| Citation: | Wang Yufeng, Cheng Qiangong, Lin Qiwen, Li Kun, Shi Anwen, Li Tianhua, Ming Jie, Song Zhang, Niu Fujun, Li Chuanbao, 2025. Research on Rock Avalanches in Tibetan Plateau: From Field Observations to Dynamic Mechanisms. Earth Science, 50(10): 4071-4095. doi: 10.3799/dqkx.2025.207 | 
	                | 
					 Aaron, J., McDougall, S., 2019. Rock Avalanche Mobility: The Role of Path Material. Engineering Geology, 257: 105126.  https://doi.org/10.1016/j.enggeo.2019.05.003 
						
					 | 
			
| 
					 Abele, G. 1974. Bergstürze in den Alpen: Ihre Verbreitung, Morphologie und Folgeerscheinungen. Wissenschaftliche Alpenvereinshefte, Deutscher Alpenverein. 
						
					 | 
			
| 
					 Allstadt, K. E., Matoza, R. S., Lockhart, A. B., et al., 2018. Seismic and Acoustic Signatures of Surficial Mass Movements at Volcanoes. Journal of Volcanology and Geothermal Research, 364: 76-106.  https://doi.org/10.1016/j.jvolgeores.2018.09.007 
						
					 | 
			
| 
					 Azam, M. F., Kargel, J. S., Shea, J. M., et al., 2021. Glaciohydrology of the Himalaya-Karakoram. Science, 373(6557): eabf3668.  https://doi.org/10.1126/science.abf3668 
						
					 | 
			
| 
					 Bahavar, M., Allstadt, K. E., Van Fossen, M., et al., 2019. Exotic Seismic Events Catalog (ESEC) Data Product. Seismological Research Letters, 90(3): 1355-1363.  https://doi.org/10.1785/0220180402 
						
					 | 
			
| 
					 Cagnoli, B., 2023. Slope-Break Collisions: Comment on "Insight into Granular Flow Dynamics Relying on Basal Stress Measurements: From Experimental Flume Tests" by K. Li et al. Journal of Geophysical Research: Solid Earth, 128(2): e2022JB024799.  
						
					 | 
			
| 
					 Campbell, C. S., Cleary, P. W., Hopkins, M., 1995. Large-Scale Landslide Simulations: Global Deformation, Velocities and Basal Friction. Journal of Geophysical Research: Solid Earth, 100(B5): 8267-8283.  https://doi.org/10.1029/94JB00937 
						
					 | 
			
| 
					 Chen, D. L., Xu, B. Q., Yao, T. D., et al., 2015. Assessment of Past, Present and Future Environmental Changes on the Tibetan Plateau. Chinese Science Bulletin, 60(32): 3025-3035, 1-2(in Chinese). 
						
					 | 
			
| 
					 Cheng, Q. G., Peng, J. B., Hu, G. T., 1999. Dynamics of High-Speed Rock Landslide. Southwest Jiaotong University Press, Chengdu(in Chinese). 
						
					 | 
			
| 
					 Cheng, Q. G., Wang, Y. F., Lin, Q. W., et al., 2024. Consideration on Dynamics of Rock Avalanches in the Himalayan Orogenic Belt. Acta Geologica Sinica, 98(11): 3238-3254(in Chinese with English abstract). 
						
					 | 
			
| 
					 Cheng, Q. G., Zhang, Z. Y., Huang, R. Q., 2007. Study on Dynamics of Rock Avalanches: State of the Art Report. Journal of Mountain Science, 25(1): 72-84(in Chinese with English abstract). 
						
					 | 
			
| 
					 Collins, G. S., Melosh, H. J., 2003. Acoustic Fluidization and the Extraordinary Mobility of Sturzstroms. Journal of Geophysical Research: Solid Earth, 108(B10): 2003JB002465.  https://doi.org/10.1029/2003JB002465 
						
					 | 
			
| 
					 Cook, K. L., Dietze, M., 2022. Seismic Advances in Process Geomorphology. Annual Review of Earth and Planetary Sciences, 50: 183-204.  https://doi.org/10.1146/annurev-earth-032320-085133 
						
					 | 
			
| 
					 Corominas, J., 1996. The Angle of Reach as a Mobility Index for Small and Large Landslides. Canadian Geotechnical Journal, 33(2): 260-271.  https://doi.org/10.1139/t96-005 
						
					 | 
			
| 
					 Cui, P., Chen, R., Xiang, L. Z., et al., 2014. Risk Analysis of Mountain Hazards in Tibetan Plateau under Global Warming. Progressus Inquisitiones DE Mutatione Climatis, 10(2): 103-109(in Chinese with English abstract). 
						
