| Citation: | Cao Zicheng, Yun Lu, Ping Hongwei, Chen Honghan, Geng Feng, Han Jun, Huang Cheng, Lyu Haitao, Jiang Huashan, Liu Yongli, 2025. Reconstruction of Carbon Isotope of Kerogen in Shunbei Area, Tarim Basin and Discussions on Hydrocarbon Generation Model of Lower Cambrian Yurtus Formation Source Rock. Earth Science, 50(12): 4736-4750. doi: 10.3799/dqkx.2025.182 |
|
Andresen, B., Throndsen, T., Råheim, A., et al., 1995. A Comparison of Pyrolysis Products with Models for Natural Gas Generation. Chemical Geology, 126(3-4): 261-280. https://doi.org/10.1016/0009-2541(95)00122-0
|
|
Behar, F., Lorant, F., Mazeas, L., 2008. Elaboration of a New Compositional Kinetic Schema for Oil Cracking. Organic Geochemistry, 39(6): 764-782. https://doi.org/10.1016/j.orggeochem.2008.03.007
|
|
Cao Z. C., Yun, L., Ping, H. W., et al., 2025. Quantitative Evaluation of Gas Injection Contribution using Fluid Inclusion Data: A Case Study of the Condensate Gas Reservoirs of the Eastern Shunbei in the Tarim Basin. Journal of Earth Science, 36(6): 2819-2824. https://doi.org/10.1007/s12583-025-2039-7
|
|
Cao, Z. C., Yun, L., Ping, H. W., et al., 2025. Geochemistry and Origin of Ordovician Natural Gas in Shunbei Area of Tarim Basin. Bulletin of Geological Science and Technology, 44(5): 40-52 (in Chinese with English abstract).
|
|
Clayton, J. L., Bostick, N. H., 1986. Temperature Effects on Kerogen and on Molecular and Isotopic Composition of Organic Matter in Pierre Shale near an Igneous Dike. Organic Geochemistry, 10(1-3): 135-143. https://doi.org/10.1016/0146-6380(86)90017-3
|
|
Clayton, C. J., 1991. Effect of Maturity on Carbon Isotope Ratios of Oils and Condensates. Organic Geochemistry, 17(6): 887-899. https://doi.org/10.1016/0146-6380(91)90030-n
|
|
Chung, H. M., Rooney, M. A., Toon, M. B., et al., 1992. Carbon Isotope Composition of Marine Crude Oils. AAPG Bulletin, 76(7): 1000-1007 https://doi.org/10.1306/bdff8952-1718-11d7-8645000102c1865d
|
|
Cai, C. F., Li, K. K., Ma, A. L., et al., 2009. Distinguishing Cambrian from Upper Ordovician Source Rocks: Evidence from Sulfur Isotopes and Biomarkers in the Tarim Basin. Organic Geochemistry, 40(7): 755-768. https://doi.org/10.1016/j.orggeochem.2009.04.008
|
|
Chen, Z. H., Chai, Z., Cheng, B., et al., 2021. Geochemistry of High-Maturity Crude Oil and Gas from Deep Reservoirs and Their Geological Significance: A Case Study on Shuntuoguole Low Uplift, Tarim Basin, Western China. AAPG Bulletin, 105(1): 65-107. https://doi.org/10.1306/07072019015
|
|
Dai, J. X., Song, Y., Wu, C. L., et al., 1992. Characteristics of Carbon Isotopes of Organic Alkane Gases in Petroliferous Basins of China. Journal of Petroleum Science and Engineering, 7(3-4): 329-338. https://doi.org/10.1016/0920-4105(92)90028-y
|
|
Deng, Q., Wang, H. Z., Wei, Z. W., et al., 2021. Different Accumulation Mechanisms of Organic Matter in Cambrian Sedimentary Successions in the Western and Northeastern Margins of the Tarim Basin, NW China. Journal of Asian Earth Sciences, 207: 104660. https://doi.org/10.1016/j.jseaes.2020.104660
|
|
Guo, L. G., Xiao, X. M., Tian, H., et al., 2009. Distinguishing Gases Derived from Oil Cracking and Kerogen Maturation: Insights from Laboratory Pyrolysis Experiments. Organic Geochemistry, 40(10): 1074-1084. https://doi.org/10.1016/j.orggeochem.2009.07.007
|
|
Hu, G., Liu, W. H., Luo, H. Y., et al., 2019. The Impaction of Original Organism Assemblages in Source Rocks on the Kerogen Carbon Isotopic Compositions: A Case Study of the Early Paleozoic Source Rocks in the Tarim Basin, China. Bulletin of Mineralogy, Petrology and Geochemistry, 38(5): 902-913, 869(in Chinese with English abstract).
