• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 12
    Dec.  2025
    Turn off MathJax
    Article Contents
    Xiao Kunye, Zhang Xinshun, Gao Yanjie, Wang Lin, Du Yebo, Wang Li, Gao Huahua, 2025. Formation Mechanism of Rift Basins in Central African Strike-Slip Tectonic Setting: A Case Study of Bongor Basin. Earth Science, 50(12): 4801-4818. doi: 10.3799/dqkx.2025.172
    Citation: Xiao Kunye, Zhang Xinshun, Gao Yanjie, Wang Lin, Du Yebo, Wang Li, Gao Huahua, 2025. Formation Mechanism of Rift Basins in Central African Strike-Slip Tectonic Setting: A Case Study of Bongor Basin. Earth Science, 50(12): 4801-4818. doi: 10.3799/dqkx.2025.172

    Formation Mechanism of Rift Basins in Central African Strike-Slip Tectonic Setting: A Case Study of Bongor Basin

    doi: 10.3799/dqkx.2025.172
    • Received Date: 2025-07-18
    • Publish Date: 2025-12-25
    • Integrating detailed seismic interpretation and analogue tectonic modeling experiments, this study investigates the unique structural characteristics and the dynamic formation and evolution mechanisms of the Bongor basin in the Central African shear zone. Geophysical interpretation indicates that the Bongor Basin exhibits characteristics of a typical inverted rift basin. The current structural configuration was controlled by two phases rifting during Early Cretaceous and the compression in Late Cretaceous-Paleogene, with the primary rift-related structures are still clearly identifiable. Multi-stage analogue tectonic modeling further confirm that the formation of the Bongor basin was controlled by two early phases of rifting and subsequent inversion, with the extension directions of the two rifting stages separated by 25°-45°. Combining these results and context of regional tectonic history, a geological model of the two-phase rifting in the Bongor basin was put forward. In the early Early Cretaceous, the opening of the South Atlantic Ocean triggered near north-south stretching between the South African and the Northeast African subplate. This led to the first phase of rifting in the Central African rift system basins, including the Bongor basin. During the late Early Cretaceous, both the shift of the main Atlantic expansion toward the equatorial region and the subduction of the Tethys Ocean toward the Eurasian continent caused a nearly northeast-southwest extensional stress between the Northeast African block and the South African block. Unlike other basins parallel to the Central African rift system, the northwest-trending Bongor basin underwent a second phase of rifting. The study presents new insights into the formation and evolution of the Bongor basin, which is of great significance for guiding future oil and gas exploration.

       

    • loading
    • Alkmim, F. F., Marshak, S., Fonseca, M. A., 2001. Assembling West Gondwana in the Neoproterozoic: Clues from the São Francisco Craton Region, Brazil. Geology, 29(4): 319. https://doi.org/10.1130/0091-7613(2001)0290319:awgitn>2.0.co;2 doi: 10.1130/0091-7613(2001)0290319:awgitn>2.0.co;2
      Azevedo, R. L. M., 2004. Paleoceanografia e a Evolução do Atlântico Sul no Albiano. Boletim de Geociências da Petrobras, 12(2): 231-249.
      Bonifacio, J. F., Ganade, C. E., dos Santos, A. C., et al., 2023. Review and Critical Assessment on Plate Reconstruction Models for the South Atlantic. Earth-Science Reviews, 238: 104333. https://doi.org/10.1016/j.earscirev.2023.104333
      Brun, J. P., Buck, R., McClay, K., et al., 1999. Narrow Rifts versus Wide Rifts: Inferences for the Mechanics of Rifting from Laboratory Experiments and Discussion. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 357(1753): 695-712. doi: 10.1098/rsta.1999.0349
      Chaboureau, A. C., Guillocheau, F., Robin, C., et al., 2013. Paleogeographic Evolution of the Central Segment of the South Atlantic during Early Cretaceous Times: Paleotopographic and Geodynamic Implications. Tectonophysics, 604: 191-223. https://doi.org/10.1016/j.tecto.2012.08.025
      Chen, Z. G., Xu, G., Wang, J. C., et al., 2016. Different Structural Characteristics in the East and West Parts, Bongor Basin, Chad, and Their Influence on Hydrocarbon Accumulation. Oil Geophysical Prospecting, 51(Suppl. 1): 113-119(in Chinese with English abstract).
