• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 11
    Nov.  2025
    Turn off MathJax
    Article Contents
    Zhang Wuchang, Zhao Yuan, Liu Hongbin, Sun Jun, 2025. Long-Term Changes in Plankton Communities in Context of Global Warming. Earth Science, 50(11): 4551-4570. doi: 10.3799/dqkx.2025.163
    Citation: Zhang Wuchang, Zhao Yuan, Liu Hongbin, Sun Jun, 2025. Long-Term Changes in Plankton Communities in Context of Global Warming. Earth Science, 50(11): 4551-4570. doi: 10.3799/dqkx.2025.163

    Long-Term Changes in Plankton Communities in Context of Global Warming

    doi: 10.3799/dqkx.2025.163
    • Received Date: 2025-03-14
    • Publish Date: 2025-11-25
    • Plankton form the foundation of marine ecosystems, and changes in their community structure and phenology affect ecosystem function and biogeographical patterns. Global warming drives sea surface temperature increases, resulting in poleward shifts of plankton distribution, with the leading edge advancing more noticeably while the core and trailing edge remain relatively stable. Warming also causes phenological shifts in some species, such as earlier spring events and delayed autumn events. The extent of distribution and phenological changes varies among plankton groups, mainly affecting community structure at the margins, while no significant changes have been observed in the dominant species of community cores. If future ocean circulation patterns remain stable, the risk of major shifts in plankton community cores from the tropics to subarctic regions is low, and dominant species in polar communities are also unlikely to change substantially in the next century. Long-term systematic observation in Chinese seas is still insufficient, and key regions lack critical data. Synthesizing evidence from polar and coastal regions, this study predicts that if warming does not exceed 2 ℃, the positions of community cores in China's coastal plankton communities may shift, but the risk of substantial structural change remains low.

       

    • loading
    • Aarflot, J. M., Skjoldal, H. R., Dalpadado, P., et al., 2018. Contribution of Calanus Species to the Mesozooplankton Biomass in the Barents Sea. ICES Journal of Marine Science, 75(7): 2342-2354. https://doi.org/10.1093/icesjms/fsx221
      Aberle, N., Bauer, B., Lewandowska, A., et al., 2012. Warming Induces Shifts in Microzooplankton Phenology and Reduces Time-Lags between Phytoplankton and Protozoan Production. Marine Biology, 159(11): 2441-2453. https://doi.org/10.1007/s00227-012-1947-0
      Alcaraz, M., Felipe, J., Grote, U., et al., 2014. Life in a Warming Ocean: Thermal Thresholds and Metabolic Balance of Arctic Zooplankton. Journal of Plankton Research, 36(1): 3-10. https://doi.org/10.1093/plankt/fbt111
      Atkinson, A., Hill, S. L., Pakhomov, E. A., et al., 2019. Krill (Euphausia Superba) Distribution Contracts Southward during Rapid Regional Warming. Nature Climate Change, 9(2): 142-147. https://doi.org/10.1038/s41558-018-0370-z
      Atkinson, A., Hill, S. L., Reiss, C. S., et al., 2022. Stepping Stones towards Antarctica: Switch to Southern Spawning Grounds Explains an Abrupt Range Shift in Krill. Global Change Biology, 28(4): 1359-1375. https://doi.org/10.1111/gcb.16009
      Atkinson, A., Siegel, V., Pakhomov, E., et al., 2004. Long-Term Decline in Krill Stock and Increase in Salps within the Southern Ocean. Nature, 432(7013): 100-103. https://doi.org/10.1038/nature02996
      Balch, W. M., Gordon, H. R., Bowler, B. C., et al., 2005. Calcium Carbonate Measurements in the Surface Global Ocean Based on Moderate-Resolution Imaging Spectroradiometer Data. Journal of Geophysical Research: Oceans, 110(C7): 2004JC002560. https://doi.org/10.1029/2004JC002560
      Basedow, S. L., Sundfjord, A., von Appen, W. J., et al., 2018. Seasonal Variation in Transport of Zooplankton into the Arctic Basin through the Atlantic Gateway, Fram Strait. Frontiers in Marine Science, 5: 194. https://doi.org/10.3389/fmars.2018.00194
      Batchelder, H. P., Mackas, D. L., O'Brien, T. D., 2012. Spatial-Temporal Scales of Synchrony in Marine Zooplankton Biomass and Abundance Patterns: A World-Wide Comparison. Progress in Oceanography, 97/98/99/100: 15-30. https://doi.org/10.1016/j.pocean.2011.11.010
      Batten, S. D., Abu-Alhaija, R., Chiba, S., et al., 2019. A Global Plankton Diversity Monitoring Program. Frontiers in Marine Science, 6: 321. https://doi.org/10.3389/fmars.2019.00321