					 | 
			
| 
					 Davies, T. R. H., 1982. Spreading of Rock Avalanche Debris by Mechanical Fluidization. Rock Mechanics, 15(1): 9-24.  https://doi.org/10.1007/BF01239474 
						
					 | 
			
| 
					 Davies, T. R. H., McSaveney, M. J., Hodgson, K. A., 1999. A Fragmentation-Spreading Model for Long-Runout Rock Avalanches. Canadian Geotechnical Journal, 36(6): 1096-1110.  https://doi.org/10.1139/cgj-36-6-1096 
						
					 | 
			
| 
					 Davies, T. R. H., McSaveney, M. J., Reznichenko, N. V., 2019. What Happens to Fracture Energy in Brittle Fracture? Revisiting the Griffith Assumption. Solid Earth, 10(4): 1385-1395.  https://doi.org/10.5194/se-10-1385-2019 
						
					 | 
			
| 
					 Davies, T. R. H., Reznichenko, N. V., McSaveney, M. J., 2020. Energy Budget for a Rock Avalanche: Fate of Fracture-Surface Energy. Landslides, 17(1): 3-13.  https://doi.org/10.1007/s10346-019-01224-5 
						
					 | 
			
| 
					 Davies, T. R., McSaveney, M. J., 2009. The Role of Rock Fragmentation in the Motion of Large Landslides. Engineering Geology, 109(1-2): 67-79.  https://doi.org/10.1016/j.enggeo.2008.11.004 
						
					 | 
			
| 
					 De Blasio, F. V., 2011. Granular Flows and Rock Avalanches. In: De Blasio, F. V., ed., Introduction to the Physics of Landslides. Springer Netherlands, Dordrecht, 159-222.  
						
					 | 
			
| 
					 De Blasio, F. V., 2014. Friction and Dynamics of Rock Avalanches Travelling on Glaciers. Geomorphology, 213: 88-98.  https://doi.org/10.1016/j.geomorph.2014.01.001 
						
					 | 
			
| 
					 Deboeuf, S., Lajeunesse, E., Dauchot, O., et al., 2006. Flow Rule, Self-Channelization and Levees in Unconfined Granular Flows. Physical Review Letters, 97(15): 158303.  https://doi.org/10.1103/PhysRevLett.97.158303 
						
					 | 
			
| 
					 Delannay, R., Valance, A., Mangeney, A., et al., 2017. Granular and Particle-Laden Flows: From Laboratory Experiments to Field Observations. Journal of Physics D: Applied Physics, 50(5): 053001.  https://doi.org/10.1088/1361-6463/50/5/053001 
						
					 | 
			
| 
					 Deng, Q. D., Cheng, S. P., Ma, J., et al., 2014. Seismic Activities and Earthquake Potential in the Tibetan Plateau. Chinese Journal of Geophysics, 57(7): 2025-2042(in Chinese with English abstract). 
						
					 | 
			
| 
					 Denlinger, R. P., 2014. Simulation of Initiation, Transport, and Deposition of Granular Avalanches: Current Progress and Future Challenges. Procedia IUTAM, 10: 363-371.  https://doi.org/10.1016/j.piutam.2014.01.031 
						
					 | 
			
| 
					 Dubey, S., Sattar, A., Goyal, M. K., et al., 2023. Mass Movement Hazard and Exposure in the Himalaya. Earth's Future, 11(9): e2022EF003253.  https://doi.org/10.1029/2022EF003253 
						
					 | 
			
| 
					 Dufresne, A., Davies, T. R. H., 2009. Longitudinal Ridges in Mass Movement Deposits. Geomorphology, 105(3-4): 171-181.  https://doi.org/10.1016/j.geomorph.2008.09.009 
						
					 | 
			
| 
					 Dufresne, A., Dunning, S. A., 2017. Process Dependence of Grain Size Distributions in Rock Avalanche Deposits. Landslides, 14(5): 1555-1563.  https://doi.org/10.1007/s10346-017-0806-y 
						