|
|
James, A. T., 1983. Correlation of Natural Gas by Use of Carbon Isotopic Distribution between Hydrocarbon Components. AAPG Bulletin, 67(7): 1176-1191. https://doi.org/10.1306/03b5b722-16d1-11d7-8645000102c1865d
|
|
James, A. T., 1990. Correlation of Reservoired Gases Using the Carbon Isotopic Compositions of Wet Gas Components. AAPG Bulletin, 74(9): 1441-1458. https://doi.org/10.1306/0c9b24f7-1710-11d7-8645000102c1865d
|
|
Kvalheim, O. M., Christy, A. A., Telnæs, N., et al., 1987. Maturity Determination of Organic Matter in Coals Using the Methylphenanthrene Distribution. Geochimica et Cosmochimica Acta, 51(7): 1883-1888. https://doi.org/10.1016/0016-7037(87)90179-7
|
|
Li, B., Zhang, X., Guo, Q., et al., 2022. Basin Modeling of Cambrian Ultra-Deep Petroleum System in Tarim Basin. Acta Petrolei Sinica, 43(6): 804-815(in Chinese with English abstract).
|
|
Liu, W. H., Hu, G., Teng, G. E., 2016. Organism Assemblages in the Paleozoic Source Rocks and Their Implications. Oil & Gas Geology, 37(5): 617-626(in Chinese with English abstract).
|
|
Li, F., Zhu, G. Y., Lü, X. X., et al., 2021. The Disputes on the Source of Paleozoic Marine Oil and Gas and the Determination of the Cambrian System as the Main Source Rocks in Tarim Basin. Acta Petrolei Sinica, 42(11): 1417-1436(in Chinese with English abstract).
|
|
Luo, M. X., Cao, Z. C., Xu, Q. Q., et al., 2024. Geochemical Characteristics and Geological Significance of Sinian Crude Oil from Well Tashen 5, Tahe Oilfield, Tarim Basin. Bulletin of Geological Science and Technology, 43(1): 135-149(in Chinese with English abstract).
|
|
Li, H. L., Gao, J., Cao, Z. C., et al., 2023. Spatial-Temporal Distribution of Fluid Activities and Its Significance for Hydrocarbon Accumulation in the Strike-Slip Fault Zones, Shuntuoguole Low-Uplift, Tarim Basin. Earth Science Frontiers, 30(6): 316-328(in Chinese with English abstract).