      Collettini, C., Sibson, R. H., 2001. Normal Faults, Normal Friction? Geology, 29(10): 927. https://doi.org/10.1130/0091-7613(2001)0290927:nfnf>2.0.co;2 doi: 10.1130/0091-7613(2001)0290927:nfnf>2.0.co;2
      Dahlstrom, C. D. A., 1970. Structural Geology in the Eastern Margin of the Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology, 18(3): 332-406. https://doi.org/10.35767/gscpgbull.18.3.332
      Davison, I., 2007. Geology and Tectonics of the South Atlantic Brazilian Salt Basins. Geological Society, London, Special Publications, 272(1): 345-359. https://doi.org/10.1144/gsl.sp.2007.272.01.18
      de Matos, R. M. D., Krueger, A., Norton, I., et al., 2021. The Fundamental Role of the Borborema and Benin–Nigeria Provinces of NE Brazil and NW Africa during the Development of the South Atlantic Cretaceous Rift System. Marine and Petroleum Geology, 127: 104872. https://doi.org/10.1016/j.marpetgeo.2020.104872
      Dou, L. R., Wang, J., Wang, R. C., et al., 2018. Precambrian Basement Reservoirs: Case Study from the Northern Bongor Basin, the Republic of Chad. AAPG Bulletin, 102(9): 1803-1824. https://doi.org/10.1306/02061817090
      Dou, L. R., Wang, J. C., Wang, R. C., et al., 2018. The Precambrian Basement Play in the Central African Rift System. Earth Science Frontiers, 25(2): 15-23(in Chinese with English abstract).
      Dou, L. R., Wang, R. C., Wang, J. C., et al., 2021. Thermal History Reconstruction from Apatite Fission-Track Analysis and Vitrinite Reflectance Data of the Bongor Basin, the Republic of Chad. AAPG Bulletin, 105(5): 919-944. https://doi.org/10.1306/11182019167
      Dou, L. R., Xiao, K. Y., Du, Y. B., et al., 2024. Tectonics of the West and Central African Strike-Slip Rift System. Petroleum Science, 21(6): 3742-3753. https://doi.org/10.1016/j.petsci.2024.11.017
      Dou, L. R., Xiao, K. Y., Hu, Y., et al., 2011. Petroleum Geology and a Model of Hydrocarbon Accumulations in the Bongor Basin, the Republic of Chad. Acta Petrolei Sinica, 32(3): 379-386(in Chinese with English abstract).
      Eagles, G., 2007. New Angles on South Atlantic Opening. Geophysical Journal International, 168(1): 353-361. https://doi.org/10.1111/j.1365-246X.2006.03206.x
      Fairhead, J. D., 2020. Regional Tectonics and Basin Formation: The Role of Potential Field Studies: An Application to the Mesozoic West and Central African Rift System. Regional Geology and Tectonics: Principles of Geologic Analysis. Amsterdam, Elsevier, 541-556. https://doi.org/10.1016/b978-0-444-64134-2.00018-3
      Fairhead, J. D., 2023. The Mesozoic West and Central Africa Rift System (WCARS) and the Older Kandi Shear Zone (KSZ): Rifting and Tectonics of North Africa and South America and Fragmentation of Gondwana Based on Geophysical Investigations. Journal of African Earth Sciences, 199: 104817. https://doi.org/10.1016/j.jafrearsci.2022.104817
      Fairhead, J. D., Green, C. M., Masterton, S. M., et al., 2013. The Role That Plate Tectonics, Inferred Stress Changes and Stratigraphic Unconformities have on the Evolution of the West and Central African Rift System and the Atlantic Continental Margins. Tectonophysics, 594: 118-127. https://doi.org/10.1016/j.tecto.2013.03.021.
      Franke, D., 2013. Rifting, Lithosphere Breakup and Volcanism: Comparison of Magma-Poor and Volcanic Rifted Margins. Marine and Petroleum Geology, 43: 63-87. https://doi.org/10.1016/j.marpetgeo.2012.11.003.