					 | 
			
| 
					 Edwards, A. N., Rocha, F. M., Kokelaar, B. P., et al., 2023. Particle-Size Segregation in Self-Channelized Granular Flows. Journal of Fluid Mechanics, 955: A38.  https://doi.org/10.1017/jfm.2022.1089 
						
					 | 
			
| 
					 Eisbacher, G. H., 1979. Cliff Collapse and Rock Avalanches (Sturzstroms) in the Mackenzie Mountains, Northwestern Canada. Canadian Geotechnical Journal, 16(2): 309-334.  https://doi.org/10.1139/t79-032 
						
					 | 
			
| 
					 Ekström, G., Stark, C. P., 2013. Simple Scaling of Catastrophic Landslide Dynamics. Science, 339(6126): 1416-1419.  https://doi.org/10.1126/science.1232887 
						
					 | 
			
| 
					 Engineering Geology Research Office, Chengdu College of Geology, 1989. Study on the Major Engineering Problems in Longyang Gorge Hydropower Station. Press of Chengdu University of Science and Technology, Chengdu, 52-116(in Chinese). 
						
					 | 
			
| 
					 Erismann, T. H., 1979. Mechanisms of Large Landslides. Rock Mechanics, 12(1): 15-46.  https://doi.org/10.1007/BF01241087 
						
					 | 
			
| 
					 Fan, X. M., Scaringi, G., Korup, O., et al., 2019. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms and Impacts. Reviews of Geophysics, 57(2): 421-503.  https://doi.org/10.1029/2018RG000626 
						
					 | 
			
| 
					 Félix, G., Thomas, N., 2004. Relation between Dry Granular Flow Regimes and Morphology of Deposits: Formation of Levées in Pyroclastic Deposits. Earth and Planetary Science Letters, 221(1-4): 197-213.  https://doi.org/10.1016/S0012-821X(04)00111-6 
						
					 | 
			
| 
					 Feng, Z. Y., Cheng, Q. G., Wang, Y. F., et al., 2023. The state-of-Art and Future Developmnet of Friction Heating Inducded Weakening Mechanisms of Rock Avalanches. Journal of Engineering Geology, 31(3): 999-1017(in Chinese with English abstract). 
						
					 | 
			
| 
					 Foda, M. A., 1994. Landslides Riding on Basal Pressure Waves. Continuum Mechanics and Thermodynamics, 6(1): 61-79.  https://doi.org/10.1007/BF01138307 
						
					 | 
			
| 
					 Forterre, Y., Pouliquen, O., 2008. Flows of Dense Granular Media. Annual Review of Fluid Mechanics, 40: 1-24.  https://doi.org/10.1146/annurev.fluid.40.111406.102142 
						
					 | 
			
| 
					 Gray, J. M. N. T., 2018. Particle Segregation in Dense Granular Flows. Annual Review of Fluid Mechanics, 50: 407-433.  https://doi.org/10.1146/annurev-fluid-122316-045201 
						
					 | 
			
| 
					 Habib, P., 1975. Production of Gaseous Pore Pressure during Rock Slides. Rock Mechanics, 7(4): 193-197.  https://doi.org/10.1007/BF01246865 
						
					 | 
			
| 
					 Han, X. D., Yang, X. Y., Sun, X. J., et al., 2024. Quantitative Prediction Model of Dynamic Erosion Process for Long Run-out Accumulation Landslides. Rock and Soil Mechanics, 45(4): 1190-1200(in Chinese with English abstract). doi:  10.26599/RSM.2024.9435612 
						
					 | 
			
| 
					 He, K., Wang, Y. F., Cheng, Q. G., et al., 2024. Research on the Substrate Entrainment Dynamics of Rock Avalanches: State-of-the-Art. Journal of Engineering Geology, 32(3): 904-917(in Chinese with English abstract). 
						
					 | 
			
| 
					 Heim, A., 1932. Bergsturz und Menschenleben. Zütich, Naturforschenden Gesellschaft. Translated by Skermer, N. S., 1989. Landslides and Human Lives. B C. Bitech Publishers, Vancouver. 
						