      Batten, S. D., Walne, A. W., 2011. Variability in Northwards Extension of Warm Water Copepods in the NE Pacific. Journal of Plankton Research, 33(11): 1643-1653. https://doi.org/10.1093/plankt/fbr065
      Beaugrand, G., 2004. The North Sea Regime Shift: Evidence, Causes, Mechanisms and Consequences. Progress in Oceanography, 60(2/3/4): 245-262. https://doi.org/10.1016/j.pocean.2004.02.018
      Beaugrand, G., Reid, P. C., Ibañez, F., et al., 2002. Reorganization of North Atlantic Marine Copepod Biodiversity and Climate. Science, 296(5573): 1692-1694. https://doi.org/10.1126/science.1071329
      Bindoff, N. L., Cheung, W. W. L., Kairo, J. G., et al., 2019. Changing Ocean, Marine Ecosystems, and Dependent Communities. In: IPCC, ed., IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge University Press, Cambridge, 447-588. https://doi.org/10.1017/9781009157964.007
      Borkman, D. G., Fofonoff, P., Smayda, T. J., et al., 2018. Changing Acartia spp. Phenology and Abundance during a Warming Period in Narragansett Bay, Rhode Island, USA: 1972-1990. Journal of Plankton Research, 40(5): 580-594. https://doi.org/10.1093/plankt/fby029
      Both, C., Van Asch, M., Bijlsma, R. G., et al., 2009. Climate Change and Unequal Phenological Changes across Four Trophic Levels: Constraints or Adaptations? Journal of Animal Ecology, 78(1): 73-83. https://doi.org/10.1111/j.1365-2656.2008.01458.x
      Brown, M., Kawaguchi, S., Candy, S., et al., 2010. Temperature Effects on the Growth and Maturation of Antarctic Krill (Euphausia superba). Deep Sea Research Part II: Topical Studies in Oceanography, 57(7/8): 672-682. https://doi.org/10.1016/j.dsr2.2009.10.016
      Chaikin, S., Dubiner, S., Belmaker, J., 2022. Cold-Water Species Deepen to Escape Warm Water Temperatures. Global Ecology and Biogeography, 31(1): 75-88. https://doi.org/10.1111/geb.13414
      Chavez, F. P., Ryan, J., Lluch-Cota, S. E., et al., 2003. From Anchovies to Sardines and Back: Multidecadal Change in the Pacific Ocean. Science, 299(5604): 217-221. https://doi.org/10.1126/science.1075880
      Chivers, W. J., Edwards, M., Hays, G. C., 2020. Phenological Shuffling of Major Marine Phytoplankton Groups over the Last Six Decades. Diversity and Distributions, 26(5): 536-548. https://doi.org/10.1111/ddi.13028
      Chivers, W. J., Walne, A. W., Hays, G. C., 2017. Mismatch between Marine Plankton Range Movements and the Velocity of Climate Change. Nature Communications, 8: 14434. https://doi.org/10.1038/ncomms14434
      Chust, G., Castellani, C., Licandro, P., et al., 2014. Are Calanus spp. Shifting Poleward in the North Atlantic? A Habitat Modelling Approach. ICES Journal of Marine Science, 71(2): 241-253. https://doi.org/10.1093/icesjms/fst147
      Conversi, A., Dakos, V., Gårdmark, A., et al., 2015. A Holistic View of Marine Regime Shifts. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1659): 20130279. https://doi.org/10.1098/rstb.2013.0279
      Dalpadado, P., Ingvaldsen, R. B., Stige, L. C., et al., 2012. Climate Effects on Barents Sea Ecosystem Dynamics. ICES Journal of Marine Science, 69(7): 1303-1316. https://doi.org/10.1093/icesjms/fss063
      Davis, A. J., Jenkinson, L. S., Lawton, J. H., et al., 1998. Making Mistakes When Predicting Shifts in Species Range in Response to Global Warming. Nature, 391(6669): 783-786. https://doi.org/10.1038/35842
      Deutsch, C. A., Tewksbury, J. J., Huey, R. B., et al., 2008. Impacts of Climate Warming on Terrestrial Ectotherms across Latitude. Proceedings of the National Academy of Sciences of the United States of America, 105(18): 6668-6672. https://doi.org/10.1073/pnas.0709472105
      Dulvy, N. K., Rogers, S. I., Jennings, S., et al., 2008. Climate Change and Deepening of the North Sea Fish Assemblage: A Biotic Indicator of Warming Seas. Journal of Applied Ecology, 45(4): 1029-1039. https://doi.org/10.1111/j.1365-2664.2008.01488.x
      Duarte, C. M., Cebrián, J., Marbà, N., 1992. Uncertainty of Detecting Sea Change. Nature, 356(6366): 190. https://doi.org/10.1038/356190a0
      Dupont, N., Bagøien, E., Melle, W., 2017. Inter-Annual Variability in Spring Abundance of Adult Calanus finmarchicus from the Overwintering Population in the Southeastern Norwegian Sea. Progress in Oceanography, 152: 75-85. https://doi.org/10.1016/j.pocean.2017.02.004
      Edwards, M., Richardson, A. J., 2004. Impact of Climate Change on Marine Pelagic Phenology and Trophic Mismatch. Nature, 430(7002): 881-884. https://doi.org/10.1038/nature02808
      Ekman, S., 1953. Zoogeography of the Sea, vol. 9. Sidgwick & Jackson, London, 417.
