| Citation: | Chen Ting, Dai Zhaoyi, Qiu Xuan, Chang Biao, Wang Hongmei, Liu Deng, 2025. Synergistic Effects of Cyanobacteria and Montmorillonite on Formation of Low-Temperature Protodolomite. Earth Science, 50(12): 4938-4949. doi: 10.3799/dqkx.2025.200 |
|
Badger, M. R., Hanson, D., Price, G. D., 2002. Evolution and Diversity of CO2 Concentrating Mechanisms in Cyanobacteria. Functional Plant Biology, 29(3): 161-173. https://doi.org/10.1071/PP01213
|
|
Bischoff, W. D., Bishop, F. C., Mackenzie, F. T., 1983. Biogenically Produced Magnesian Calcite; Inhomogeneities in Chemical and Physical Properties; Comparison with Synthetic Phases. American Mineralogist, 68(11-12): 1183-1188.
|
|
Bontognali, T. R. R., McKenzie, J. A., Warthmann, R. J., et al., 2014. Microbially Influenced Formation of Mg⁃Calcite and Ca⁃Dolomite in the Presence of Exopolymeric Substances Produced by Sulphate⁃Reducing Bacteria. Terra Nova, 26(1): 72-77. https://doi.org/10.1111/ter.12072
|
|
Bontognali, T. R. R., Vasconcelos, C., Warthmann, R. J., et al., 2010. Dolomite Formation within Microbial Mats in the Coastal Sabkha of Abu Dhabi (United Arab Emirates). Sedimentology, 57(3): 824-844. https://doi.org/10.1111/j.1365⁃3091.2009.01121.x
|
|
Brauchli, M., McKenzie, J. A., Strohmenger, C. J., et al., 2016. The Importance of Microbial Mats for Dolomite Formation in the Dohat Faishakh Sabkha, Qatar. Carbonates and Evaporites, 31(3): 339-345. https://doi.org/10.1007/s13146⁃015⁃0275⁃0
|
|
Chen, T., Qiu, X., Liu, D., et al., 2024. Dissolved Silicon as a Beneficial Factor for Biomineralization of Disordered Dolomite by a Halophilic Cyanobacterium. Chemical Geology, 670: 122435. https://doi.org/10.1016/j.chemgeo.2024.122435
|
|
Deng, S. C., Dong, H. L., Lyu, G., et al., 2010. Microbial Dolomite Precipitation Using Sulfate Reducing and Halophilic Bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China. Chemical Geology, 278(3-4): 151-159. https://doi.org/10.1016/j.chemgeo.2010.09.008
|
|
Dong, H., Jaisi, D. P., Kim, J., et al., 2009. Microbe⁃Clay Mineral Interactions. American Mineralogist, 94(11-12): 1505-1519. https://doi.org/10.2138/am.2009.3246
|
|
Dong, H. L., Zeng, Q., Liu, D., et al., 2024. Interactions between Clay Minerals and Microbes: Mechanisms and Applications in Environmental Remediation. Earth Science Frontiers, 31(1): 467-485(in Chinese with English abstract).
|
|
Duan, Y., Yao, Y. C., Qiu, X., et al., 2017. Dolomite Formation Facilitated by Three Halophilic Archaea. Earth Science, 42(3): 389-396(in Chinese with English abstract).
|
|
Fan, Q. G., Liu, D., Papineau, D., et al., 2023. Precipitation of High Mg⁃Calcite and Protodolomite Using Dead Biomass of Aerobic Halophilic Bacteria. Journal of Earth Science, 34(2): 456-466. https://doi.org/10.1007/s12583⁃020⁃1108⁃1
|
|
Fang, Y. H., Hobbs, F., Yang, Y. P., et al., 2023. Dissolved Silica⁃Driven Dolomite Precipitation in the Great Salt Lake, Utah, and Its Implication for Dolomite Formation Environments. Sedimentology, 70(4): 1328-1347. https://doi.org/10.1111/sed.13081.