|
|
Ma, Y. S., Cai, X. Y., Yun, L., et al., 2022. Practice and Theoretical and Technical Progress in Exploration and Development of Shunbei Ultra-Deep Carbonate Oil and Gas Field, Tarim Basin, NW China. Petroleum Exploration and Development, 49(1): 1-17(in Chinese with English abstract). doi: 10.1016/S1876-3804(22)60001-6
|
|
Ping, H. W., Chen, H. H., Thiéry, R., et al., 2017. Effects of Oil Cracking on Fluorescence Color, Homogenization Temperature and Trapping Pressure Reconstruction of Oil Inclusions from Deeply Buried Reservoirs in the Northern Dongying Depression, Bohai Bay Basin, China. Marine and Petroleum Geology, 80: 538-562. https://doi.org/10.1016/j.marpetgeo.2016.12.024
|
|
Ping, H. W., Chen, H. H., Zhu, J. Z., et al., 2018. Origin, Source, Mixing, and Thermal Maturity of Natural Gases in the Panyu Lower Uplift and the Baiyun Depression, Pearl River Mouth Basin, Northern South China Sea. AAPG Bulletin, 102(11): 2171-2200. https://doi.org/10.1306/04121817160
|
|
Ping, H. W., Chen, H. H., Zhai, P. Q., et al., 2021. Evidence for Deeply Buried, Oil-Prone Source Rocks in the Baiyun Depression, Pearl River Mouth Basin, Northern South China Sea. AAPG Bulletin, 105(4): 749-783. https://doi.org/10.1306/04072018144
|
|
Qi, L. X., 2016. Oil and Gas Breakthrough in Ultra-Deep Ordovician Carbonate Formations in Shuntuoguole Uplift, Tarim Basin. China Petroleum Exploration, 21(3): 38-51(in Chinese with English abstract).
|
|
Qi, L. X., 2020. Characteristics and Inspiration of Ultra-Deep Fault-Karst Reservoir in the Shunbei Area of the Tarim Basin. China Petroleum Exploration, 25(1): 102-111(in Chinese with English abstract).
|
|
Radke, M., 1988. Application of Aromatic Compounds as Maturity Indicators in Source Rocks and Crude Oils. Marine and Petroleum Geology, 5(3): 224-236. https://doi.org/10.1016/0264-8172(88)90003-7
|
|
Radke, M., Leythaeuser, D., Teichmüller, M., 1984. Relationship between Rank and Composition of Aromatic Hydrocarbons for Coals of Different Origins. Org. Geochem. 6, 423-430. http://doi.org/10.1016/0146-6380(84)90065-2
|
|
Wang, Q. H., Cai, Z. Z., Ping, H. W., et al., 2025. Geochemical Characteristics, Charging Differences, and Controlling Factors of the Ordovician Crude Oil in the FI17 Strike-Slip Fault Zone of the Fuman Oilfield, Tarim Basin. Bulletin of Geological Science and Technology, 44(5): 13-28 (in Chinese with English abstract).
|
|
Waples, D. W., Tornheim, L., 1978. Mathematical Models for Petroleum-Forming Processes: Carbon Isotope Fractionation. Geochimica et Cosmochimica Acta, 42(5): 467-472. https://doi.org/10.1016/0016-7037(78)90196-5
|
|
Whiticar, M. J., 1994. Correlation of Natural Gases with Their Source. In: Leslie, B. M.; Wallace, G. D., eds., The Petroleum System: From Source to Trap. AAPG Memoir, 261-283.
|
|
Whiticar, M. J., 1996. Stable Isotope Geochemistry of Coals, Humic Kerogens and Related Natural Gases. International Journal of Coal Geology, 32(1-4): 191-215. https://doi.org/10.1016/s0166-5162(96)00042-0
|
|
Wang, Q. H., Yang, H. J., Wang, R. J., et al., 2021. Discovery and Exploration Technology of Fault-Controlled Large Oil and Gas Fields of Ultra-Deep Formation in Strike Slip Fault Zone in Tarim Basin. China Petroleum Exploration, 26(4): 58-71(in Chinese with English abstract).
|
|
Wang, Q. H., Yang, H. J., Li, Y., et al., 2022. Control of Strike-Slip Fault on the Large Carbonate Reservoir in Fuman, Tarim Basin: A Reservoir Model. Earth Science Frontiers, 29(6): 239-251(in Chinese with English abstract).
|
|
Stahl, W., 1974. Carbon Isotope Fractionations in Natural Gases. Nature, 251: 134-135. https://doi.org/10.1038/251134a0
|
|
Stahl, W. J., 1979. Carbon Isotopes in Petroleum Geochemistry. Lectures in Isotope Geology. Springer, Berlin, Heidelberg: Berlin, Heidelberg, 274-282.