      Ershova, E. A., Kosobokova, K. N., Banas, N. S., et al., 2021. Sea Ice Decline Drives Biogeographical Shifts of Key Calanus Species in the Central Arctic Ocean. Global Change Biology, 27(10): 2128-2143. https://doi.org/10.1111/gcb.15562
      Falkenhaug, T., Broms, C., Bagøien, E., et al., 2022. Temporal Variability of Co-Occurring Calanus finmarchicus and C. helgolandicus in Skagerrak. Frontiers in Marine Science, 9: 779335. https://doi.org/10.3389/fmars.2022.779335
      Field, C., Behrenfeld, M., Randerson, J., et al., 1998. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science, 281(5374): 237-240. https://doi.org/10.1126/science.281.5374.237
      Fox-Kemper, B., Hewitt, H. T., Xiao, C., et al., 2021. Ocean, Cryosphere and Sea Level Change. In: Masson-Delmotte, V., Zhai, P., Pirani, A., et al., eds., Climate Change 2021: The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1211-1362. https://doi.org/10.1017/9781009157896.011
      García-Soto, C., Caesar, L., Cazenave, A., et al., 2021. Chapter 05 Trends in the Physical and Chemical State of the Ocean. In: United Nations, ed., World Ocean Assessment Ⅱ. United Nations, New York, 83-103. https://doi.org/10.18356/9789216040062
      Grandremy, N., Bourriau, P., Daché, E., et al., 2024. Metazoan Zooplankton in the Bay of Biscay: A 16-Year Record of Individual Sizes and Abundances Obtained Using the ZooScan and ZooCAM Imaging Systems. Earth System Science Data, 16(3): 1265-1282. https://doi.org/10.5194/essd-16-1265-2024
      Gushing, D. H., Dickson, R. R., 1977. The Biological Response in the Sea to Climatic Changes. In: Russell, F. S., Yonge, M., eds., Advances in Marine Biology, vol. 14. Academic Press, Cambridge, 1-122. https://doi.org/10.1016/S0065-2881(08)60446-0
      Hampton, S. E., Gray, D. K., Izmest'eva, L. R., et al., 2014. The Rise and Fall of Plankton: Long-Term Changes in the Vertical Distribution of Algae and Grazers in Lake Baikal, Siberia. PLoS One, 9(2): e88920. https://doi.org/10.1371/journal.pone.0088920
      Hare, S. R., Mantua, N. J., 2000. Empirical Evidence for North Pacific Regime Shifts in 1977 and 1989. Progress in Oceanography, 47(2-4): 103-145. https://doi.org/10.1016/S0079-6611(00)00033-1
      Hastings, R. A., Rutterford, L. A., Freer, J. J., et al., 2020. Climate Change Drives Poleward Increases and Equatorward Declines in Marine Species. Current Biology, 30(8): 1572-1577. https://doi.org/10.1016/j.cub.2020.02.043
      Hays, G. C., Richardson, A. J., Robinson, C., 2005. Climate Change and Marine Plankton. Trends in Ecology & Evolution, 20(6): 337-344. https://doi.org/10.1016/j.tree.2005.03.004
      Helaouët, P., Beaugrand, G., 2007. Macroecology of Calanus finmarchicus and C. helgolandicus in the North Atlantic Ocean and Adjacent Seas. Marine Ecology Progress Series, 345: 147-165. https://doi.org/10.3354/meps06775
      Henson, S. A., Cole, H. S., Hopkins, J., et al., 2018. Detection of Climate Change-Driven Trends in Phytoplankton Phenology. Global Change Biology, 24(1): e101-e111. https://doi.org/10.1111/gcb.13886
      Henson, S. A., Sarmiento, J. L., Dunne, J. P., et al., 2010. Detection of Anthropogenic Climate Change in Satellite Records of Ocean Chlorophyll and Productivity. Biogeosciences, 7(2): 621-640. https://doi.org/10.5194/bg-7-621-2010
      Hinder, S. L., Gravenor, M. B., Edwards, M., et al., 2014. Multi-Decadal Range Changes vs. Thermal Adaptation for North East Atlantic Oceanic Copepods in the Face of Climate Change. Global Change Biology, 20(1): 140-146. https://doi.org/10.1111/gcb.12387
      Hinder, S. L., Manning, J. E., Gravenor, M. B., et al., 2012. Long-Term Changes in Abundance and Distribution of Microzooplankton in the NE Atlantic and North Sea. Journal of Plankton Research, 34(1): 83-91. https://doi.org/10.1093/plankt/fbr087
