• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 12
    Dec.  2025
    Turn off MathJax
    Article Contents
    Cao Zicheng, Yun Lu, Ping Hongwei, Chen Honghan, Geng Feng, Han Jun, Huang Cheng, Lyu Haitao, Jiang Huashan, Liu Yongli, 2025. Reconstruction of Carbon Isotope of Kerogen in Shunbei Area, Tarim Basin and Discussions on Hydrocarbon Generation Model of Lower Cambrian Yurtus Formation Source Rock. Earth Science, 50(12): 4736-4750. doi: 10.3799/dqkx.2025.182
    Citation: Cao Zicheng, Yun Lu, Ping Hongwei, Chen Honghan, Geng Feng, Han Jun, Huang Cheng, Lyu Haitao, Jiang Huashan, Liu Yongli, 2025. Reconstruction of Carbon Isotope of Kerogen in Shunbei Area, Tarim Basin and Discussions on Hydrocarbon Generation Model of Lower Cambrian Yurtus Formation Source Rock. Earth Science, 50(12): 4736-4750. doi: 10.3799/dqkx.2025.182

    Reconstruction of Carbon Isotope of Kerogen in Shunbei Area, Tarim Basin and Discussions on Hydrocarbon Generation Model of Lower Cambrian Yurtus Formation Source Rock

    doi: 10.3799/dqkx.2025.182
    • Received Date: 2024-11-12
    • Publish Date: 2025-12-25
    • The source rocks of the Lower Cambrian Yurtus Formation have been considered as the main source rocks of marine oil and gas in the Tarim Basin. Currently, the understanding of source rocks of Yurtus Formation is mainly based on the sample analysis in outcrops in the basin margin and drilling core samples in uplift areas of the basin, while the characteristics of source rocks in slope and depression areas are less understood. Understanding the carbon isotope characteristics of kerogen in source rocks of Yurtus formation is of great reference significance for determining the hydrocarbon generation mechanism of source rocks and establishing the correlation between oil and gas sources. In this paper, the organic geochemistry and carbon isotope geochemistry of Ordovician crude oil and natural gas samples from different fault zones in Shunbei area are studied in detail. Based on the quantitative evaluation of the influence of thermal maturity on carbon isotopes of crude oil and natural gas, the initial carbon isotope composition of crude oil and natural gas is reconstructed. The carbon isotopic composition of kerogen from crude oil and natural gas in Shunbei area was recovered by the fractionation between kerogen and oil and gas during hydrocarbon formation. The results show that the carbon isotopes of oil-derived kerogen are mainly in the range of -32.3‰ to -28.8‰, and that of gas-derived kerogen is mainly in the range of -33.1‰ to -29.8‰. The crude oil and natural gas are mainly derived from the mixed source of benthic algae and planktonic algae, and part of crude oils in the Shunbei area are also from the main source of planktonic algae. The light carbon isotope characteristics of kerogen indicate that the oil and gas in Shunbei area mainly come from the source rocks of Yurtus Formation. Based on changes in the assemblage of hydrocarbon forming organisms, the source rocks of Yurtus Formation are divided into oil-generating source rocks with planktonic algae as the main source (δ13C > -30‰), oil-gas generating source rocks with benthic and planktonic algae as the main source (-33.5‰ < δ13C < -30‰) and gas-generating source rocks with benthic algae as the main source (δ13C < -33.5‰). With the increase of thermal maturity of source rocks, the early oil is generated by planktic algae, while the late oil (mainly volatile oil-condensate oil) contributes more, resulting in the early oil isotope is heavier, while the late oil has relatively light carbon isotope characteristics. At the same time, the content of oil source kerogen gradually decreases, while the relative content of gas kerogen (benthic algae) gradually increases, and the total carbon isotope of kerogen in source rocks gradually becomes lighter. Therefore, the different source rock types and hydrocarbon generation processes of kerogens from different sources leads to the complex carbon isotope characteristics of the oil and gas generated from the source rocks of Yurtus Formation (such as the reversal of carbon isotope of the components of the reservoir crude oil group, the reversal of carbon isotope between the chloroform extract of the source rock and kerogen, etc.). The research results can provide a new constraint for the prediction of ultra-deep oil and gas phase state in Tarim Basin.

