Current Biology, 30(8): 1572-1577. https://doi.org/10.1016/j.cub.2020.02.043
|
|
Hays, G. C., Richardson, A. J., Robinson, C., 2005. Climate Change and Marine Plankton. Trends in Ecology & Evolution, 20(6): 337-344. https://doi.org/10.1016/j.tree.2005.03.004
|
|
Helaouët, P., Beaugrand, G., 2007. Macroecology of Calanus finmarchicus and C. helgolandicus in the North Atlantic Ocean and Adjacent Seas. Marine Ecology Progress Series, 345: 147-165. https://doi.org/10.3354/meps06775
|
|
Henson, S. A., Cole, H. S., Hopkins, J., et al., 2018. Detection of Climate Change-Driven Trends in Phytoplankton Phenology. Global Change Biology, 24(1): e101-e111. https://doi.org/10.1111/gcb.13886
|
|
Henson, S. A., Sarmiento, J. L., Dunne, J. P., et al., 2010. Detection of Anthropogenic Climate Change in Satellite Records of Ocean Chlorophyll and Productivity. Biogeosciences, 7(2): 621-640. https://doi.org/10.5194/bg-7-621-2010
|
|
Hinder, S. L., Gravenor, M. B., Edwards, M., et al., 2014. Multi-Decadal Range Changes vs. Thermal Adaptation for North East Atlantic Oceanic Copepods in the Face of Climate Change. Global Change Biology, 20(1): 140-146. https://doi.org/10.1111/gcb.12387
|
|
Hinder, S. L., Manning, J. E., Gravenor, M. B., et al., 2012. Long-Term Changes in Abundance and Distribution of Microzooplankton in the NE Atlantic and North Sea. Journal of Plankton Research, 34(1): 83-91. https://doi.org/10.1093/plankt/fbr087
|
|
Hirche, H. J., Kosobokova, K., 2007. Distribution of Calanus finmarchicus in the Northern North Atlantic and Arctic Ocean-Expatriation and Potential Colonization. Deep Sea Research Part II: Topical Studies in Oceanography, 54(23-26): 2729-2747. https://doi.org/10.1016/j.dsr2.2007.08.006
|
|
Hoover, B. A., García-Reyes, M., Batten, S. D., et al., 2021. Spatio-Temporal Persistence of Zooplankton Communities in the Gulf of Alaska. PLoS One, 16(1): e0244960. https://doi.org/10.1371/journal.pone.0244960
|
|
Hu, S. N., Fedorov, A. V., 2020. Indian Ocean Warming as a Driver of the North Atlantic Warming Hole. Nature Communications, 11: 4785. https://doi.org/10.1038/s41467-020-18522-5
|
|
Jahn, A., Holland, M. M., 2013. Implications of Arctic Sea Ice Changes for North Atlantic Deep Convection and the Meridional Overturning Circulation in CCSM4-CMIP5 Simulations. Geophysical Research Letters, 40(6): 1206-1211. https://doi.org/10.1002/grl.50183
|
|
Jahn, A., Holland, M. M., Kay, J. E., 2024. Projections of an Ice-Free Arctic Ocean. Nature Reviews Earth & Environment, 5(3): 164-176. https://doi.org/10.1038/s43017-023-00515-9
|
|
Ji, R. B., Edwards, M., Mackas, D. L., et al., 2010. Marine Plankton Phenology and Life History in a Changing Climate: Current Research and Future Directions. Journal of Plankton Research, 32(10): 1355-1368. https://doi.org/10.1093/plankt/fbq062
|
|
Johannesen, E., Ingvaldsen, R. B., Bogstad, B., et al., 2012. Changes in Barents Sea Ecosystem State, 1970-2009: Climate Fluctuations, Human Impact, and Trophic Interactions. ICES Journal of Marine Science, 69(5): 880-889. https://doi.org/10.1093/icesjms/fss046
|
|
Jonkers, L., Hillebrand, H., Kucera, M., 2019. Global Change Drives Modern Plankton Communities away from the Pre-Industrial State. Nature, 570(7761): 372-375. https://doi.org/10.1038/s41586-019-1230-3