|
|
Görgen, S., Benzerara, K., Skouri⁃Panet, F., et al., 2020. The Diversity of Molecular Mechanisms of Carbonate Biomineralization by Bacteria. Discover Materials, 1(1): 2. https://doi.org/10.1007/s43939⁃020⁃00001⁃9
|
|
Gregg, J. M., Bish, D. L., Kaczmarek, S. E., et al., 2015. Mineralogy, Nucleation and Growth of Dolomite in the Laboratory and Sedimentary Environment: a Review. Sedimentology, 62(6): 1749-1769. https://doi.org/10.1111/sed.12202
|
|
Gunasekaran, S., Anbalagan, G., Pandi, S., 2006. Raman and Infrared Spectra of Carbonates of Calcite Structure. Journal of Raman Spectroscopy, 37(9): 892-899. https://doi.org/10.1002/jrs.1518
|
|
Huang, Y. R., Yao, Q. Z., Li, H., et al., 2019. Aerobically Incubated Bacterial Biomass⁃Promoted Formation of Disordered Dolomite and Implication for Dolomite Formation. Chemical Geology, 523: 19-30. https://doi.org/10.1016/j.chemgeo.2019.06.006
|
|
Kamennaya, N. A., Ajo⁃Franklin, C. M., Northen, T., et al., 2012. Cyanobacteria as Biocatalysts for Carbonate Mineralization. Minerals, 2(4): 338-364. https://doi.org/10.3390/min2040338
|
|
Kenward, P. A., Fowle, D. A., Goldstein, R. H., et al., 2013. Ordered Low⁃Temperature Dolomite Mediated by Carboxyl⁃Group Density of Microbial Cell Walls. AAPG Bulletin, 97(11): 2113-2125. https://doi.org/10.1306/05171312168
|
|
Kim, J., Kimura, Y., Puchala, B., et al., 2023. Dissolution Enables Dolomite Crystal Growth near Ambient Conditions. Science, 382(6673): 915-920. https://doi.org/10.1126/science.adi3690
|
|
Krause, S., Liebetrau, V., Gorb, S., et al., 2012. Microbial Nucleation of Mg⁃Rich Dolomite in Exopolymeric Substances under Anoxic Modern Seawater Salinity: New Insight into an Old Enigma. Geology, 40(7): 587-590. https://doi.org/10.1130/g32923.1
|
|
Land, L. S., 1998. Failure to Precipitate Dolomite at 25 ℃ from Dilute Solution Despite 1 000⁃Fold Oversaturation after 32 Years. Aquatic Geochemistry, 4(3): 361-368. https://doi.org/10.1023/A:1009688315854
|
|
Li, B., Yan, J. X., Liu, X. T., et al., 2010. The Organogenic Dolomite Model: Mechanism, Progress and Significance. Journal of Palaeogeography, 12(6): 699-710(in Chinese with English abstract).
|
|
Lippmann, F., 1973. Sedimentary Carbonate Minerals. Springer-Verlag Berlin, Heidelberg. https://doi.org/10.1007/978⁃3⁃642⁃65474⁃9
|
|
Liu, D., Fan, Q. G., Papineau, D., et al., 2020a. Precipitation of Protodolomite Facilitated by Sulfate⁃Reducing Bacteria: The Role of Capsule Extracellular Polymeric Substances. Chemical Geology, 533: 119415. https://doi.org/10.1016/j.chemgeo.2019.119415.
|
|
Liu, D., Xu, Y. Y., Yu, Q. Q., et al., 2020b. Catalytic Effect of Microbially⁃Derived Carboxylic Acids on the Precipitation of Mg⁃Calcite and Disordered Dolomite: Implications for Sedimentary Dolomite Formation. Journal of Asian Earth Sciences, 193: 104301. https://doi.org/10.1016/j.jseaes.2020.104301
|
|
Liu, D., Yu, N., Papineau, D., et al., 2019a. The Catalytic Role of Planktonic Aerobic Heterotrophic Bacteria in Protodolomite Formation: Results from Lake Jibuhulangtu Nuur, Inner Mongolia, China. Geochimica et Cosmochimica Acta, 263: 31-49. https://doi.org/10.1016/j.gca.2019.07.056
|
|
Liu, D., Xu, Y. Y., Papineau, D., et al., 2019b. Experimental Evidence for Abiotic Formation of Low⁃Temperature Proto⁃Dolomite Facilitated by Clay Minerals. Geochimica et Cosmochimica Acta, 247: 83-95. https://doi.org/10.1016/j.gca.2018.12.036.