      Hirche, H. J., Kosobokova, K., 2007. Distribution of Calanus finmarchicus in the Northern North Atlantic and Arctic Ocean-Expatriation and Potential Colonization. Deep Sea Research Part II: Topical Studies in Oceanography, 54(23-26): 2729-2747. https://doi.org/10.1016/j.dsr2.2007.08.006
      Hoover, B. A., García-Reyes, M., Batten, S. D., et al., 2021. Spatio-Temporal Persistence of Zooplankton Communities in the Gulf of Alaska. PLoS One, 16(1): e0244960. https://doi.org/10.1371/journal.pone.0244960
      Hu, S. N., Fedorov, A. V., 2020. Indian Ocean Warming as a Driver of the North Atlantic Warming Hole. Nature Communications, 11: 4785. https://doi.org/10.1038/s41467-020-18522-5
      Jahn, A., Holland, M. M., 2013. Implications of Arctic Sea Ice Changes for North Atlantic Deep Convection and the Meridional Overturning Circulation in CCSM4-CMIP5 Simulations. Geophysical Research Letters, 40(6): 1206-1211. https://doi.org/10.1002/grl.50183
      Jahn, A., Holland, M. M., Kay, J. E., 2024. Projections of an Ice-Free Arctic Ocean. Nature Reviews Earth & Environment, 5(3): 164-176. https://doi.org/10.1038/s43017-023-00515-9
      Ji, R. B., Edwards, M., Mackas, D. L., et al., 2010. Marine Plankton Phenology and Life History in a Changing Climate: Current Research and Future Directions. Journal of Plankton Research, 32(10): 1355-1368. https://doi.org/10.1093/plankt/fbq062
      Johannesen, E., Ingvaldsen, R. B., Bogstad, B., et al., 2012. Changes in Barents Sea Ecosystem State, 1970-2009: Climate Fluctuations, Human Impact, and Trophic Interactions. ICES Journal of Marine Science, 69(5): 880-889. https://doi.org/10.1093/icesjms/fss046
      Jonkers, L., Hillebrand, H., Kucera, M., 2019. Global Change Drives Modern Plankton Communities away from the Pre-Industrial State. Nature, 570(7761): 372-375. https://doi.org/10.1038/s41586-019-1230-3
      Jorda, G., Marbà, N., Bennett, S., et al., 2020. Ocean Warming Compresses the Three-Dimensional Habitat of Marine Life. Nature Ecology & Evolution, 4(1): 109-114. https://doi.org/10.1038/s41559-019-1058-0
      Kaiser, P., Hagen, W., Bode-Dalby, M., et al., 2022. Tolerant but Facing Increased Competition: Arctic Zooplankton versus Atlantic Invaders in a Warming Ocean. Frontiers in Marine Science, 9: 908638. https://doi.org/10.3389/fmars.2022.908638
      Kefford, B. J., Ghalambor, C. K., Dewenter, B., et al., 2022. Acute, Diel, and Annual Temperature Variability and the Thermal Biology of Ectotherms. Global Change Biology, 28(23): 6872-6888. https://doi.org/10.1111/gcb.16453
      Kléparski, L., Beaugrand, G., Edwards, M., et al., 2022. Morphological Traits, Niche-Environment Interaction and Temporal Changes in Diatoms. Progress in Oceanography, 201: 102747. https://doi.org/10.1016/j.pocean.2022.102747
      Kosobokova, K. N., 1999. The Reproductive Cycle and Life History of the Arctic Copepod Calanus Glacialis in the White Sea. Polar Biology, 22(4): 254-263. https://doi.org/10.1007/s003000050418
      Kraft, A., Bauerfeind, E., Nöthig, E. M., 2011. Amphipod Abundance in Sediment Trap Samples at the Long-Term Observatory HAUSGARTEN (Fram Strait, ~79°N/4°E). Variability in Species Community Patterns. Marine Biodiversity, 41(3): 353-364. https://doi.org/10.1007/s12526-010-0052-1
      Kraft, A., Bauerfeind, E., Nöthig, E. M., et al., 2012. Size Structure and Life Cycle Patterns of Dominant Pelagic Amphipods Collected as Swimmers in Sediment Traps in the Eastern Fram Strait. Journal of Marine Systems, 95: 1-15. https://doi.org/10.1016/j.jmarsys.2011.12.006
      Kraft, A., Nöthig, E. M., Bauerfeind, E., et al., 2013. First Evidence of Reproductive Success in a Southern Invader Indicates Possible Community Shifts among Arctic Zooplankton. Marine Ecology Progress Series, 493: 291-296. https://doi.org/10.3354/meps10507
