| Citation: | Xia Jiacheng, Peng Ming, Jing Lu, Chen Jianfeng, 2025. Effect of Particle Size Distribution on Collapse of Immersed Polydisperse Granular Columns. Earth Science, 50(10): 3916-3928. doi: 10.3799/dqkx.2025.165 | 
In this study, a typical granular column collapse scenario is investigated using a numerical approach that couples computational fluid dynamics (CFD) with the discrete element method (DEM). Granular columns with varying fractal dimensions—used to characterize PSD—are simulated in different fluids to examine the influence of PSD on flow behavior and energy evolution across distinct flow regimes. The results show that as the ambient fluid gradually changes from air to low-viscosity fluid and then to high-viscosity fluid, the runout distance of the granular systems decreases by about 40% compared to dry conditions, and the mobility is significantly weakened. In free-fall and inertial regimes, the mobility difference between systems with different fractal dimensions is only about 1%, whereas in viscous regimes, the system with a higher fractal dimension shows a significant movement delay and the mobility is reduced by 11%. This reduced mobility can be attributed to the increased presence of fine particles, which enhance energy dissipation under low Stokes number conditions. Permeability tests further reveal that mobility is primarily governed by the initial permeability of the immersed granular system-lower permeability corresponds to reduced mobility.
	                | 
					 Bougouin, A., Lacaze, L., 2018. Granular Collapse in a Fluid: Different Flow Regimes for an Initially Dense-Packing. Physical Review Fluids, 3(6): 064305.  https://doi.org/10.1103/physrevfluids.3.064305 
						
					 | 
			
| 
					 Breard, E. C. P., Dufek, J., Charbonnier, S., et al., 2023. The Fragmentation-Induced Fluidisation of Pyroclastic Density Currents. Nature Communications, 14: 2079.  https://doi.org/10.1038/s41467-023-37867-1 
						
					 | 
			
| 
					 Cabrera, M., Estrada, N., 2021. Is the Grain Size Distribution a Key Parameter for Explaining the Long Runout of Granular Avalanches? Journal of Geophysical Research: Solid Earth, 126(9): e2021JB022589.  https://doi.org/10.1029/2021JB022589 
						
					 | 
			
| 
					 Courrech du Pont, S., Gondret, P., Perrin, B., et al., 2003. Granular Avalanches in Fluids. Physical Review Letters, 90(4): 044301.  https://doi.org/10.1103/physrevlett.90.044301 
						
					 | 
			
| 
					 Crosta, G. B., Hermanns, R. L., Dehls, J., et al., 2017. Rock Avalanches Clusters along the Northern Chile Coastal Scarp. Geomorphology, 289: 27-43.  https://doi.org/10.1016/j.geomorph.2016.11.024 
						
					 | 
			
| 
					 Cui, W., Wei, J., Wang, C., et al., 2021. Discrete Element Simulation of Collapse Characteristics of Particle Column Considering Gradation and Shape. Chinese Journal of Geotechnical Engineering, 43(12): 2230-2239(in Chinese with English abstract). 
						
					 | 
			
| 
					 Cundall, P. A., Strack, O. D. L., 1979. A Discrete Numerical Model for Granular Assemblies. Géotechnique, 29(1): 47-65.  https://doi.org/10.1680/geot.1979.29.1.47 
						
					 | 
			
| 
					 Di Felice, R., 1994. The Voidage Function for Fluid-Particle Interaction Systems. International Journal of Multiphase Flow, 20(1): 153-159.  https://doi.org/10.1016/0301-9322(94)90011-6 
						
					 | 
			
| 
					 Ergun, S., 1952. Fluid Flow through Packed Columns. Chemical Engineering Progress, 48 (2): 89. 
						
					 | 
			
| 
					 Gao, S., Theuerkauf, J., Pakseresht, P., et al., 2024. A Modified Ergun Equation for Application in Packed Beds with Bidisperse and Polydisperse Spherical Particles. Powder Technology, 445: 120035.  https://doi.org/10.1016/j.powtec.2024.120035 
						
					 | 
			
| 
					 Hsu, S. K., Kuo, J., Lo, C. L., et al., 2008. Turbidity Currents, Submarine Landslides and the 2006 Pingtung Earthquake off SW Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 19(6): 767.  https://doi.org/10.3319/tao.2008.19.6.767(pt) 
						
					 | 
			
| 
					 Hyslip, J. P., Vallejo, L. E., 1997. Fractal Analysis of the Roughness and Size Distribution of Granular Materials. Engineering Geology, 48(3/4): 231-244.  https://doi.org/10.1016/S0013-7952(97)00046-X 
						
					 | 
			
| 
					 Iverson, R. M., 2005. Regulation of Landslide Motion by Dilatancy and Pore Pressure Feedback. Journal of Geophysical Research: Earth Surface, 110(F2).  https://doi.org/10.1029/2004JF000268 
						
					 | 
			
| 
					 Iverson, R.M., 1997. The Physics of Debris Flows. Reviews of Geophysics, 35(3): 245-296. doi:  10.1029/97RG00426 
						
					 | 
			
| 
					 Jing, L., Guo, S.Y., Zhao, T., 2019. Understanding Dynamics of Submarine Landslide with Coupled CFD-DEM. Rock and Soil Mechanics, 40(1): 388-394(in Chinese with English abstract). 
						