|
|
Jorda, G., Marbà, N., Bennett, S., et al., 2020. Ocean Warming Compresses the Three-Dimensional Habitat of Marine Life. Nature Ecology & Evolution, 4(1): 109-114. https://doi.org/10.1038/s41559-019-1058-0
|
|
Kaiser, P., Hagen, W., Bode-Dalby, M., et al., 2022. Tolerant but Facing Increased Competition: Arctic Zooplankton versus Atlantic Invaders in a Warming Ocean. Frontiers in Marine Science, 9: 908638. https://doi.org/10.3389/fmars.2022.908638
|
|
Kefford, B. J., Ghalambor, C. K., Dewenter, B., et al., 2022. Acute, Diel, and Annual Temperature Variability and the Thermal Biology of Ectotherms. Global Change Biology, 28(23): 6872-6888. https://doi.org/10.1111/gcb.16453
|
|
Kléparski, L., Beaugrand, G., Edwards, M., et al., 2022. Morphological Traits, Niche-Environment Interaction and Temporal Changes in Diatoms. Progress in Oceanography, 201: 102747. https://doi.org/10.1016/j.pocean.2022.102747
|
|
Kosobokova, K. N., 1999. The Reproductive Cycle and Life History of the Arctic Copepod Calanus Glacialis in the White Sea. Polar Biology, 22(4): 254-263. https://doi.org/10.1007/s003000050418
|
|
Kraft, A., Bauerfeind, E., Nöthig, E. M., 2011. Amphipod Abundance in Sediment Trap Samples at the Long-Term Observatory HAUSGARTEN (Fram Strait, ~79°N/4°E). Variability in Species Community Patterns. Marine Biodiversity, 41(3): 353-364. https://doi.org/10.1007/s12526-010-0052-1
|
|
Kraft, A., Bauerfeind, E., Nöthig, E. M., et al., 2012. Size Structure and Life Cycle Patterns of Dominant Pelagic Amphipods Collected as Swimmers in Sediment Traps in the Eastern Fram Strait. Journal of Marine Systems, 95: 1-15. https://doi.org/10.1016/j.jmarsys.2011.12.006
|
|
Kraft, A., Nöthig, E. M., Bauerfeind, E., et al., 2013. First Evidence of Reproductive Success in a Southern Invader Indicates Possible Community Shifts among Arctic Zooplankton. Marine Ecology Progress Series, 493: 291-296. https://doi.org/10.3354/meps10507
|
|
Kromkamp, J. C., van Engeland, T., 2010. Changes in Phytoplankton Biomass in the Western Scheldt Estuary during the Period 1978-2006. Estuaries and Coasts, 33(2): 270-285. https://doi.org/10.1007/s12237-009-9215-3
|
|
Kvile, K. Ø., Ashjian, C., Feng, Z. X., et al., 2018. Pushing the Limit: Resilience of an Arctic Copepod to Environmental Fluctuations. Global Change Biology, 24(11): 5426-5439. https://doi.org/10.1111/gcb.14419
|
|
Li, H. B., Xu, Z. Q., Zhang, W. C., et al., 2016. Boreal Tintinnid Assemblage in the Northwest Pacific and Its Connection with the Japan Sea in Summer 2014. PLoS One, 11(4): e0153379. https://doi.org/10.1371/journal.pone.0153379
|
|
Lindley, J. A., Daykin, S., 2005. Variations in the Distributions of Centropages chierchiae and Temora stylifera (Copepoda: Calanoida) in the North-Eastern Atlantic Ocean and Western European Shelf Waters. ICES Journal of Marine Science, 62(5): 869-877. https://doi.org/10.1016/j.icesjms.2005.02.009
|
|
Liu, H., Gong, X., 2024. Revisiting North Pacific Intermediate Water in the Modern Ocean. Earth Science, 49(8): 2914-2924 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2024.036
|
|
Longhurst, A. R., 2001. Pelagic Biogeography. In: Steele, J. H., Thorpe, S. A., Turekian, K. K., eds., Encyclopedia of Ocean Sciences, vol. 4. Academic Press, San Diego, 356-363.