      Frindt, S., Trumbull, R. B., Romer, R. L., 2004. Petrogenesis of the Gross Spitzkoppe Topaz Granite, Central Western Namibia: A Geochemical and Nd–Sr–Pb Isotope Study. Chemical Geology, 206(1/2): 43-71. https://doi.org/10.1016/j.chemgeo.2004.01.015
      Gao, H. H., Du, Y. B., Wang, L., et al., 2023. Tectonic Features, Genetic Mechanisms and Basin Evolution of the Eastern Doseo Basin, Chad. Petroleum Exploration and Development, 50(5): 1003-1015(in Chinese with English abstract).
      Genik, G. J., 1993. Petroleum Geology of Cretaceous-Tertiary Rift Basins in Niger, Chad, and Central African Republic. AAPG Bulletin, 77: BDFF8EAC–1718–11D7–8645000102C1865D. https://doi.org/10.1306/bdff8eac-1718-11d7-8645000102c1865d
      Gladczenko, T. P., Hinz, K., Eldholm, O., et al., 1997. South Atlantic Volcanic Margins. Journal of the Geological Society, 154(3): 465-470. https://doi.org/10.1144/gsjgs.154.3.0465
      Gupta, S., Cowie, P. A., Dawers, N. H., et al., 1998. A Mechanism to Explain Rift-Basin Subsidence and Stratigraphic Patterns through Fault-Array Evolution. Geology, 26(7): 595. https://doi.org/10.1130/0091-7613(1998)0260595:amterb>2.3.co;2 doi: 10.1130/0091-7613(1998)0260595:amterb>2.3.co;2
      Gürer, D., Granot, R., van Hinsbergen, D. J. J., 2022. Plate Tectonic Chain Reaction Revealed by Noise in the Cretaceous Quiet Zone. Nature Geoscience, 15(3): 233-239. https://doi.org/10.1038/s41561-022-00893-7
      Hao, L. L., Hu, W. L., Wang, Q., et al., 2025. Bangong-Nujiang Neo-Tethyan Ocean (Central Tibet): Geodynamics, Crustal Evolution, Metallogeny, and Linkages to the "Yanshan Movement". Earth-Science Reviews, 265: 105119. https://doi.org/10.1016/j.earscirev.2025.105119
      Hu, W. L., Wang, Q., Tang, G. J., et al., 2022. Late Early Cretaceous Magmatic Constraints on the Timing of Closure of the Bangong–Nujiang Tethyan Ocean, Central Tibet. Lithos, 416/417: 106648. https://doi.org/10.1016/j.lithos.2022.106648
      Hubbert, M. K., 1951. Mechanical Basis for Certain Familiar Geologic Structures. Geological Society of America Bulletin, 62(4): 355. https://doi.org/10.1130/0016-7606(1951)62[355:mbfcfg]2.0.co;2
      Lenhardt, N., Omietimi, E. J., Edegbai, A. J., et al., 2025. Traversing the Rift: A Review of the Evolution of the West and Central African Rift System and Its Economic Potential. Earth-Science Reviews, 261: 104999. https://doi.org/10.1016/j.earscirev.2024.104999
      Li, Z. H., Cui, F. Y., Yang, S. T., et al., 2023. Key Geodynamic Processes and Driving Forces of Tethyan Evolution. Science China: Earth Sciences, 53(12): 2701-2722(in Chinese).
      Liu, C. Z., Chung, S. L., Wu, F. Y., et al., 2016. Tethyan Suturing in Southeast Asia: Zircon U-Pb and Hf-O Isotopic Constraints from Myanmar Ophiolites. Geology, 44(4): 311-314. https://doi.org/10.1130/g37342.1
      Liu, H. F., 1993. Dynamic Classification of Sedimentary Basins and Their Structural Styles. Earth Science, 18(6): 699-724, 814(in Chinese with English abstract).