      Kromkamp, J. C., van Engeland, T., 2010. Changes in Phytoplankton Biomass in the Western Scheldt Estuary during the Period 1978-2006. Estuaries and Coasts, 33(2): 270-285. https://doi.org/10.1007/s12237-009-9215-3
      Kvile, K. Ø., Ashjian, C., Feng, Z. X., et al., 2018. Pushing the Limit: Resilience of an Arctic Copepod to Environmental Fluctuations. Global Change Biology, 24(11): 5426-5439. https://doi.org/10.1111/gcb.14419
      Li, H. B., Xu, Z. Q., Zhang, W. C., et al., 2016. Boreal Tintinnid Assemblage in the Northwest Pacific and Its Connection with the Japan Sea in Summer 2014. PLoS One, 11(4): e0153379. https://doi.org/10.1371/journal.pone.0153379
      Lindley, J. A., Daykin, S., 2005. Variations in the Distributions of Centropages chierchiae and Temora stylifera (Copepoda: Calanoida) in the North-Eastern Atlantic Ocean and Western European Shelf Waters. ICES Journal of Marine Science, 62(5): 869-877. https://doi.org/10.1016/j.icesjms.2005.02.009
      Liu, H., Gong, X., 2024. Revisiting North Pacific Intermediate Water in the Modern Ocean. Earth Science, 49(8): 2914-2924 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2024.036
      Longhurst, A. R., 2001. Pelagic Biogeography. In: Steele, J. H., Thorpe, S. A., Turekian, K. K., eds., Encyclopedia of Ocean Sciences, vol. 4. Academic Press, San Diego, 356-363. https://doi.org/10.1016/B978-012374473-9.00288-5
      Mackas, D. L., Batten, S., Trudel, M., 2007. Effects on Zooplankton of a Warmer Ocean: Recent Evidence from the Northeast Pacific. Progress in Oceanography, 75(2): 223-252. https://doi.org/10.1016/j.pocean.2007.08.010
      Mackas, D. L., Goldblatt, R., Lewis, A. G., 1998. Interdecadal Variation in Developmental Timing of Neocalanus plumchrus Populations at Ocean Station P in the Subarctic North Pacific. Canadian Journal of Fisheries and Aquatic Sciences, 55(8): 1878-1893. https://doi.org/10.1139/f98-080
      Mackas, D. L., Greve, W., Edwards, M., et al., 2012. Changing Zooplankton Seasonality in a Changing Ocean: Comparing Time Series of Zooplankton Phenology. Progress in Oceanography, 97/98/99/100: 31-62. https://doi.org/10.1016/j.pocean.2011.11.005
      Melle, W., Runge, J., Head, E., et al., 2014. The North Atlantic Ocean as Habitat for Calanus finmarchicus: Environmental Factors and Life History Traits. Progress in Oceanography, 129: 244-284. https://doi.org/10.1016/j.pocean.2014.04.026
      Mészáros, L., van der Meulen, F., Jongbloed, G., et al., 2021. Climate Change Induced Trends and Uncertainties in Phytoplankton Spring Bloom Dynamics. Frontiers in Marine Science, 8: 669951. https://doi.org/10.3389/fmars.2021.669951
      Michael, K., Suberg, L. A., Wessels, W., et al., 2021. Facing Southern Ocean Warming: Temperature Effects on Whole Animal Performance of Antarctic Krill (Euphausia superba). Zoology, 146: 125910. https://doi.org/10.1016/j.zool.2021.125910
      Møller, E. F., Nielsen, T. G., 2020. Borealization of Arctic Zooplankton-Smaller and Less Fat Zooplankton Species in Disko Bay, Western Greenland. Limnology and Oceanography, 65(6): 1175-1188. https://doi.org/10.1002/lno.11380
      Neukermans, G., Oziel, L., Babin, M., 2018. Increased Intrusion of Warming Atlantic Water Leads to Rapid Expansion of Temperate Phytoplankton in the Arctic. Global Change Biology, 24(6): 2545-2553. https://doi.org/10.1111/gcb.14075
      Niehoff, B., Hirche, H. J., 2005. Reproduction of Calanus glacialis in the Lurefjord (Western Norway): Indication for Temperature-Induced Female Dormancy. Marine Ecology Progress Series, 285: 107-115. https://doi.org/10.3354/meps285107
      Oliver, E. C. J., Burrows, M. T., Donat, M. G., et al., 2019. Projected Marine Heatwaves in the 21st Century and the Potential for Ecological Impact. Frontiers in Marine Science, 6: 734. https://doi.org/10.3389/fmars.2019.00734