					 | 
			
| 
					 Jing, L., Kwok, C. Y., Leung, Y. F., et al., 2016. Extended CFD-DEM for Free-Surface Flow with Multi-Size Granules. International Journal for Numerical and Analytical Methods in Geomechanics, 40(1): 62-79.  https://doi.org/10.1002/nag.2387 
						
					 | 
			
| 
					 Jing, L., Yang, G. C., Kwok, C. Y., et al., 2019. Flow Regimes and Dynamic Similarity of Immersed Granular Collapse: A CFD-DEM Investigation. Powder Technology, 345: 532-543.  https://doi.org/10.1016/j.powtec.2019.01.029 
						
					 | 
			
| 
					 Lacaze, L., Bouteloup, J., Fry, B., et al., 2021. Immersed Granular Collapse: From Viscous to Free-Fall Unsteady Granular Flows. Journal of Fluid Mechanics, 912: A15.  https://doi.org/10.1017/jfm.2020.1088 
						
					 | 
			
| 
					 Lai, Z. Q., Chen, D., Jiang, E. H., et al., 2021. Effect of Fractal Particle Size Distribution on the Mobility of Dry Granular Flows. AIP Advances, 11(9): 095113.  https://doi.org/10.1063/5.0065051 
						
					 | 
			
| 
					 Lee, C. H., 2021. Two-Phase Modelling of Submarine Granular Flows with Shear-Induced Volume Change and Pore-Pressure Feedback. Journal of Fluid Mechanics, 907: A31.  https://doi.org/10.1017/jfm.2020.838 
						
					 | 
			
| 
					 Li, K., Cheng, Q. G., Lin, Q. W., et al., 2022. State of the Art on Rock Avalanche Dynamics from Granular Flow Mechanics. Earth Science, 47(3): 893-912(in Chinese with English abstract). 
						
					 | 
			
| 
					 Lube, G., Huppert, H. E., Sparks, R. S. J., et al., 2004. Axisymmetric Collapses of Granular Columns. Journal of Fluid Mechanics, 508: 175-199.  https://doi.org/10.1017/S0022112004009036 
						
					 | 
			
| 
					 Man, T., Ge, Z., Huppert, H.E., et al., 2022. Transient Rheology and Size Effect in Granular Column Collapses. Chinese Journal of Computational Mechanics, 39(3): 381-388(in Chinese with English abstract). 
						
					 | 
			
| 
					 Nian, T. K., Shen, Y. Q., Zheng, D. F., et al., 2021. Research Advances on the Chain Disasters of Submarine Landslides. Journal of Engineering Geology, 29(6): 1657-1675(in Chinese with English abstract). 
						
					 | 
			
| 
					 Oquendo-Patiño, W. F., Estrada, N., 2022. Finding the Grain Size Distribution That Produces the Densest Arrangement in Frictional Sphere Packings: Revisiting and Rediscovering the Century-Old Fuller and Thompson Distribution. Physical Review E, 105(6): 064901.  https://doi.org/10.1103/PhysRevE.105.064901 
						
					 | 
			
| 
					 Pailha, M., Nicolas, M., Pouliquen, O., 2008. Initiation of Underwater Granular Avalanches: Influence of the Initial Volume Fraction. Physics of Fluids, 20(11): 111701.  https://doi.org/10.1063/1.3013896 
						
					 | 
			
| 
					 Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114(in Chinese with English abstract). 
						
					 | 
			
| 
					 Peng, M., Zhao, Q. X., Li, S., et al., 2025. Two-Phase SPH Simulation of Granular Landslide-Tsunamis Processes Considering Dynamic Seepage. Earth Science: 1-13(in Chinese with English abstract). 
						