|
|
Mackas, D. L., Batten, S., Trudel, M., 2007. Effects on Zooplankton of a Warmer Ocean: Recent Evidence from the Northeast Pacific. Progress in Oceanography, 75(2): 223-252. https://doi.org/10.1016/j.pocean.2007.08.010
|
|
Mackas, D. L., Goldblatt, R., Lewis, A. G., 1998. Interdecadal Variation in Developmental Timing of Neocalanus plumchrus Populations at Ocean Station P in the Subarctic North Pacific. Canadian Journal of Fisheries and Aquatic Sciences, 55(8): 1878-1893. https://doi.org/10.1139/f98-080
|
|
Mackas, D. L., Greve, W., Edwards, M., et al., 2012. Changing Zooplankton Seasonality in a Changing Ocean: Comparing Time Series of Zooplankton Phenology. Progress in Oceanography, 97/98/99/100: 31-62. https://doi.org/10.1016/j.pocean.2011.11.005
|
|
Melle, W., Runge, J., Head, E., et al., 2014. The North Atlantic Ocean as Habitat for Calanus finmarchicus: Environmental Factors and Life History Traits. Progress in Oceanography, 129: 244-284. https://doi.org/10.1016/j.pocean.2014.04.026
|
|
Mészáros, L., van der Meulen, F., Jongbloed, G., et al., 2021. Climate Change Induced Trends and Uncertainties in Phytoplankton Spring Bloom Dynamics. Frontiers in Marine Science, 8: 669951. https://doi.org/10.3389/fmars.2021.669951
|
|
Michael, K., Suberg, L. A., Wessels, W., et al., 2021. Facing Southern Ocean Warming: Temperature Effects on Whole Animal Performance of Antarctic Krill (Euphausia superba). Zoology, 146: 125910. https://doi.org/10.1016/j.zool.2021.125910
|
|
Møller, E. F., Nielsen, T. G., 2020. Borealization of Arctic Zooplankton-Smaller and Less Fat Zooplankton Species in Disko Bay, Western Greenland. Limnology and Oceanography, 65(6): 1175-1188. https://doi.org/10.1002/lno.11380
|
|
Neukermans, G., Oziel, L., Babin, M., 2018. Increased Intrusion of Warming Atlantic Water Leads to Rapid Expansion of Temperate Phytoplankton in the Arctic. Global Change Biology, 24(6): 2545-2553. https://doi.org/10.1111/gcb.14075
|
|
Niehoff, B., Hirche, H. J., 2005. Reproduction of Calanus glacialis in the Lurefjord (Western Norway): Indication for Temperature-Induced Female Dormancy. Marine Ecology Progress Series, 285: 107-115. https://doi.org/10.3354/meps285107
|
|
Oliver, E. C. J., Burrows, M. T., Donat, M. G., et al., 2019. Projected Marine Heatwaves in the 21st Century and the Potential for Ecological Impact. Frontiers in Marine Science, 6: 734. https://doi.org/10.3389/fmars.2019.00734
|
|
Ono, A., Moteki, M., 2017. Spatial Distribution of Salpa thompsoni in the High Antarctic Area off Adélie Land, East Antarctica during the Austral Summer 2008. Polar Science, 12: 69-78. https://doi.org/10.1016/j.polar.2016.11.005
|
|
Oziel, L., Sirven, J., Gascard, J. C., 2016. The Barents Sea Frontal Zones and Water Masses Variability (1980-2011). Ocean Science, 12(1): 169-184. https://doi.org/10.5194/os-12-169-2016
|
|
Parmesan, C., Yohe, G., 2003. A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems. Nature, 421(6918): 37-42. https://doi.org/10.1038/nature01286
|
|
Pata, P. R., Galbraith, M., Young, K., et al., 2022. Persistent Zooplankton Bioregions Reflect Long-Term Consistency of Community Composition and Oceanographic Drivers in the NE Pacific. Progress in Oceanography, 206: 102849. https://doi.org/10.1016/j.pocean.2022.102849
|
|
Pata, P. R., Galbraith, M., Young, K., et al., 2024. Data-Driven Determination of Zooplankton Bioregions and Robustness Analysis. MethodsX, 12: 102676. https://doi.org/10.1016/j.mex.2024.102676