       

    • loading
    • Andresen, B., Throndsen, T., Råheim, A., et al., 1995. A Comparison of Pyrolysis Products with Models for Natural Gas Generation. Chemical Geology, 126(3-4): 261-280. https://doi.org/10.1016/0009-2541(95)00122-0
      Behar, F., Lorant, F., Mazeas, L., 2008. Elaboration of a New Compositional Kinetic Schema for Oil Cracking. Organic Geochemistry, 39(6): 764-782. https://doi.org/10.1016/j.orggeochem.2008.03.007
      Cao Z. C., Yun, L., Ping, H. W., et al., 2025. Quantitative Evaluation of Gas Injection Contribution using Fluid Inclusion Data: A Case Study of the Condensate Gas Reservoirs of the Eastern Shunbei in the Tarim Basin. Journal of Earth Science, 36(6): 2819-2824. https://doi.org/10.1007/s12583-025-2039-7
      Cao, Z. C., Yun, L., Ping, H. W., et al., 2025. Geochemistry and Origin of Ordovician Natural Gas in Shunbei Area of Tarim Basin. Bulletin of Geological Science and Technology, 44(5): 40-52 (in Chinese with English abstract).
      Clayton, J. L., Bostick, N. H., 1986. Temperature Effects on Kerogen and on Molecular and Isotopic Composition of Organic Matter in Pierre Shale near an Igneous Dike. Organic Geochemistry, 10(1-3): 135-143. https://doi.org/10.1016/0146-6380(86)90017-3
      Clayton, C. J., 1991. Effect of Maturity on Carbon Isotope Ratios of Oils and Condensates. Organic Geochemistry, 17(6): 887-899. https://doi.org/10.1016/0146-6380(91)90030-n
      Chung, H. M., Rooney, M. A., Toon, M. B., et al., 1992. Carbon Isotope Composition of Marine Crude Oils. AAPG Bulletin, 76(7): 1000-1007 https://doi.org/10.1306/bdff8952-1718-11d7-8645000102c1865d
      Cai, C. F., Li, K. K., Ma, A. L., et al., 2009. Distinguishing Cambrian from Upper Ordovician Source Rocks: Evidence from Sulfur Isotopes and Biomarkers in the Tarim Basin. Organic Geochemistry, 40(7): 755-768. https://doi.org/10.1016/j.orggeochem.2009.04.008
      Chen, Z. H., Chai, Z., Cheng, B., et al., 2021. Geochemistry of High-Maturity Crude Oil and Gas from Deep Reservoirs and Their Geological Significance: A Case Study on Shuntuoguole Low Uplift, Tarim Basin, Western China. AAPG Bulletin, 105(1): 65-107. https://doi.org/10.1306/07072019015
      Dai, J. X., Song, Y., Wu, C. L., et al., 1992. Characteristics of Carbon Isotopes of Organic Alkane Gases in Petroliferous Basins of China. Journal of Petroleum Science and Engineering, 7(3-4): 329-338. https://doi.org/10.1016/0920-4105(92)90028-y
      Deng, Q., Wang, H. Z., Wei, Z. W., et al., 2021. Different Accumulation Mechanisms of Organic Matter in Cambrian Sedimentary Successions in the Western and Northeastern Margins of the Tarim Basin, NW China. Journal of Asian Earth Sciences, 207: 104660. https://doi.org/10.1016/j.jseaes.2020.104660
      Guo, L. G., Xiao, X. M., Tian, H., et al., 2009. Distinguishing Gases Derived from Oil Cracking and Kerogen Maturation: Insights from Laboratory Pyrolysis Experiments. Organic Geochemistry, 40(10): 1074-1084. https://doi.org/10.1016/j.orggeochem.2009.07.007
      Hu, G., Liu, W. H., Luo, H. Y., et al., 2019. The Impaction of Original Organism Assemblages in Source Rocks on the Kerogen Carbon Isotopic Compositions: A Case Study of the Early Paleozoic Source Rocks in the Tarim Basin, China. Bulletin of Mineralogy, Petrology and Geochemistry, 38(5): 902-913, 869(in Chinese with English abstract).