					 | 
			
| 
					 Hermanns, R. L., Penna, I. M., Oppikofer, T., et al., 2022. Rock Avalanche. In: Shroder, J. J. F., ed., Treatise on Geomorphology. Elsevier, Amsterdam, 85-105.  
						
					 | 
			
| 
					 Hewitt, K., 2002. Styles of Rock-Avalanche Depositional Complexes Conditioned by Very Rugged Terrain, Karakoram Himalaya, Pakistan. In: Evans, S. G., DeGraff, J. V., eds., Catastrophic Landslides: Effects, Occurrence and Mechanisms. The Geological Society of America. Press, USA, 345-378. 
						
					 | 
			
| 
					 Hewitt, K., 2006. Rock Avalanches with Complex Run out and Emplacement, Karakoram Himalaya, Inner Asia. Landslides from Massive Rock Slope Failure. In: Evans, S. G., Scarascia, M. G., Strom, A., et al., eds., Nato Science Series Ⅳ. Springer, Dordrecht, 521-550. 
						
					 | 
			
| 
					 Hewitt, K., Clague, J. J., Orwin, J. F., 2008. Legacies of Catastrophic Rock Slope Failures in Mountain Landscapes. Earth-Science Reviews, 87(1-2): 1-38.  https://doi.org/10.1016/j.earscirev.2007.10.002 
						
					 | 
			
| 
					 Hou, Z. Q., Zheng, Y. C., Lu, Z. W., et al., 2020. Growth, Thickening and Evolution of the Thickened Crust of the Tibet Plateau. Acta Geologica Sinica, 94(10): 2797-2815(in Chinese with English abstract). 
						
					 | 
			
| 
					 Hsü, K. J., 1975. Catastrophic Debris Streams (Sturzstroms) Generated by Rockfalls. Geological Society of America Bulletin, 86(1): 129. https://doi.org/10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2 doi:  10.1130/0016-7606(1975)86<129:CDSSGB>2.0.CO;2 
						
					 | 
			
| 
					 Hu, W., Huang, R. Q., McSaveney, M., et al., 2018. Mineral Changes Quantify Frictional Heating during a Large Low-Friction Landslide. Geology, 46(3): 223-226.  https://doi.org/10.1130/g39662.1 
						
					 | 
			
| 
					 Hu, W., Xu, Q., McSaveney, M., et al., 2022. Fluid-Like Behavior of Crushed Rock Flows. Journal of Geophysical Research: Earth Surface, 127(10): e2021JF006523.  https://doi.org/10.1029/2021JF006523 
						
					 | 
			
| 
					 Hugonnet, R., McNabb, R., Berthier, E., et al., 2021. Accelerated Global Glacier Mass Loss in the Early Twenty-First Century. Nature, 592(7856): 726-731.  https://doi.org/10.1038/s41586-021-03436-z 
						
					 | 
			
| 
					 Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2): 167-194.  https://doi.org/10.1007/s10346-013-0436-y 
						
					 | 
			
| 
					 Hutchinson, J. N., 2006. Massive Rock Slope Failure: Perspectives and Retrospectives on State-of-the-Art. In: Evans, S. G., Mugnozza, G. S., Strom, A., et al., eds., Landslides from Massive Rock Slope Failure. Springer Netherlands, Dordrecht, 619-662.  
						
					 | 
			
| 
					 Hutchinson, J. N., Bhandari, R. K., 1971. Undrained Loading, a Fundamental Mechanism of Mudflows and Other Mass Movements. Géotechnique, 21(4): 353-358.  https://doi.org/10.1680/geot.1971.21.4.353 
						
					 | 
			
| 
					 Iverson, R. M., 2012. Elementary Theory of Bed-Sediment Entrainment by Debris Flows and Avalanches. Journal of Geophysical Research: Earth Surface, 117(F3): F03006.  https://doi.org/10.1029/2011JF002189 
						
					 | 
			
| 
					 Iverson, R. M., 2015. Scaling and Design of Landslide and Debris-Flow Experiments. Geomorphology, 244: 9-20.  https://doi.org/10.1016/j.geomorph.2015.02.033 
						
					 | 
			
| 
					 Iverson, R. M., 2016. Comment on "The Reduction of Friction in Long-Runout Landslides as an Emergent Phenomenon" by Brandon C. Johnson et al. Journal of Geophysical Research: Earth Surface, 121(11): 2238-2242.  https://doi.org/10.1002/2016JF003979 
						