      Lowell, T. P. H. J. D., 1979. Structural Styles, Their Plate-Tectonic Habitats, and Hydrocarbon Traps in Petroleum Provinces. AAPG Bulletin, 63: 2F9184B4-16CE-11D7-8645000102C1865D. https://doi.org/10.1306/2f9184b4-16ce-11d7-8645000102c1865d
      Lustrino, M., Melluso, L., Brotzu, P., et al., 2005. Petrogenesis of the Early Cretaceous Valle Chico Igneous Complex (SE Uruguay): Relationships with Paraná–Etendeka Magmatism. Lithos, 82(3-4): 407-434. https://doi.org/10.1016/j.lithos.2004.07.004
      Marzoli, A., Melluso, L., Morra, V., et al., 1999. Geochronology and Petrology of Cretaceous Basaltic Magmatism in the Kwanza Basin (Western Angola), and Relationships with the Paranà-Etendeka Continental Flood Basalt Province. Journal of Geodynamics, 28(4-5): 341-356. https://doi.org/10.1016/s0264-3707(99)00014-9
      Min, G., Hou, G. T., 2019. Mechanism of the Mesozoic African Rift System: Paleostress Field Modeling. Journal of Geodynamics, 132: 101655. https://doi.org/10.1016/j.jog.2019.101655
      Moulin, M., Aslanian, D., Unternehr, P., 2010. A New Starting Point for the South and Equatorial Atlantic Ocean. Earth-Science Reviews, 98(1-2): 1-37. https://doi.org/10.1016/j.earscirev.2009.08.001
      Qu, X. M., Wang, R. J., Xin, H. B., et al., 2012. Age and Petrogenesis of A-Type Granites in the Middle Segment of the Bangonghu–Nujiang Suture, Tibetan Plateau. Lithos, 146/147: 264-275. https://doi.org/10.1016/j.lithos.2012.05.006
      Scotese, C. R., Vérard, C., Burgener, L., et al., 2025. The Cretaceous World: Plate Tectonics, Palaeogeography and Palaeoclimate. Geological Society, London, Special Publications, 544(1): 31-202. https://doi.org/10.1144/sp544-2024-28
      Segall, P., Pollard, D. D., 1980. Mechanics of Discontinuous Faults. Journal of Geophysical Research: Solid Earth, 85(B8): 4337-4350. https://doi.org/10.1029/JB085iB08p04337
      Sibson, R. H., 1985. A Note on Fault Reactivation. Journal of Structural Geology, 7(6): 751-754. https://doi.org/10.1016/0191-8141(85)90150-6
      Sibson, R. H., Xie, G. Y., 1998. Dip Range for Intracontinental Reverse Fault Ruptures: Truth not Stranger than Friction? Bulletin of the Seismological Society of America, 88(4): 1014-1022. https://doi.org/10.1785/bssa0880041014
      Simmons, N. A., Myers, S. C., Johannesson, G., et al., 2015. Evidence for Long-Lived Subduction of an Ancient Tectonic Plate beneath the Southern Indian Ocean. Geophysical Research Letters, 42(21): 9270-9278. https://doi.org/10.1002/2015GL066237
      Stampfli, G. M., Borel, G. D., 2002. A Plate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrons. Earth and Planetary Science Letters, 196(1-2): 17-33. https://doi.org/10.1016/S0012-821X(01)00588-X
      Sun, W. D., Liu, L. J., Hu, Y. B., et al., 2018. Post-Ridge-Subduction Acceleration of the Indian Plate Induced by Slab Rollback. Solid Earth Sciences, 3(1): 1-7. https://doi.org/10.1016/j.sesci.2017.12.003
      Turner, J. P., Williams, G. A., 2004. Sedimentary Basin Inversion and Intra-Plate Shortening. Earth-Science Reviews, 65(3/4): 277-304. https://doi.org/10.1016/j.earscirev.2003.10.002
      Wan, B., Wu, F. Y., Chen, L., et al., 2019. Cyclical One-Way Continental Rupture-Drift in the Tethyan Evolution: Subduction-Driven Plate Tectonics. Science China: Earth Sciences, 62(12): 2005-2016. https://doi.org/10.1007/s11430-019-9393-4
      Wang, E. Q., Meng, K., Xu, G., et al., 2018. Cenozoic Two-Stage Obduction of the Indian Subcontinent: On the Interaction between the Indian Ocean, Tethyan and Eurasian Plates. Acta Petrologica Sinica, 34(7): 1867-1875(in Chinese with English abstract).
      Wang, H. X., Lü, Y. F., Fu, X. F., et al., 2013. Formation, Evolution and Reservoir-Controlling Mechanism of Relay Zone in Rift Basin. Geological Science and Technology Information, 32(4): 102-110(in Chinese with English abstract).