      James, A. T., 1983. Correlation of Natural Gas by Use of Carbon Isotopic Distribution between Hydrocarbon Components. AAPG Bulletin, 67(7): 1176-1191. https://doi.org/10.1306/03b5b722-16d1-11d7-8645000102c1865d
      James, A. T., 1990. Correlation of Reservoired Gases Using the Carbon Isotopic Compositions of Wet Gas Components. AAPG Bulletin, 74(9): 1441-1458. https://doi.org/10.1306/0c9b24f7-1710-11d7-8645000102c1865d
      Kvalheim, O. M., Christy, A. A., Telnæs, N., et al., 1987. Maturity Determination of Organic Matter in Coals Using the Methylphenanthrene Distribution. Geochimica et Cosmochimica Acta, 51(7): 1883-1888. https://doi.org/10.1016/0016-7037(87)90179-7
      Li, B., Zhang, X., Guo, Q., et al., 2022. Basin Modeling of Cambrian Ultra-Deep Petroleum System in Tarim Basin. Acta Petrolei Sinica, 43(6): 804-815(in Chinese with English abstract).
      Liu, W. H., Hu, G., Teng, G. E., 2016. Organism Assemblages in the Paleozoic Source Rocks and Their Implications. Oil & Gas Geology, 37(5): 617-626(in Chinese with English abstract).
      Li, F., Zhu, G. Y., Lü, X. X., et al., 2021. The Disputes on the Source of Paleozoic Marine Oil and Gas and the Determination of the Cambrian System as the Main Source Rocks in Tarim Basin. Acta Petrolei Sinica, 42(11): 1417-1436(in Chinese with English abstract).
      Luo, M. X., Cao, Z. C., Xu, Q. Q., et al., 2024. Geochemical Characteristics and Geological Significance of Sinian Crude Oil from Well Tashen 5, Tahe Oilfield, Tarim Basin. Bulletin of Geological Science and Technology, 43(1): 135-149(in Chinese with English abstract).
      Li, H. L., Gao, J., Cao, Z. C., et al., 2023. Spatial-Temporal Distribution of Fluid Activities and Its Significance for Hydrocarbon Accumulation in the Strike-Slip Fault Zones, Shuntuoguole Low-Uplift, Tarim Basin. Earth Science Frontiers, 30(6): 316-328(in Chinese with English abstract).
      Ma, Y. S., Cai, X. Y., Yun, L., et al., 2022. Practice and Theoretical and Technical Progress in Exploration and Development of Shunbei Ultra-Deep Carbonate Oil and Gas Field, Tarim Basin, NW China. Petroleum Exploration and Development, 49(1): 1-17(in Chinese with English abstract). doi: 10.1016/S1876-3804(22)60001-6
      Ping, H. W., Chen, H. H., Thiéry, R., et al., 2017. Effects of Oil Cracking on Fluorescence Color, Homogenization Temperature and Trapping Pressure Reconstruction of Oil Inclusions from Deeply Buried Reservoirs in the Northern Dongying Depression, Bohai Bay Basin, China. Marine and Petroleum Geology, 80: 538-562. https://doi.org/10.1016/j.marpetgeo.2016.12.024
      Ping, H. W., Chen, H. H., Zhu, J. Z., et al., 2018. Origin, Source, Mixing, and Thermal Maturity of Natural Gases in the Panyu Lower Uplift and the Baiyun Depression, Pearl River Mouth Basin, Northern South China Sea. AAPG Bulletin, 102(11): 2171-2200. https://doi.org/10.1306/04121817160
      Ping, H. W., Chen, H. H., Zhai, P. Q., et al., 2021. Evidence for Deeply Buried, Oil-Prone Source Rocks in the Baiyun Depression, Pearl River Mouth Basin, Northern South China Sea. AAPG Bulletin, 105(4): 749-783. https://doi.org/10.1306/04072018144
      Qi, L. X., 2016. Oil and Gas Breakthrough in Ultra-Deep Ordovician Carbonate Formations in Shuntuoguole Uplift, Tarim Basin. China Petroleum Exploration, 21(3): 38-51(in Chinese with English abstract).