      Ono, A., Moteki, M., 2017. Spatial Distribution of Salpa thompsoni in the High Antarctic Area off Adélie Land, East Antarctica during the Austral Summer 2008. Polar Science, 12: 69-78. https://doi.org/10.1016/j.polar.2016.11.005
      Oziel, L., Sirven, J., Gascard, J. C., 2016. The Barents Sea Frontal Zones and Water Masses Variability (1980-2011). Ocean Science, 12(1): 169-184. https://doi.org/10.5194/os-12-169-2016
      Parmesan, C., Yohe, G., 2003. A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems. Nature, 421(6918): 37-42. https://doi.org/10.1038/nature01286
      Pata, P. R., Galbraith, M., Young, K., et al., 2022. Persistent Zooplankton Bioregions Reflect Long-Term Consistency of Community Composition and Oceanographic Drivers in the NE Pacific. Progress in Oceanography, 206: 102849. https://doi.org/10.1016/j.pocean.2022.102849
      Pata, P. R., Galbraith, M., Young, K., et al., 2024. Data-Driven Determination of Zooplankton Bioregions and Robustness Analysis. MethodsX, 12: 102676. https://doi.org/10.1016/j.mex.2024.102676
      Perry, A. L., Low, P. J., Ellis, J. R., et al., 2005. Climate Change and Distribution Shifts in Marine Fishes. Science, 308(5730): 1912-1915. https://doi.org/10.1126/science.1111322
      Piñones, A., Fedorov, A. V., 2016. Projected Changes of Antarctic Krill Habitat by the End of the 21st Century. Geophysical Research Letters, 43(16): 8580-8589. https://doi.org/10.1002/2016GL069656
      Pinsky, M. L., Eikeset, A. M., McCauley, D. J., et al., 2019. Greater Vulnerability to Warming of Marine versus Terrestrial Ectotherms. Nature, 569(7754): 108-111. https://doi.org/10.1038/s41586-019-1132-4
      Poloczanska, E. S., Brown, C. J., Sydeman, W. J., et al., 2013. Global Imprint of Climate Change on Marine Life. Nature Climate Change, 3(10): 919-925. https://doi.org/10.1038/nclimate1958
      Poloczanska, E. S., Burrows, M. T., Brown, C. J., et al., 2016. Responses of Marine Organisms to Climate Change across Oceans. Frontiers in Marine Science, 3: 62. https://doi.org/10.3389/fmars.2016.00062
      Polyakov, I. V., Alkire, M. B., Bluhm, B. A., et al., 2020. Borealization of the Arctic Ocean in Response to Anomalous Advection from Sub-Arctic Seas. Frontiers in Marine Science, 7: 491. https://doi.org/10.3389/fmars.2020.00491
      Qi, Z. H., Shi, R. J., Dai, M., et al., 2021. A Review on Ecological Characteristics of Creseis acicula and Preliminary Analysis on Its Outbreak Triggers in Daya Bay. Journal of Tropical Oceanography, 40(5): 147-152 (in Chinese with English abstract). https://doi.org/10.11978/2020112
      Richardson, A. J., 2008. In Hot Water: Zooplankton and Climate Change. ICES Journal of Marine Science, 65(3): 279-295. https://doi.org/10.1093/icesjms/fsn028
      Schlüter, M. H., Kraberg, A., Wiltshire, K. H., 2012. Long-Term Changes in the Seasonality of Selected Diatoms Related to Grazers and Environmental Conditions. Journal of Sea Research, 67(1): 91-97. https://doi.org/10.1016/j.seares.2011.11.001
      Schröter, F., Havermans, C., Kraft, A., et al., 2019. Pelagic Amphipods in the Eastern Fram Strait with Continuing Presence of Themisto Compressa Based on Sediment Trap Time Series. Frontiers in Marine Science, 6: 311. https://doi.org/10.3389/fmars.2019.00311
      Schultz, M., Choquet, M., Tverberg, V., et al., 2023. Calanus helgolandicus-More Than a Guest in the North? Journal of Plankton Research, 45(1): 33-36. https://doi.org/10.1093/plankt/fbac070
      Schultz, M., Nielsen, T. G., Møller, E. F., 2020. The Importance of Temperature and Lipid Accumulation for Initiation and Duration of Calanus hyperboreus Spawning. Journal of Plankton Research, 42(2): 159-171. https://doi.org/10.1093/plankt/fbaa003