|
|
McKenzie, J. A., Vasconcelos, C., 2009. Dolomite Mountains and the Origin of the Dolomite Rock of which they Mainly Consist: Historical Developments and New Perspectives. Sedimentology, 56(1): 205-219. https://doi.org/10.1111/j.1365⁃3091.2008.01027.x
|
|
Meister, P., Reyes, C., Beaumont, W., et al., 2011. Calcium and Magnesium⁃Limited Dolomite Precipitation at Deep Springs Lake, California. Sedimentology, 58(7): 1810-1830. https://doi.org/10.1111/j.1365⁃3091.2011.01240.x
|
|
Meng, R. R., Han, Z. Z., Gao, X., et al., 2024. Dissolved Ammonia Catalyzes Proto⁃Dolomite Precipitation at Earth Surface Temperature. Earth and Planetary Science Letters, 646: 119012. https://doi.org/10.1016/j.epsl.2024.119012
|
|
Netto, P. R. A., Pozo, M., da Silva, M. D., et al., 2022. Paleoenvironmental Implications of Authigenic Magnesian Clay Formation Sequences in the Barra Velha Formation (Santos Basin, Brazil). Minerals, 12(2): 200. https://doi.org/10.3390/min12020200
|
|
Obst, M., Dittrich, M., Kuehn, H., 2006. Calcium Adsorption and Changes of the Surface Microtopography of Cyanobacteria Studied by AFM, CFM, and TEM with Respect to Biogenic Calcite Nucleation. Geochemistry, Geophysics, Geosystems, 7(6): 2005GC001172. https://doi.org/10.1029/2005GC001172
|
|
Pérez, A. M., Zarza, A. M. A., La Iglesia, Á., et al., 2015. Do Magnesian Clays Play a Role in Dolomite Formation in Alkaline Environments? An Example from Castañar Cave, Cáceres (Spain). Geogaceta, 57: 15⁃18.
|
|
Perri, E., Tucker, M., 2007. Bacterial Fossils and Microbial Dolomite in Triassic Stromatolites. Geology, 35(3): 207. https://doi.org/10.1130/g23354a.1
|
|
Perri, E., Tucker, M. E., Mawson, M., 2013. Biotic and Abiotic Processes in the Formation and Diagenesis of Permian Dolomitic Stromatolites (Zechstein Group, NE England). Journal of Sedimentary Research, 83(10): 896-914. https://doi.org/10.2110/jsr.2013.65
|
|
Petrash, D. A., Bialik, O. M., Bontognali, T. R. R., et al., 2017. Microbially Catalyzed Dolomite Formation: From Near⁃Surface to Burial. Earth⁃Science Reviews, 171: 558-582. https://doi.org/10.1016/j.earscirev.2017.06.015
|
|
Qiu, X., Wang, H. M., Liu, D., et al., 2012. The Physiological Response of Synechococcus Elongatus to Salinity: A Potential Biomarker for Ancient Salinity in Evaporative Environments. Geomicrobiology Journal, 29(5): 477-483. https://doi.org/10.1080/01490451.2011.581331
|
|
Qiu, X., Wang, H. M., Yao, Y. C., et al., 2017. High Salinity Facilitates Dolomite Precipitation Mediated by Haloferax volcanii DS52. Earth and Planetary Science Letters, 472: 197-205. https://doi.org/10.1016/j.epsl.2017.05.018
|
|
Qiu, X., Yao, Y. C., Wang, H. M., et al., 2018. Live Microbial Cells Adsorb Mg2+ More Effectively than Lifeless Organic Matter. Frontiers of Earth Science, 12(1): 160-169. https://doi.org/10.1007/s11707⁃017⁃0626⁃3
|
|
Riding, R., 2006. Cyanobacterial Calcification, Carbon Dioxide Concentrating Mechanisms, and Proterozoic-Cambrian Changes in Atmospheric Composition. Geobiology, 4(4): 299-316. https://doi.org/10.1111/j.1472⁃4669.2006.00087.x
|
|
Ritz, M., Vaculíková, L., Kupková, J., et al., 2016. Different Level of Fluorescence in Raman Spectra of Montmorillonites. Vibrational Spectroscopy, 84: 7-15. https://doi.org/10.1016/j.vibspec.2016.02.007
|
|
Roberts, J. A., Bennett, P. C., González, L. A., et al., 2004. Microbial Precipitation of Dolomite in Methanogenic Groundwater. Geology, 32(4): 277. https://doi.org/10.1130/g20246.2
|
|