      Qi, L. X., 2020. Characteristics and Inspiration of Ultra-Deep Fault-Karst Reservoir in the Shunbei Area of the Tarim Basin. China Petroleum Exploration, 25(1): 102-111(in Chinese with English abstract).
      Radke, M., 1988. Application of Aromatic Compounds as Maturity Indicators in Source Rocks and Crude Oils. Marine and Petroleum Geology, 5(3): 224-236. https://doi.org/10.1016/0264-8172(88)90003-7
      Radke, M., Leythaeuser, D., Teichmüller, M., 1984. Relationship between Rank and Composition of Aromatic Hydrocarbons for Coals of Different Origins. Org. Geochem. 6, 423-430. http://doi.org/10.1016/0146-6380(84)90065-2
      Wang, Q. H., Cai, Z. Z., Ping, H. W., et al., 2025. Geochemical Characteristics, Charging Differences, and Controlling Factors of the Ordovician Crude Oil in the FI17 Strike-Slip Fault Zone of the Fuman Oilfield, Tarim Basin. Bulletin of Geological Science and Technology, 44(5): 13-28 (in Chinese with English abstract).
      Waples, D. W., Tornheim, L., 1978. Mathematical Models for Petroleum-Forming Processes: Carbon Isotope Fractionation. Geochimica et Cosmochimica Acta, 42(5): 467-472. https://doi.org/10.1016/0016-7037(78)90196-5
      Whiticar, M. J., 1994. Correlation of Natural Gases with Their Source. In: Leslie, B. M.; Wallace, G. D., eds., The Petroleum System: From Source to Trap. AAPG Memoir, 261-283. https://doi.org/10.1306/m60585c16
      Whiticar, M. J., 1996. Stable Isotope Geochemistry of Coals, Humic Kerogens and Related Natural Gases. International Journal of Coal Geology, 32(1-4): 191-215. https://doi.org/10.1016/s0166-5162(96)00042-0
      Wang, Q. H., Yang, H. J., Wang, R. J., et al., 2021. Discovery and Exploration Technology of Fault-Controlled Large Oil and Gas Fields of Ultra-Deep Formation in Strike Slip Fault Zone in Tarim Basin. China Petroleum Exploration, 26(4): 58-71(in Chinese with English abstract).
      Wang, Q. H., Yang, H. J., Li, Y., et al., 2022. Control of Strike-Slip Fault on the Large Carbonate Reservoir in Fuman, Tarim Basin: A Reservoir Model. Earth Science Frontiers, 29(6): 239-251(in Chinese with English abstract).
      Stahl, W., 1974. Carbon Isotope Fractionations in Natural Gases. Nature, 251: 134-135. https://doi.org/10.1038/251134a0
      Stahl, W. J., 1979. Carbon Isotopes in Petroleum Geochemistry. Lectures in Isotope Geology. Springer, Berlin, Heidelberg: Berlin, Heidelberg, 274-282. https://doi.org/10.1007/978-3-642-67161-6_23
      Schoell, M., 1980. The Hydrogen and Carbon Isotopic Composition of Methane from Natural Gases of Various Origins. Geochimica et Cosmochimica Acta, 44(5): 649-661. https://doi.org/10.1016/0016-7037(80)90155-6
      Schoell, M., 1984. Stable Isotopes in Petroleum Research. Advances in Petroleum Geochemistry. Academic Press, London, 215-245.