|
|
Schoell, M., 1980. The Hydrogen and Carbon Isotopic Composition of Methane from Natural Gases of Various Origins. Geochimica et Cosmochimica Acta, 44(5): 649-661. https://doi.org/10.1016/0016-7037(80)90155-6
|
|
Schoell, M., 1984. Stable Isotopes in Petroleum Research. Advances in Petroleum Geochemistry. Academic Press, London, 215-245.
|
|
Sofer, Z., 1984. Stable Carbon Isotope Compositions of Crude Oils: Application to Source Depositional Environments and Petroleum Alteration. AAPG Bulletin, 68: 68(1): 31-49.
|
|
Sofer, Z., Zumberge, J. E., Lay, V., 1986. Stable Carbon Isotopes and Biomarkers as Tools in Understanding Genetic Relationship, Maturation, Biodegradation, and Migration of Crude Oils in the Northern Peruvian Oriente (Maranon) Basin. Organic Geochemistry, 10(1-3): 377-389. https://doi.org/10.1016/0146-6380(86)90037-9
|
|
Yang, H. J., Chen, Y. Q., Tian, J., et al., 2020. Great Discovery and Its Significance of Ultra-Deep Oil and Gas Exploration in Well Luntan-1 of the Tarim Basin. China Petroleum Exploration, 25(2): 62-72(in Chinese with English abstract).
|
|
Yun, L., 2021. Controlling Effect of NE Strike-Slip Fault System on Reservoir Development and Hydrocarbon Accumulation in the Eastern Shunbei Area and Its Geological Significance, Tarim Basin. China Petroleum Exploration, 26(3): 41-52(in Chinese with English abstract).
|
|
Yun, L., Deng, S., 2022. Structural Styles of Deep Strike-Slip Faults in Tarim Basin and the Characteristics of Their Control on Reservoir Formation and Hydrocarbon Accumulation: A Case Study of Shunbei Oil and Gas Field. Acta Petrolei Sinica, 43(6): 770-787(in Chinese with English abstract).
|
|
Zhang, Z. N., Liu, W. H., Zheng, J. J., et al., 2006. Characteristics of Carbon Isotopic Composition of Soluble Organic Components of Deep Source Rocks in Tarim Basin. Acta Sedimentologica Sinica, 24(5): 769-773(in Chinese with English abstract).
|
|
Zhu, G. Y., Chen, F. R., Chen, Z. Y., et al., 2016. Discovery and Basic Characteristics of the High-Quality Source Rocks of the Cambrian Yuertusi Formation in Tarim Basin. Natural Gas Geoscience, 27(1): 8-21(in Chinese with English abstract).
|
|
Zhu, G. Y., Chen, F. R., Wang, M., et al., 2018. Discovery of the Lower Cambrian High-Quality Source Rocks and Deep Oil and Gas Exploration Potential in the Tarim Basin, China. AAPG Bulletin, 102(10): 2123-2151. https://doi.org/10.1306/03141817183
|
|
Zhu, G. Y., Hu, J. F., Chen, Y. Q., et al., 2022. Geochemical Characteristics and Formation Environment of Source Rock of the Lower Cambrian Yuertusi Formation in Well Luntan 1 in Tarim Basin. Acta Geologica Sinica, 96(6): 2116-2130(in Chinese with English abstract).
|
|
Zhu, C. L., Yan, H., Yun, L., et al., 2014. Characteristics of Cambrian Source Rocks in Well XH1, Shaya Uplift, Tarim Basin. Petroleum Geology & Experiment, 36(5): 626-632(in Chinese with English abstract).
|
|
Zhang, Y. B., Li, X. B., Wang, Z. D., et al., 2022. Origin of Carbon Isotopic Inversion of Ordovician Crude Oil and Group Components in Tahe Oilfield, Tarim Basin. Natural Gas Geoscience, 33(8): 1332-1343(in Chinese with English abstract).
|
|
Zhang, Y., Cao, Z. C., Chen, H. H., et al., 2023. Difference of Hydrocarbon Charging Events and Their Contribution Percentages to Ordovician Reservoirs among Strike-Slip Fault Belts in Shunbei Area, Tarim Basin. Earth Science, 48(6): 2168-2188(in Chinese with English abstract).