					 | 
			
| 
					 Polanía, O., Cabrera, M., Renouf, M., et al., 2022. Collapse of Dry and Immersed Polydisperse Granular Columns: A Unified Runout Description. Physical Review Fluids, 7(8): 084304.  https://doi.org/10.1103/physrevfluids.7.084304 
						
					 | 
			
| 
					 Polanía, O., Estrada, N., Azéma, E., et al., 2024. Polydispersity Effect on Dry and Immersed Granular Collapses: An Experimental Study. Journal of Fluid Mechanics, 983: A40.  https://doi.org/10.1017/jfm.2024.176 
						
					 | 
			
| 
					 Rondon, L., Pouliquen, O., Aussillous, P., 2011. Granular Collapse in a Fluid: Role of the Initial Volume Fraction. Physics of Fluids, 23(7): 073301.  https://doi.org/10.1063/1.3594200 
						
					 | 
			
| 
					 Shi, A. N., Yang, G. C., Kwok, C. Y., et al., 2024. Enhanced Mobility of Granular Avalanches with Fractal Particle Size Distributions: Insights from Discrete Element Analyses. Earth and Planetary Science Letters, 642: 118835.  https://doi.org/10.1016/j.epsl.2024.118835 
						
					 | 
			
| 
					 Tang, H., Lin, B. S., Wang, D. M., 2024. Granular Collapse in Fluids: Dynamics and Flow Regime Identification. Particuology, 92: 30-41.  https://doi.org/10.1016/j.partic.2024.04.013 
						
					 | 
			
| 
					 Tang, H., Wu, Y. S., Wang, D. M., 2025. Dynamics and Flow Regime of Immersed Granular Collapse: Role of Fractal Particle Size Distribution. Computers and Geotechnics, 186: 107392.  https://doi.org/10.1016/j.compgeo.2025.107392 
						
					 | 
			
| 
					 Trulsson, M., Andreotti, B., Claudin, P., 2012. Transition from the Viscous to Inertial Regime in Dense Suspensions. Physical Review Letters, 109(11): 118305.  https://doi.org/10.1103/physrevlett.109.118305 
						
					 | 
			
| 
					 Wang, C., Wang, Y. Q., Peng, C., et al., 2017. Dilatancy and Compaction Effects on the Submerged Granular Column Collapse. Physics of Fluids, 29(10): 103307.  https://doi.org/10.1063/1.4986502 
						
					 | 
			
| 
					 Wu, S. G., Sun, Y. B., Li, Q. P., 2019. Deepwater Geohazards in the South China Sea. Science Press, Beijing (in Chinese). 
						
					 | 
			
| 
					 Wu, Y. L., An, X. Z., Yu, A. B., 2017. DEM Simulation of Cubical Particle Packing under Mechanical Vibration. Powder Technology, 314: 89-101.  https://doi.org/10.1016/j.powtec.2016.09.029 
						
					 | 
			
| 
					 Yang, G. C., Jing, L., Kwok, C. Y., et al., 2020. Pore-Scale Simulation of Immersed Granular Collapse: Implications to Submarine Landslides. Journal of Geophysical Research: Earth Surface, 125(1): e2019JF005044.  https://doi.org/10.1029/2019JF005044 
						
					 | 
			
| 
					 Yin, Z. Y., Xu, Q., Hu, W., 2012. Constitutive Relations for Granular Materials Considering Particle Crushing: Review and Development. Chinese Journal of Geotechnical Engineering, 34(12): 2170-2180(in Chinese with English abstract). 
						
					 | 
			
| 
					 崔溦, 魏杰, 王超, 等, 2021. 考虑颗粒级配和形态的颗粒柱坍塌特性离散元模拟. 岩土工程学报, 43(12): 2230-2239. 
					
					 | 
			
| 
					 景路, 郭颂怡, 赵涛, 2019. 基于流体动力学-离散单元耦合算法的海底滑坡动力学分析. 岩土力学, 40(1): 388-394. 
					
					 | 
			
| 
					 李坤, 程谦恭, 林棋文, 等, 2022. 高速远程滑坡颗粒流研究进展. 地球科学, 47(3): 893-912. doi:  10.3799/dqkx.2021.169 
					
					 | 
			
| 
					 满腾, 葛转, Herbert E. Huppert, 等, 2022. 颗粒柱塌落中的尺寸效应和瞬态流变性研究. 计算力学学报, 39(3): 381-388. 
					
					 | 
			
| 
					 年廷凯, 沈月强, 郑德凤, 等, 2021. 海底滑坡链式灾害研究进展. 工程地质学报, 29(6): 1657-1675. 
					
					 | 
			
| 
					 彭建兵, 张永双, 黄达, 等, 2023. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应. 地球科学, 48(8): 3099-3114. doi:  10.3799/dqkx.2023.137 
					
					 | 
			
| 
					 彭铭, 赵庆新, 李爽, 等, 2025. 考虑动态渗流的散粒体滑坡-涌浪过程两相SPH模拟. 地球科学: 1-13. (2025-06-11). doi:  10.3799/dqkx.2025.100 
					
					 | 
			
| 
					 吴时国, 孙运宝, 李清平, 等, 2019. 南海深水地质灾害. 北京: 科学出版社. 
					
					 | 
			
| 
					 尹振宇, 许强, 胡伟, 2012. 考虑颗粒破碎效应的粒状材料本构研究: 进展及发展. 岩土工程学报, 34(12): 2170-2180. 
					
					 |