      Sofer, Z., 1984. Stable Carbon Isotope Compositions of Crude Oils: Application to Source Depositional Environments and Petroleum Alteration. AAPG Bulletin, 68: 68(1): 31-49. https://doi.org/10.1306/ad460963-16f7-11d7-8645000102c1865d
      Sofer, Z., Zumberge, J. E., Lay, V., 1986. Stable Carbon Isotopes and Biomarkers as Tools in Understanding Genetic Relationship, Maturation, Biodegradation, and Migration of Crude Oils in the Northern Peruvian Oriente (Maranon) Basin. Organic Geochemistry, 10(1-3): 377-389. https://doi.org/10.1016/0146-6380(86)90037-9
      Yang, H. J., Chen, Y. Q., Tian, J., et al., 2020. Great Discovery and Its Significance of Ultra-Deep Oil and Gas Exploration in Well Luntan-1 of the Tarim Basin. China Petroleum Exploration, 25(2): 62-72(in Chinese with English abstract).
      Yun, L., 2021. Controlling Effect of NE Strike-Slip Fault System on Reservoir Development and Hydrocarbon Accumulation in the Eastern Shunbei Area and Its Geological Significance, Tarim Basin. China Petroleum Exploration, 26(3): 41-52(in Chinese with English abstract).
      Yun, L., Deng, S., 2022. Structural Styles of Deep Strike-Slip Faults in Tarim Basin and the Characteristics of Their Control on Reservoir Formation and Hydrocarbon Accumulation: A Case Study of Shunbei Oil and Gas Field. Acta Petrolei Sinica, 43(6): 770-787(in Chinese with English abstract).
      Zhang, Z. N., Liu, W. H., Zheng, J. J., et al., 2006. Characteristics of Carbon Isotopic Composition of Soluble Organic Components of Deep Source Rocks in Tarim Basin. Acta Sedimentologica Sinica, 24(5): 769-773(in Chinese with English abstract).
      Zhu, G. Y., Chen, F. R., Chen, Z. Y., et al., 2016. Discovery and Basic Characteristics of the High-Quality Source Rocks of the Cambrian Yuertusi Formation in Tarim Basin. Natural Gas Geoscience, 27(1): 8-21(in Chinese with English abstract).
      Zhu, G. Y., Chen, F. R., Wang, M., et al., 2018. Discovery of the Lower Cambrian High-Quality Source Rocks and Deep Oil and Gas Exploration Potential in the Tarim Basin, China. AAPG Bulletin, 102(10): 2123-2151. https://doi.org/10.1306/03141817183
      Zhu, G. Y., Hu, J. F., Chen, Y. Q., et al., 2022. Geochemical Characteristics and Formation Environment of Source Rock of the Lower Cambrian Yuertusi Formation in Well Luntan 1 in Tarim Basin. Acta Geologica Sinica, 96(6): 2116-2130(in Chinese with English abstract).
      Zhu, C. L., Yan, H., Yun, L., et al., 2014. Characteristics of Cambrian Source Rocks in Well XH1, Shaya Uplift, Tarim Basin. Petroleum Geology & Experiment, 36(5): 626-632(in Chinese with English abstract).
      Zhang, Y. B., Li, X. B., Wang, Z. D., et al., 2022. Origin of Carbon Isotopic Inversion of Ordovician Crude Oil and Group Components in Tahe Oilfield, Tarim Basin. Natural Gas Geoscience, 33(8): 1332-1343(in Chinese with English abstract).
      Zhang, Y., Cao, Z. C., Chen, H. H., et al., 2023. Difference of Hydrocarbon Charging Events and Their Contribution Percentages to Ordovician Reservoirs among Strike-Slip Fault Belts in Shunbei Area, Tarim Basin. Earth Science, 48(6): 2168-2188(in Chinese with English abstract).