					 | 
			
| 
					 Iverson, R. M., George, D. L., 2016. Modelling Landslide Liquefaction, Mobility Bifurcation and the Dynamics of the 2014 Oso Disaster. Géotechnique, 66(3): 175-187.  https://doi.org/10.1680/jgeot.15.lm.004 
						
					 | 
			
| 
					 Iverson, R. M., Reid, M. E., Logan, M., et al., 2011. Positive Feedback and Momentum Growth during Debris-Flow Entrainment of Wet Bed Sediment. Nature Geoscience, 4(2): 116-121.  https://doi.org/10.1038/ngeo1040 
						
					 | 
			
| 
					 Jerolmack, D. J., Daniels, K. E., 2019. Viewing Earth's Surface as a Soft-Matter Landscape. Nature Reviews Physics, 1(12): 716-730.  https://doi.org/10.1038/s42254-019-0111-x 
						
					 | 
			
| 
					 Johnson, B. C., Campbell, C. S., Melosh, H. J., 2016. The Reduction of Friction in Long Runout Landslides as an Emergent Phenomenon. Journal of Geophysical Research: Earth Surface, 121(5): 881-889.  https://doi.org/10.1002/2015JF003751 
						
					 | 
			
| 
					 Johnson, B., 1978. Blackhawk Landslide, California, U. S. A. In: Voight, B., ed., Rockslides and Avalanches, 1- Natural Phenomena. Elsevier, Amsterdam, 481-504.  
						
					 | 
			
| 
					 Johnson, C. G., Kokelaar, B. P., Iverson, R. M., et al., 2012. Grain-Size Segregation and Levee Formation in Geophysical Mass Flows. Journal of Geophysical Research: Earth Surface, 117(F1): F01032.  https://doi.org/10.1029/2011JF002185 
						
					 | 
			
| 
					 Kobayashi, Y., 1994. Effect of Basal Guided Waves on Landslides. Pure and Applied Geophysics, 142(2): 329-346.  https://doi.org/10.1007/BF00879308 
						
					 | 
			
| 
					 Kokelaar, B. P., Graham, R. L., Gray, J. M. N. T., et al., 2014. Fine-Grained Linings of Leveed Channels Facilitate Runout of Granular Flows. Earth and Planetary Science Letters, 385: 172-180.  https://doi.org/10.1016/j.epsl.2013.10.043 
						
					 | 
			
| 
					 Legros, F., 2002. The Mobility of Long-Runout Landslides. Engineering Geology, 63(3-4): 301-331.  https://doi.org/10.1016/S0013-7952(01)00090-4 
						
					 | 
			
| 
					 Li, J. J., Fang, X. M., 1998. Study on Uplift of Qinghai-Tibet Plateau and Environmental Change. Chinese Science Bulletin, 43(15): 1569-1574(in Chinese). doi:  10.1360/csb1998-43-15-1569 
						
					 | 
			
| 
					 Li, K., Cheng, Q. G., Lin, Q. W., et al., 2022. State of the Art on Rock Avalanche Dynamics from Granular Flow Mechanics. Earth Science, 47(3): 893-912(in Chinese with English abstract). 
						
					 | 
			
| 
					 Li, K., Wang, Y. F., Cheng, Q. G., et al., 2022. Insight into Granular Flow Dynamics Relying on Basal Stress Measurements: From Experimental Flume Tests. Journal of Geophysical Research: Solid Earth, 127(3): e2021JB022905.  https://doi.org/10.1029/2021JB022905 
						
					 | 
			
| 
					 Li, K., Wang, Y. F., Cheng, Q. G., et al., 2023. Basal Stress Fluctuation: Reply to Comment by Cagnoli on "Slope-Break Collisions: Comment on 'Insight into Granular Flow Dynamics Relying on Basal Stress Measurements: From Experimental Flume Tests' by K. Li et al. ". Journal of Geophysical Research: Solid Earth, 128(2): e2022JB025804.  
						