|
|
Perry, A. L., Low, P. J., Ellis, J. R., et al., 2005. Climate Change and Distribution Shifts in Marine Fishes. Science, 308(5730): 1912-1915. https://doi.org/10.1126/science.1111322
|
|
Piñones, A., Fedorov, A. V., 2016. Projected Changes of Antarctic Krill Habitat by the End of the 21st Century. Geophysical Research Letters, 43(16): 8580-8589. https://doi.org/10.1002/2016GL069656
|
|
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., et al., 2019. Greater Vulnerability to Warming of Marine versus Terrestrial Ectotherms. Nature, 569(7754): 108-111. https://doi.org/10.1038/s41586-019-1132-4
|
|
Poloczanska, E. S., Brown, C. J., Sydeman, W. J., et al., 2013. Global Imprint of Climate Change on Marine Life. Nature Climate Change, 3(10): 919-925. https://doi.org/10.1038/nclimate1958
|
|
Poloczanska, E. S., Burrows, M. T., Brown, C. J., et al., 2016. Responses of Marine Organisms to Climate Change across Oceans. Frontiers in Marine Science, 3: 62. https://doi.org/10.3389/fmars.2016.00062
|
|
Polyakov, I. V., Alkire, M. B., Bluhm, B. A., et al., 2020. Borealization of the Arctic Ocean in Response to Anomalous Advection from Sub-Arctic Seas. Frontiers in Marine Science, 7: 491. https://doi.org/10.3389/fmars.2020.00491
|
|
Qi, Z. H., Shi, R. J., Dai, M., et al., 2021. A Review on Ecological Characteristics of Creseis acicula and Preliminary Analysis on Its Outbreak Triggers in Daya Bay. Journal of Tropical Oceanography, 40(5): 147-152 (in Chinese with English abstract). https://doi.org/10.11978/2020112
|
|
Richardson, A. J., 2008. In Hot Water: Zooplankton and Climate Change. ICES Journal of Marine Science, 65(3): 279-295. https://doi.org/10.1093/icesjms/fsn028
|
|
Schlüter, M. H., Kraberg, A., Wiltshire, K. H., 2012. Long-Term Changes in the Seasonality of Selected Diatoms Related to Grazers and Environmental Conditions. Journal of Sea Research, 67(1): 91-97. https://doi.org/10.1016/j.seares.2011.11.001
|
|
Schröter, F., Havermans, C., Kraft, A., et al., 2019. Pelagic Amphipods in the Eastern Fram Strait with Continuing Presence of Themisto Compressa Based on Sediment Trap Time Series. Frontiers in Marine Science, 6: 311. https://doi.org/10.3389/fmars.2019.00311
|
|
Schultz, M., Choquet, M., Tverberg, V., et al., 2023. Calanus helgolandicus-More Than a Guest in the North? Journal of Plankton Research, 45(1): 33-36. https://doi.org/10.1093/plankt/fbac070
|
|
Schultz, M., Nielsen, T. G., Møller, E. F., 2020. The Importance of Temperature and Lipid Accumulation for Initiation and Duration of Calanus hyperboreus Spawning. Journal of Plankton Research, 42(2): 159-171. https://doi.org/10.1093/plankt/fbaa003
|
|
Schwartzlose, R. A., Alheit, J., Bakun, A., et al., 1999. Worldwide Large-Scale Fluctuations of Sardine and Anchovy Populations. South African Journal of Marine Science, 21(1): 289-347. https://doi.org/10.2989/025776199784125962
|
|
Sheng, G. L., Tao, H. L., Song, S. W., et al., 2025. Applications of Ancient DNA Research in the Field of Geobiology. Earth Science, 50(3): 1105-1121 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2024.155
|
|
Shevchenko, O. G., Shulgina, M. A., Shulkin, V. M., et al., 2020. The Long-Term Dynamics and Morphology of the Diatom Thalassiosira Nordenskioeldii Cleve, 1873 (Bacillariophyta) from the Coastal Waters of Peter the Great Bay, Sea of Japan. Russian Journal of Marine Biology, 46(4): 284-291. https://doi.org/10.1134/S1063074020040069