      Wang, L., Zhang, X. S., Xiao, K. Y., et al., 2022. Formation and Evolution of Baobab Structural Zone and Controlling Factors of Hydrocarbon Accumulation in Bongor Basin, Chad. China Petroleum Exploration, 27(2): 84-92(in Chinese with English abstract).
      Wang, W. L., Tang, J. G., Sun, Q. Q., et al., 2017. Research Progress and Development Trends of the Transfer Zone. Geology and Resources, 26(2): 195-202(in Chinese with English abstract).
      Xiao, K. Y., Zhao, J., Yu, Z. H., et al., 2014. Structural Characteristics of Intensively Inversed Bongor Basin in CARS and Their Impacts on Hydrocarbon Accumulation. Earth Science Frontiers, 21(3): 172-180(in Chinese with English abstract).
      Xu, C. C., 2012. The Characteristics of Inversion Structures in Bongor Basin and its Relationship with Hydrocarbon Accumulation (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Yang, S. T., Li, Z. H., Wan, B., et al., 2021. Subduction-Induced Back-Arc Extension versus Far-Field Stretching: Contrasting Modes for Continental Marginal Break-up. Geochemistry, Geophysics, Geosystems, 22(3): e2020GC009416. https://doi.org/10.1029/2020GC009416
      Yu, Z. H., Xiao, K. Y., Zhang, G. L., et al., 2018. Analysis on Inverted Structure Characteristics and Its Forming Mechanism in the Bongor Basin, Chad. China Petroleum Exploration, 23(3): 90-98(in Chinese with English abstract).
      Zhu, R. X., Zhao, P., Zhao, L., 2021. Tectonic Evolution and Geodynamics of the Neo-Tethys Ocean. Science China: Earth Sciences, 52(1): 1-25(in Chinese).
      陈志刚, 徐刚, 王景春, 等, 2016. 乍得Bongor盆地东、西部构造特征差异及其对油气富集的影响. 石油地球物理勘探, 51(增刊. 1): 113-119.
      窦立荣, 王景春, 王仁冲, 等, 2018. 中非裂谷系前寒武系基岩油气成藏组合. 地学前缘, 25(2): 15-23.
      窦立荣, 肖坤叶, 胡勇, 等, 2011. 乍得Bongor盆地石油地质特征及成藏模式. 石油学报, 32(3): 379-386.
      高华华, 杜业波, 王林, 等, 2023. 乍得Doseo盆地东部构造特征、成因机制与盆地演化. 石油勘探与开发, 50(5): 1003-1015.
      李忠海, 崔峰源, 杨舒婷, 等, 2023. 特提斯演化的关键动力学过程与驱动力. 中国科学: 地球科学, 53(12): 2701-2722.
      刘和甫, 1993. 沉积盆地地球动力学分类及构造样式分析. 地球科学, 18(6): 699-724, 814. http://www.earth-science.net/article/id/85
      王二七, 孟恺, 许光, 等, 2018. 印度陆块新生代两次仰冲事件及其构造驱动机制: 论印度洋、特提斯和欧亚板块相互作用. 岩石学报, 34(7): 1867-1875.
      王海学, 吕延防, 付晓飞, 等, 2013. 裂陷盆地转换带形成演化及其控藏机理. 地质科技情报, 32(4): 102-110.
      王利, 张新顺, 肖坤叶, 等, 2022. 乍得邦戈盆地Baobab构造带形成演化及油气成藏控制因素. 中国石油勘探, 27(2): 84-92
      王文龙, 汤济广, 孙乔琪, 等, 2017. 构造转换带研究进展与发展趋势. 地质与资源, 26(2): 195-202.
      肖坤叶, 赵健, 余朝华, 等, 2014. 中非裂谷系Bongor盆地强反转裂谷构造特征及其对油气成藏的影响. 地学前缘, 21(3): 172-180.
      许长春, 2012, Bongor盆地反转构造特征及其与油气聚集关系(硕士学位论文). 北京, 中国地质大学(北京).
      余朝华, 肖坤叶, 张桂林, 等, 2018. 乍得Bongor盆地反转构造特征及形成机制分析. 中国石油勘探, 23(3): 90-98.
      朱日祥, 赵盼, 赵亮, 2021, 新特提斯洋演化与动力过程. 中国科学: 地球科学, 52(1): 1-25.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(3)

      Article views (319) PDF downloads(14) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return