      曹自成, 云露, 平宏伟, 等, 2025. 塔里木盆地顺北地区奥陶系天然气地球化学与成因. 地质科技通报, 44(5): 40-52.
      胡广, 刘文汇, 罗厚勇, 等, 2019. 成烃生物组合对烃源岩干酪根碳同位素组成的影响: 以塔里木盆地下古生界烃源岩为例. 矿物岩石地球化学通报, 38(5): 902-913, 869.
      李斌, 张欣, 郭强, 等, 2022. 塔里木盆地寒武系超深层含油气系统盆地模拟. 石油学报, 43(6): 804-815.
      刘文汇, 胡广, 腾格尔, 等, 2016. 早古生代烃源形成的生物组合及其意义. 石油与天然气地质, 37(5): 617-626.
      李峰, 朱光有, 吕修祥, 等, 2021. 塔里木盆地古生界海相油气来源争议与寒武系主力烃源岩的确定. 石油学报, 42(11): 1417-1436.
      罗明霞, 曹自成, 徐勤琪, 等, 2024. 塔里木盆地塔河油田塔深5井震旦系原油地球化学特征及地质意义. 地质科技通报, 43(1): 135-149.
      李慧莉, 高键, 曹自成, 等, 2023. 塔里木盆地顺托果勒低隆起走滑断裂带流体时空分布及油气成藏意义. 地学前缘, 30(6): 316-328.
      马永生, 蔡勋育, 云露, 等, 2022. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展. 石油勘探与开发, 49(1): 1-17.
      漆立新, 2016. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义. 中国石油勘探, 21(3): 38-51
      漆立新, 2020. 塔里木盆地顺北超深断溶体油藏特征与启示. 中国石油勘探, 25(1): 102-111.
      王清华, 蔡振忠, 平宏伟, 等, 2025. 塔里木盆地富满油田FI17走滑断裂带奥陶系原油地化特征、充注差异及其控制因素. 地质科技通报, 44(5): 13-28.
      王清华, 杨海军, 汪如军, 等, 2021. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新. 中国石油勘探, 26(4): 58-71.
      王清华, 杨海军, 李勇, 等, 2022. 塔里木盆地富满大型碳酸盐岩油气聚集区走滑断裂控储模式. 地学前缘, 29(6): 239-251.
      杨海军, 陈永权, 田军, 等, 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义. 中国石油勘探, 25(2): 62-72.
      云露, 2021. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义. 中国石油勘探, 26(3): 41-52.
      云露, 邓尚, 2022. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例. 石油学报, 43(6): 770-787.
      张中宁, 刘文汇, 郑建京, 等, 2006. 塔里木盆地深层烃源岩可溶有机组分的碳同位素组成特征. 沉积学报, 24(5): 769-773.
      朱光有, 陈斐然, 陈志勇, 等, 2016. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征. 天然气地球科学, 27(1): 8-21.
      朱光有, 胡剑风, 陈永权, 等, 2022. 塔里木盆地轮探1井下寒武统玉尔吐斯组烃源岩地球化学特征与形成环境. 地质学报, 96(6): 2116-2130.
      朱传玲, 闫华, 云露, 等, 2014. 塔里木盆地沙雅隆起星火1井寒武系烃源岩特征. 石油实验地质, 36(5): 626-632.
      张亚斌, 李晓斌, 王作栋, 等, 2022. 塔里木盆地塔河油田奥陶系原油及族组分碳同位素倒转成因分析. 天然气地球科学, 33(8): 1332-1343.
      张钰, 曹自成, 陈红汉, 等, 2023. 顺北地区不同走滑断裂带奥陶系油气成藏期次及其贡献度差异性. 地球科学, 48(6): 2168-2188. doi: 10.3799/dqkx.2023.103
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (219) PDF downloads(21) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return