Rodriguez⁃Blanco, J. D., Shaw, S., Benning, L. G., 2015. A Route for the Direct Crystallization of Dolomite. American Mineralogist, 100(5-6): 1172-1181. https://doi.org/10.2138/am⁃2015⁃4963
|
|
Sánchez⁃Román, M., Romanek, C. S., Fernández⁃Remolar, D. C., et al., 2011. Aerobic Biomineralization of Mg⁃Rich Carbonates: Implications for Natural Environments. Chemical Geology, 281(3-4): 143-150. https://doi.org/10.1016/j.chemgeo.2010.11.020
|
|
Sánchez⁃Román, M., Vasconcelos, C., Schmid, T., et al., 2008. Aerobic Microbial Dolomite at the Nanometer Scale: Implications for the Geologic Record. Geology, 36(11): 879. https://doi.org/10.1130/g25013a.1
|
|
Sun, J. M., Wu, Z. G., Cheng, H. F., et al., 2014. A Raman Spectroscopic Comparison of Calcite and Dolomite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117: 158-162. https://doi.org/10.1016/j.saa.2013.08.014
|
|
Vasconcelos, C., McKenzie, J. A., Bernasconi, S., et al., 1995. Microbial Mediation as a Possible Mechanism for Natural Dolomite Formation at Low Temperatures. Nature, 377: 220-222. https://doi.org/10.1038/377220a0
|
|
Wanas, H. A., Sallam, E., 2016. Abiotically⁃Formed, Primary Dolomite in the Mid⁃Eocene Lacustrine Succession at Gebel El⁃Goza El⁃Hamra, NE Egypt: An Approach to the Role of Smectitic Clays. Sedimentary Geology, 343: 132-140. https://doi.org/10.1016/j.sedgeo.2016.08.003
|
|
Wang, X., Kong, X. X., Liu, Q., et al., 2023. Effect of Clay Minerals on Carbonate Precipitation Induced by Cyanobacterium Synechococcus Sp. Microbiology Spectrum, 11(3). https://doi.org/10.1128/spectrum.00363⁃23
|
|
Warren, J., 2000. Dolomite: Occurrence, Evolution and Economically Important Associations. Earth⁃Science Reviews, 52(1-3): 1-81. https://doi.org/10.1016/s0012⁃8252(00)00022⁃2
|
|
Xie, S. C., Yin, H. F., Liu, D., et al., 2018. On Development from Paleontology to Geobiology: Overview of Innovation and Expansion of Application Fields. Earth Science, 43(11): 3823-3836 (in Chinese with English abstract).
|
|
Xu, Y. Y., Liu, D., Yu, N., et al., 2018. Advance and Review on Microbial/Organogenic Dolomite Model. Earth Science, 43(Suppl. 1): 63-70 (in Chinese with English abstract).
|
|
Yao, T. T., Zhu, H. T., Yang, X. H., et al., 2020. Dolomite Origin of Shahejie Formation in Huanghekou Sag, Bohai Bay Basin. Earth Science, 45(10): 3567-3578 (in Chinese with English abstract).
|
|
Yao, Y. C., Qiu, X., Wang, H. M., et al., 2018. Dolomite Formation Mediated by Halophilic Archaeal Cells under Different Conditions and Carboxylated Microspheres. Earth Science, 43(2): 449-458 (in Chinese with English abstract).
|
|
You, X. L., Jia, W. Q., Xu, F., et al., 2018. Mineralogical Characteristics of Ankerite and Mechanisms of Primary and Secondary Origins. Earth Science, 43(11): 4046-4055 (in Chinese with English abstract).
|
|
You, X. L., Sun, S., Zhu, J. Q., et al., 2011. Progress in the Study of Microbial Dolomite Model. Earth Science Frontiers, 18(4): 52-64 (in Chinese with English abstract).
|
|
You, X. L., Sun, S., Zhu, J. Q., et al., 2013. Microbially Mediated Dolomite in Cambrian Stromatolites from the Tarim Basin, North⁃West China: Implications for the Role of Organic Substrate on Dolomite Precipitation. Terra Nova, 25(5): 387-395. https://doi.org/10.1111/ter.12048
|
|
Yu, N., Xu, Y. Y., Liu, D., et al., 2018. Catalytic Role of Anaerobic Bacteria in Dolomite Formation in Lake Jibuhulangtu Nuur, Inner Mongolia. Earth Science, 43(Suppl. 1): 53-62(in Chinese with English abstract).