      Schwartzlose, R. A., Alheit, J., Bakun, A., et al., 1999. Worldwide Large-Scale Fluctuations of Sardine and Anchovy Populations. South African Journal of Marine Science, 21(1): 289-347. https://doi.org/10.2989/025776199784125962
      Sheng, G. L., Tao, H. L., Song, S. W., et al., 2025. Applications of Ancient DNA Research in the Field of Geobiology. Earth Science, 50(3): 1105-1121 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2024.155
      Shevchenko, O. G., Shulgina, M. A., Shulkin, V. M., et al., 2020. The Long-Term Dynamics and Morphology of the Diatom Thalassiosira Nordenskioeldii Cleve, 1873 (Bacillariophyta) from the Coastal Waters of Peter the Great Bay, Sea of Japan. Russian Journal of Marine Biology, 46(4): 284-291. https://doi.org/10.1134/S1063074020040069
      Shi, Y. Q., Liu, Y. J., Shan, X. J., et al., 2025. Climate Change Induced First Record of Porpita porpita (Linnaeus, 1758) in the Yellow Sea, China. Marine Pollution Bulletin, 210: 117333. https://doi.org/10.1016/j.marpolbul.2024.117333
      Słomska, A. W., Panasiuk, A., 2022. Environmental Conditions for the Successful Development of Salpa Thompsoni (Tunicata: Thaliaceae) Blastozooids and Embryos in the Atlantic Sector of the Southern Ocean. Marine Biology, 169(11): 138. https://doi.org/10.1007/s00227-022-04125-9
      Słomska, A. W., Panasiuk, A., Weydmann-Zwolicka, A., et al., 2021. Historical Abundance and Distributions of Salpa Thompsoni Hot Spots in the Southern Ocean and Projections for Further Ocean Warming. Aquatic Conservation: Marine and Freshwater Ecosystems, 31(8): 2095-2102. https://doi.org/10.1002/aqc.3443
      Southward, A. J., 1980. The Western English Channel-An Inconstant Ecosystem? Nature, 285(5764): 361-366. https://doi.org/10.1038/285361a0
      Staten, P. W., Lu, J., Grise, K. M., et al., 2018. Re-Examining Tropical Expansion. Nature Climate Change, 8(9): 768-775. https://doi.org/10.1038/s41558-018-0246-2
      Sunday, J. M., Bates, A. E., Dulvy, N. K., 2011. Global Analysis of Thermal Tolerance and Latitude in Ectotherms. Proceedings Biological Sciences, 278(1713): 1823-1830. https://doi.org/10.1098/rspb.2010.1295
      Sunday, J. M., Pecl, G. T., Frusher, S., et al., 2015. Species Traits and Climate Velocity Explain Geographic Range Shifts in an Ocean-Warming Hotspot. Ecology Letters, 18(9): 944-953. https://doi.org/10.1111/ele.12474
      Swadling, K. M., Constable, A. J., Fraser, A. D., et al., 2023. Biological Responses to Change in Antarctic Sea Ice Habitats. Frontiers in Ecology and Evolution, 10: 1073823. https://doi.org/10.3389/fevo.2022.1073823
      Tachibana, A., Nomura, H., Ishimaru, T., 2019. Impacts of Long-Term Environmental Variability on Diapause Phenology of Coastal Copepods in Tokyo Bay, Japan. Limnology and Oceanography, 64(S1): S273-S283. https://doi.org/10.1002/lno.11030
      Tarling, G. A., Freer, J. J., Banas, N. S., et al., 2022. Can a Key Boreal Calanus Copepod Species Now Complete Its Life-Cycle in the Arctic? Evidence and Implications for Arctic Food-Webs. Ambio, 51(2): 333-344. https://doi.org/10.1007/s13280-021-01667-y
      Thackeray, S. J., Henrys, P. A., Hemming, D., et al., 2016. Phenological Sensitivity to Climate across Taxa and Trophic Levels. Nature, 535(7611): 241-245. https://doi.org/10.1038/nature18608
      Thoman, R. L., Moon, T. A., Druckenmiller, M. L., 2023. Arctic Report Card 2023. NOAA, Washington D. C. . https://doi.org/10.25923/5vfa-k694
      Usov, N. V., Khaitov, V. M., Kutcheva, I. P., et al., 2021. Phenological Responses of the Arctic, Ubiquitous, and Boreal Copepod Species to Long-Term Changes in the Annual Seasonality of the Water Temperature in the White Sea. Polar Biology, 44(5): 959-976. https://doi.org/10.1007/s00300-021-02851-2
      Wang, C. F., Wang, X. Y., Xu, Z. Q., et al., 2022a. Planktonic Tintinnid Community Structure Variations in Different Water Masses of the Arctic Basin. Frontiers in Marine Science, 8: 775653. https://doi.org/10.3389/fmars.2021.775653