|
|
曹自成, 云露, 平宏伟, 等, 2025. 塔里木盆地顺北地区奥陶系天然气地球化学与成因. 地质科技通报, 44(5): 40-52.
|
|
胡广, 刘文汇, 罗厚勇, 等, 2019. 成烃生物组合对烃源岩干酪根碳同位素组成的影响: 以塔里木盆地下古生界烃源岩为例. 矿物岩石地球化学通报, 38(5): 902-913, 869.
|
|
李斌, 张欣, 郭强, 等, 2022. 塔里木盆地寒武系超深层含油气系统盆地模拟. 石油学报, 43(6): 804-815.
|
|
刘文汇, 胡广, 腾格尔, 等, 2016. 早古生代烃源形成的生物组合及其意义. 石油与天然气地质, 37(5): 617-626.
|
|
李峰, 朱光有, 吕修祥, 等, 2021. 塔里木盆地古生界海相油气来源争议与寒武系主力烃源岩的确定. 石油学报, 42(11): 1417-1436.
|
|
罗明霞, 曹自成, 徐勤琪, 等, 2024. 塔里木盆地塔河油田塔深5井震旦系原油地球化学特征及地质意义. 地质科技通报, 43(1): 135-149.
|
|
李慧莉, 高键, 曹自成, 等, 2023. 塔里木盆地顺托果勒低隆起走滑断裂带流体时空分布及油气成藏意义. 地学前缘, 30(6): 316-328.
|
|
马永生, 蔡勋育, 云露, 等, 2022. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展. 石油勘探与开发, 49(1): 1-17.
|
|
漆立新, 2016. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义. 中国石油勘探, 21(3): 38-51
|
|
漆立新, 2020. 塔里木盆地顺北超深断溶体油藏特征与启示. 中国石油勘探, 25(1): 102-111.
|
|
王清华, 蔡振忠, 平宏伟, 等, 2025. 塔里木盆地富满油田FI17走滑断裂带奥陶系原油地化特征、充注差异及其控制因素. 地质科技通报, 44(5): 13-28.
|
|
王清华, 杨海军, 汪如军, 等, 2021. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新. 中国石油勘探, 26(4): 58-71.
|
|
王清华, 杨海军, 李勇, 等, 2022. 塔里木盆地富满大型碳酸盐岩油气聚集区走滑断裂控储模式. 地学前缘, 29(6): 239-251.
|
|
杨海军, 陈永权, 田军, 等, 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义. 中国石油勘探, 25(2): 62-72.
|
|
云露, 2021. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义. 中国石油勘探, 26(3): 41-52.
|
|
云露, 邓尚, 2022. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例. 石油学报, 43(6): 770-787.
|
|
张中宁, 刘文汇, 郑建京, 等, 2006. 塔里木盆地深层烃源岩可溶有机组分的碳同位素组成特征. 沉积学报, 24(5): 769-773.
|
|
朱光有, 陈斐然, 陈志勇, 等, 2016. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征. 天然气地球科学, 27(1): 8-21.
|
|
朱光有, 胡剑风, 陈永权, 等, 2022. 塔里木盆地轮探1井下寒武统玉尔吐斯组烃源岩地球化学特征与形成环境. 地质学报, 96(6): 2116-2130.
|
|
朱传玲, 闫华, 云露, 等, 2014. 塔里木盆地沙雅隆起星火1井寒武系烃源岩特征. 石油实验地质, 36(5): 626-632.
|
|
张亚斌, 李晓斌, 王作栋, 等, 2022. 塔里木盆地塔河油田奥陶系原油及族组分碳同位素倒转成因分析. 天然气地球科学, 33(8): 1332-1343.
|
|
张钰, 曹自成, 陈红汉, 等, 2023. 顺北地区不同走滑断裂带奥陶系油气成藏期次及其贡献度差异性. 地球科学, 48(6): 2168-2188. doi: 10.3799/dqkx.2023.103
|