|
|
Shi, Y. Q., Liu, Y. J., Shan, X. J., et al., 2025. Climate Change Induced First Record of Porpita porpita (Linnaeus, 1758) in the Yellow Sea, China. Marine Pollution Bulletin, 210: 117333. https://doi.org/10.1016/j.marpolbul.2024.117333
|
|
Słomska, A. W., Panasiuk, A., 2022. Environmental Conditions for the Successful Development of Salpa Thompsoni (Tunicata: Thaliaceae) Blastozooids and Embryos in the Atlantic Sector of the Southern Ocean. Marine Biology, 169(11): 138. https://doi.org/10.1007/s00227-022-04125-9
|
|
Słomska, A. W., Panasiuk, A., Weydmann-Zwolicka, A., et al., 2021. Historical Abundance and Distributions of Salpa Thompsoni Hot Spots in the Southern Ocean and Projections for Further Ocean Warming. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(8): 2095-2102. https://doi.org/10.1002/aqc.3443
|
|
Southward, A. J., 1980. The Western English Channel-An Inconstant Ecosystem? Nature, 285(5764): 361-366. https://doi.org/10.1038/285361a0
|
|
Staten, P. W., Lu, J., Grise, K. M., et al., 2018. Re-Examining Tropical Expansion. Nature Climate Change, 8(9): 768-775. https://doi.org/10.1038/s41558-018-0246-2
|
|
Sunday, J. M., Bates, A. E., Dulvy, N. K., 2011. Global Analysis of Thermal Tolerance and Latitude in Ectotherms. Proceedings Biological Sciences, 278(1713): 1823-1830. https://doi.org/10.1098/rspb.2010.1295
|
|
Sunday, J. M., Pecl, G. T., Frusher, S., et al., 2015. Species Traits and Climate Velocity Explain Geographic Range Shifts in an Ocean-Warming Hotspot. Ecology Letters, 18(9): 944-953. https://doi.org/10.1111/ele.12474
|
|
Swadling, K. M., Constable, A. J., Fraser, A. D., et al., 2023. Biological Responses to Change in Antarctic Sea Ice Habitats. Frontiers in Ecology and Evolution, 10: 1073823. https://doi.org/10.3389/fevo.2022.1073823
|
|
Tachibana, A., Nomura, H., Ishimaru, T., 2019. Impacts of Long-Term Environmental Variability on Diapause Phenology of Coastal Copepods in Tokyo Bay, Japan. Limnology and Oceanography, 64(S1): S273-S283. https://doi.org/10.1002/lno.11030
|
|
Tarling, G. A., Freer, J. J., Banas, N. S., et al., 2022. Can a Key Boreal Calanus Copepod Species Now Complete Its Life-Cycle in the Arctic? Evidence and Implications for Arctic Food-Webs. Ambio, 51(2): 333-344. https://doi.org/10.1007/s13280-021-01667-y
|
|
Thackeray, S. J., Henrys, P. A., Hemming, D., et al., 2016. Phenological Sensitivity to Climate across Taxa and Trophic Levels. Nature, 535(7611): 241-245. https://doi.org/10.1038/nature18608
|
|
Thoman, R. L., Moon, T. A., Druckenmiller, M. L., 2023. Arctic Report Card 2023. NOAA, Washington D. C. .
|
|
Usov, N. V., Khaitov, V. M., Kutcheva, I. P., et al., 2021. Phenological Responses of the Arctic, Ubiquitous, and Boreal Copepod Species to Long-Term Changes in the Annual Seasonality of the Water Temperature in the White Sea. Polar Biology, 44(5): 959-976. https://doi.org/10.1007/s00300-021-02851-2
|
|
Wang, C. F., Wang, X. Y., Xu, Z. Q., et al., 2022a. Planktonic Tintinnid Community Structure Variations in Different Water Masses of the Arctic Basin. Frontiers in Marine Science, 8: 775653. https://doi.org/10.3389/fmars.2021.775653
|
|
Wang, C. F., Xu, Z. Q., He, Y., et al., 2022b. Neritic Tintinnid Community Structure and Mixing with Oceanic Tintinnids in Shelf Waters of the Pacific Arctic Region during Summer. Continental Shelf Research, 239: 104720. https://doi.org/10.1016/j.csr.2022.104720