					 | 
			
| 
					 Li, K., Wang, Y. F., Lin, Q. W., et al., 2021. Experiments on Granular Flow Behavior and Deposit Characteristics: Implications for Rock Avalanche Kinematics. Landslides, 18(5): 1779-1799.  https://doi.org/10.1007/s10346-020-01607-z 
						
					 | 
			
| 
					 Li, L. P., Lan, H. X., 2022. Complexities of Landslide Moving Path: A Review and Perspective. Earth Science, 47(12): 4663-4680(in Chinese with English abstract). 
						
					 | 
			
| 
					 Li, T. D., 1995. The Uplifting Process and Mechanism of the Qinhai-Tibet Plateau. Acta Geoscientica Sinica, 16(1): 1-9(in Chinese with English abstract). 
						
					 | 
			
| 
					 Li, T. H., Cheng, Q. G., Wang, Y. F., et al., 2022. Review on Landquakes Related to Rock Avalanche Kinematics. Journal of Engineering Geology, 30(6): 1929-1946(in Chinese with English abstract). 
						
					 | 
			
| 
					 Li, T. H., Wang, Y. F., Cheng, Q. G., et al., 2024. Experiments on Landquakes Generated by Free-Falling Granular Masses: Implications for Rockfall Impact Dynamics. Earth and Space Science, 11(6): e2023EA003402.  https://doi.org/10.1029/2023EA003402 
						
					 | 
			
| 
					 Li, T. H., Wang, Y. F., Cheng, Q. G., et al., 2025. Basal Stresses and Seismic Signals Generated by Laboratory Granular Flows: The Role of Basal Particle Agitation in Flow Mobility. Journal of Geophysical Research: Earth Surface, 130(3): e2024JF008015.  https://doi.org/10.1029/2024JF008015 
						
					 | 
			
| 
					 Liang, X. F, Chen, L., Tian, X. B., et al., 2023. Uplifting Mechanism of the Tibetan Plateau Inferred from the Characteristics of Crustal Structures. Scientia Sinica (Terrae), 53(12): 2808-2829(in Chinese). doi:  10.1360/SSTe-2023-0027 
						
					 | 
			
| 
					 Lin, Q. W., Cheng, Q. G., Li, K., et al., 2020. Contributions of Rock Mass Structure to the Emplacement of Fragmenting Rockfalls and Rockslides: Insights from Laboratory Experiments. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB019296.  https://doi.org/10.1029/2019JB019296 
						
					 | 
			
| 
					 Lin, Q. W., Cheng, Q. G., Li, K., et al., 2023. Review on Fragmentation-Related Dynamics of Rock Avalanches. Journal of Engineering Geology, 31(3): 815-829(in Chinese with English abstract). 
						
					 | 
			
| 
					 Lin, Q. W., Cheng, Q. G., Xie, Y., et al., 2021. Simulation of the Fragmentation and Propagation of Jointed Rock Masses in Rockslides: DEM Modeling and Physical Experimental Verification. Landslides, 18(3): 993-1009.  https://doi.org/10.1007/s10346-020-01542-z 
						
					 | 
			
| 
					 Lin, Q. W., Wang, Y. F., Cheng, Q. G., et al., 2024. The Alasu Rock Avalanche in the Tianshan Mountains, China: Fragmentation, Landforms, and Kinematics. Landslides, 21(3): 439-459.  https://doi.org/10.1007/s10346-023-02167-8 
						
					 | 
			
| 
					 Lin, Q. W., Wang, Y. F., Xie, Y., et al., 2022. Multiscale Effects Caused by the Fracturing and Fragmentation of Rock Blocks during Rock Mass Movement: Implications for Rock Avalanche Propagation. Natural Hazards and Earth System Sciences, 22(2): 639-657.  https://doi.org/10.5194/nhess-22-639-2022 
						
					 | 
			
| 
					 Longchamp, C., Abellan, A., Jaboyedoff, M., et al., 2016. 3-D Models and Structural Analysis of Rock Avalanches: The Study of the Deformation Process to Better Understand the Propagation Mechanism. Earth Surface Dynamics, 4(3): 743-755.  https://doi.org/10.5194/esurf-4-743-2016 
						
					 | 
			
| 
					 McSaveney, M. J., Davies, T. R. H., 2009. Surface Energy is not One of the Energy Losses in Rock Comminution. Engineering Geology, 109(1-2): 109-113.  https://doi.org/10.1016/j.enggeo.2008.11.001 
						