      Wang, C. F., Xu, Z. Q., He, Y., et al., 2022b. Neritic Tintinnid Community Structure and Mixing with Oceanic Tintinnids in Shelf Waters of the Pacific Arctic Region during Summer. Continental Shelf Research, 239: 104720. https://doi.org/10.1016/j.csr.2022.104720
      Wang, C. F., Xu, Z. Q., Liu, C. G., et al., 2019. Vertical Distribution of Oceanic Tintinnid (Ciliophora: Tintinnida) Assemblages from the Bering Sea to Arctic Ocean through Bering Strait. Polar Biology, 42(11): 2105-2117. https://doi.org/10.1007/s00300-019-02585-2
      Wiltshire, K. H., Malzahn, A. M., Wirtz, K., et al., 2008. Resilience of North Sea Phytoplankton Spring Bloom Dynamics: An Analysis of Long-Term Data at Helgoland Roads. Limnology and Oceanography, 53(4): 1294-1302. https://doi.org/10.4319/lo.2008.53.4.1294
      Winder, M., Berger, S. A., Lewandowska, A., et al., 2012. Spring Phenological Responses of Marine and Freshwater Plankton to Changing Temperature and Light Conditions. Marine Biology, 159(11): 2491-2501. https://doi.org/10.1007/s00227-012-1964-z
      Woillez, M., Rivoirard, J., Petitgas, P., 2009. Notes on Survey-Based Spatial Indicators for Monitoring Fish Populations. Aquatic Living Resources, 22(2): 155-164. https://doi.org/10.1051/alr/2009017
      Woodgate, R. A., Aagaard, K., Weingartner, T. J., 2005. Monthly Temperature, Salinity, and Transport Variability of the Bering Strait through Flow. Geophysical Research Letters, 32(4): 2004GL021880. https://doi.org/10.1029/2004GL021880
      Xu, Z. L., Gao, Q., 2009. Labidocera Euchaeta: Its Distribution in Yangtze River Estuary and Responses to Global Warming. Chinese Journal of Applied Ecology, 20(5): 1196-1201 (in Chinese with English abstract).
      Yamaguchi, R., Rodgers, K. B., Timmermann, A., et al., 2022. Trophic Level Decoupling Drives Future Changes in Phytoplankton Bloom Phenology. Nature Climate Change, 12(5): 469-476. https://doi.org/10.1038/s41558-022-01353-1
      Yang, H., Lohmann, G., Krebs-Kanzow, U., et al., 2020. Poleward Shift of the Major Ocean Gyres Detected in a Warming Climate. Geophysical Research Letters, 47(5): e2019GL085868. https://doi.org/10.1029/2019GL085868
      Yoshiki, T. M., Chiba, S., Sasaki, Y., et al., 2015. Northerly Shift of Warm-Water Copepods in the Western Subarctic North Pacific: Continuous Plankton Recorder Samples (2001-2013). Fisheries Oceanography, 24(5): 414-429. https://doi.org/10.1111/fog.12119
      Zanna, L., Khatiwala, S., Gregory, J. M., et al., 2019. Global Reconstruction of Historical Ocean Heat Storage and Transport. Proceedings of the National Academy of Sciences of the United States of America, 116(4): 1126-1131. https://doi.org/10.1073/pnas.1808838115
      Zhang, W., Li, J., Li, H., et al., 2025. A New Tintinnid Ciliate of Salpingella (Ciliophora: Spirotrichea) from the Subarctic North Pacific Ocean to Arctic Ocean, with Notes on Its Habitat. Zoological Systematics, 50(4): 293—301. https://doi.org/10.11865/zs.2025402
      Zhang, W. C., Zhao, Y., Dong, Y., et al., 2021. Biogeography of Epipelagic Marine Plankton. Oceanologia et Limnologia Sinica, 52(2): 332-345 (in Chinese with English abstract). https://doi.org/10.11693/hyhz20200100211
      刘辉, 宫勋, 2024. 现代北太平洋中层水研究进展综述. 地球科学, 49(8): 2914-2924. doi: 10.3799/dqkx.2024.036
      齐占会, 史荣君, 戴明, 等, 2021. 尖笔帽螺(Creseis acicula)研究进展及其在大亚湾暴发机制初探. 热带海洋学报, 40(5): 147-152.
      盛桂莲, 陶华林, 宋世文, 等, 2025. 古DNA研究在地球生物学领域的应用. 地球科学, 50(3): 1105-1121. doi: 10.3799/dqkx.2024.155
      徐兆礼, 高倩, 2009. 长江口海域真刺唇角水蚤的分布及其对全球变暖的响应. 应用生态学报, 20(5): 1196-1201.
      张武昌, 赵苑, 董逸, 等, 2021. 上层海洋浮游生物地理分布. 海洋与湖沼, 52(2): 332-345.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)

      Article views (203) PDF downloads(18) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return