|
|
Wang, C. F., Xu, Z. Q., Liu, C. G., et al., 2019. Vertical Distribution of Oceanic Tintinnid (Ciliophora: Tintinnida) Assemblages from the Bering Sea to Arctic Ocean through Bering Strait. Polar Biology, 42(11): 2105-2117. https://doi.org/10.1007/s00300-019-02585-2
|
|
Wiltshire, K. H., Malzahn, A. M., Wirtz, K., et al., 2008. Resilience of North Sea Phytoplankton Spring Bloom Dynamics: An Analysis of Long-Term Data at Helgoland Roads. Limnology and Oceanography, 53(4): 1294-1302. https://doi.org/10.4319/lo.2008.53.4.1294
|
|
Winder, M., Berger, S. A., Lewandowska, A., et al., 2012. Spring Phenological Responses of Marine and Freshwater Plankton to Changing Temperature and Light Conditions. Marine Biology, 159(11): 2491-2501. https://doi.org/10.1007/s00227-012-1964-z
|
|
Woillez, M., Rivoirard, J., Petitgas, P., 2009. Notes on Survey-Based Spatial Indicators for Monitoring Fish Populations. Aquatic Living Resources, 22(2): 155-164. https://doi.org/10.1051/alr/2009017
|
|
Woodgate, R. A., Aagaard, K., Weingartner, T. J., 2005. Monthly Temperature, Salinity, and Transport Variability of the Bering Strait through Flow. Geophysical Research Letters, 32(4): 2004GL021880. https://doi.org/10.1029/2004GL021880
|
|
Xu, Z. L., Gao, Q., 2009. Labidocera Euchaeta: Its Distribution in Yangtze River Estuary and Responses to Global Warming. Chinese Journal of Applied Ecology, 20(5): 1196-1201 (in Chinese with English abstract).
|
|
Yamaguchi, R., Rodgers, K. B., Timmermann, A., et al., 2022. Trophic Level Decoupling Drives Future Changes in Phytoplankton Bloom Phenology. Nature Climate Change, 12(5): 469-476. https://doi.org/10.1038/s41558-022-01353-1
|
|
Yang, H., Lohmann, G., Krebs-Kanzow, U., et al., 2020. Poleward Shift of the Major Ocean Gyres Detected in a Warming Climate. Geophysical Research Letters, 47(5): e2019GL085868. https://doi.org/10.1029/2019GL085868
|
|
Yoshiki, T. M., Chiba, S., Sasaki, Y., et al., 2015. Northerly Shift of Warm-Water Copepods in the Western Subarctic North Pacific: Continuous Plankton Recorder Samples (2001-2013). Fisheries Oceanography, 24(5): 414-429. https://doi.org/10.1111/fog.12119
|
|
Zanna, L., Khatiwala, S., Gregory, J. M., et al., 2019. Global Reconstruction of Historical Ocean Heat Storage and Transport. Proceedings of the National Academy of Sciences of the United States of America, 116(4): 1126-1131. https://doi.org/10.1073/pnas.1808838115
|
|
Zhang, W., Li, J., Li, H., et al., 2025. A New Tintinnid Ciliate of Salpingella (Ciliophora: Spirotrichea) from the Subarctic North Pacific Ocean to Arctic Ocean, with Notes on Its Habitat. Zoological Systematics, 50(4): 293—301. https://doi.org/10.11865/zs.2025402
|
|
Zhang, W. C., Zhao, Y., Dong, Y., et al., 2021. Biogeography of Epipelagic Marine Plankton. Oceanologia et Limnologia Sinica, 52(2): 332-345 (in Chinese with English abstract). https://doi.org/10.11693/hyhz20200100211
|
|
刘辉, 宫勋, 2024. 现代北太平洋中层水研究进展综述. 地球科学, 49(8): 2914-2924. doi: 10.3799/dqkx.2024.036
|
|
齐占会, 史荣君, 戴明, 等, 2021. 尖笔帽螺(Creseis acicula)研究进展及其在大亚湾暴发机制初探. 热带海洋学报, 40(5): 147-152.
|
|
盛桂莲, 陶华林, 宋世文, 等, 2025. 古DNA研究在地球生物学领域的应用. 地球科学, 50(3): 1105-1121. doi: 10.3799/dqkx.2024.155
|
|
徐兆礼, 高倩, 2009. 长江口海域真刺唇角水蚤的分布及其对全球变暖的响应. 应用生态学报, 20(5): 1196-1201.
|
|
张武昌, 赵苑, 董逸, 等, 2021. 上层海洋浮游生物地理分布. 海洋与湖沼, 52(2): 332-345.
|