|
|
Zhang, F. F., Xu, H. F., Konishi, H., et al., 2012. Dissolved Sulfide⁃Catalyzed Precipitation of Disordered Dolomite: Implications for the Formation Mechanism of Sedimentary Dolomite. Geochimica et Cosmochimica Acta, 97: 148-165. https://doi.org/10.1016/j.gca.2012.09.008
|
|
Zhang, F., Xu, H., Shelobolina, E. S., et al., 2015. The Catalytic Effect of Bound Extracellular Polymeric Substances Excreted by Anaerobic Microorganisms on Ca⁃Mg Carbonate Precipitation: Implications for the "Dolomite Problem". American Mineralogist, 100(2/3): 483-494. https://doi.org/10.2138/am⁃2015⁃4999
|
|
Zhao, S. B., Liu, Y. C., Yue, L. L., et al., 2025. Types, Characteristics, and Genesis of Lower Carboniferous Baizuo Formation Dolomite in Super⁃Large Huize Pb⁃Zn Orefield. Earth Science, 50(4): 1353-1379 (in Chinese with English abstract).
|
|
Zhao, Y. Y., Wei, X. Y., Gao, X., et al., 2024. Proto⁃Dolomite Spherulites with Heterogeneous Interior Precipitated in Brackish Water Cultivation of Freshwater Cyanobacterium Leptolyngbya boryana. Science of the Total Environment, 906: 167552. https://doi.org/10.1016/j.scitotenv.2023.167552
|
|
Zheng, W. L., Liu, D., Yang, S. S., et al., 2021. Transformation of Protodolomite to Dolomite Proceeds under Dry⁃Heating Conditions. Earth and Planetary Science Letters, 576: 117249. https://doi.org/10.1016/j.epsl.2021.117249
|
|
董海良, 曾强, 刘邓, 等, 2024. 黏土矿物-微生物相互作用机理以及在环境领域中的应用. 地学前缘, 31(1): 467-485.
|
|
段勇, 药彦辰, 邱轩, 等, 2017. 三株嗜盐古菌诱导形成白云石. 地球科学, 42(3): 389-396.
|
|
李波, 颜佳新, 刘喜停, 等, 2010. 白云岩有机成因模式: 机制、进展与意义. 古地理学报, 12(6): 699-710.
|
|
谢树成, 殷鸿福, 刘邓, 等, 2018. 再谈古生物学向地球生物学的发展: 服务领域的拓展与创新. 地球科学, 43(11): 3823-3836. doi: 10.3799/dqkx.2018.169
|
|
许杨阳, 刘邓, 于娜, 等, 2018. 微生物(有机)白云石成因模式研究进展与思考. 地球科学, 43(增刊1): 63-70. doi: 10.3799/dqkx.2018.513
|
|
姚婷婷, 朱红涛, 杨香华, 等, 2020. 渤海湾盆地黄河口凹陷沙河街组白云岩成因机理. 地球科学, 45(10): 3567-3578. doi: 10.3799/dqkx.2020.227
|
|
药彦辰, 邱轩, 王红梅, 等, 2018. 不同状态嗜盐古菌细胞及羧基微球诱导白云石沉淀. 地球科学, 43(2): 449-458. doi: 10.3799/dqkx.2017.579
|
|
由雪莲, 孙枢, 朱井泉, 等, 2011. 微生物白云岩模式研究进展. 地学前缘, 18(4): 52-64. doi: 10.3799/dqkx.2018.513
|
|
由雪莲, 贾文强, 徐帆, 等, 2018. 铁白云石矿物学特征及原生次生成因机制. 地球科学, 43(11): 4046-4055. doi: 10.3799/dqkx.2018.152
|
|
于娜, 许杨阳, 刘邓, 等, 2018. 内蒙古吉布胡郎图诺尔盐湖厌氧菌对白云石形成的催化作用. 地球科学,43(增刊 1): 53-62. doi: 10.3799/dqkx.2018.543
|
|
赵思博, 刘英超, 岳龙龙, 等, 2025. 会泽铅锌矿区摆佐组地层白云石类型、特征及成因. 地球科学, 50(4): 1353-1379. doi: 10.3799/dqkx.2024.076
|