					 | 
			
| 
					 Melosh, H. J., 1979. Acoustic Fluidization: A New Geologic Process? Journal of Geophysical Research: Solid Earth, 84(B13): 7513-7520.  https://doi.org/10.1029/JB084iB13p07513 
						
					 | 
			
| 
					 Miao, T. D., Liu, Z. Y., Niu, Y. H., et al., 2001. A Sliding Block Model for the Runout Prediction of High-Speed Landslides. Canadian Geotechnical Journal, 38(2): 217-226.  https://doi.org/10.1139/t00-092 
						
					 | 
			
| 
					 Mitchell, T. M., Smith, S. A. F., Anders, M. H., et al., 2015. Catastrophic Emplacement of Giant Landslides Aided by Thermal Decomposition: Heart Mountain, Wyoming. Earth and Planetary Science Letters, 411: 199-207.  https://doi.org/10.1016/j.epsl.2014.10.051 
						
					 | 
			
| 
					 Neuendorf, K. K. E., Mehl Jr., J. P., Jackson, J. A., 2011. Glossary of Geology. American Geosciences Institute, Virginia. 
						
					 | 
			
| 
					 Pan, G. T., Liu, Y. P., Zheng, L. L., et al., 2013. The Collison Tectonic and Effection on Qinghai-Tibet Plateau. Guangdong Science & Technology Press, Guangzhou(in Chinese). 
						
					 | 
			
| 
					 Pei, Y. Q., Qiu, H. J., Zhu, Y. R., et al., 2023. Elevation Dependence of Landslide Activity Induced by Climate Change in the Eastern Pamirs. Landslides, 20(6): 1115-1133.  https://doi.org/10.1007/s10346-023-02030-w 
						
					 | 
			
| 
					 Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389(in Chinese with English abstract). 
						
					 | 
			
| 
					 Peng, J. B., Ma, R. Y., Lu, Q. Z., et al., 2004. Geological Hazards Effects of Uplift of Qinghai-Tibet Plateau. Advance in Earth Sciences, 19(3): 457-466(in Chinese with English abstract). 
						
					 | 
			
| 
					 Petley, D. N., 2013. Characterizing Giant Landslides. Science, 339(6126): 1395-1396.  https://doi.org/10.1126/science.1236165 
						
					 | 
			
| 
					 Pollet, N., Schneider, J. L. M., 2004. Dynamic Disintegration Processes Accompanying Transport of the Holocene Flims Sturzstrom (Swiss Alps). Earth and Planetary Science Letters, 221(1-4): 433-448.  https://doi.org/10.1016/S0012-821X(04)00071-8 
						
					 | 
			
| 
					 Pudasaini, S. P., Krautblatter, M., 2021. The Mechanics of Landslide Mobility with Erosion. Nature Communications, 12: 6793.  https://doi.org/10.1038/s41467-021-26959-5 
						
					 | 
			
| 
					 Qi, T. J., Meng, X. M., Zhao, Y., et al., 2025. Ancient Very Large and Giant Landslides on the Eastern Margin of the Qinghai-Tibet Plateau, China. Engineering Geology, 346: 107889.  https://doi.org/10.1016/j.enggeo.2024.107889 
						
					 | 
			
| 
					 Rocha, F. M., Johnson, C. G., Gray, J. M. N. T., 2019. Self-Channelisation and Levee Formation in Monodisperse Granular Flows. Journal of Fluid Mechanics, 876: 591-641.  https://doi.org/10.1017/jfm.2019.518 
						
					 | 
			
| 
					 Roverato, M., Cronin, S., Procter, J., et al., 2015. Textural Features as Indicators of Debris Avalanche Transport and Emplacement, Taranaki Volcano. Geological Society of America Bulletin, 127(1-2): 3-18.  https://doi.org/10.1130/b30946.1 
						
					 | 
			
| 
					 Sassa, K., 1988. Geotechnical Model for the Motion of Landslides. In: Proceedings of the 5th International Symposium on Landsides. Balkema, Rotterdam, 37-56. 
						
					 | 
			
| 
					 Savage, S. B., Hutter, K., 1989. The Motion of a Finite Mass of Granular Material down a Rough Incline. Journal of Fluid Mechanics, 199: 177-215.  https://doi.org/10.1017/S0022112089000340 
						
					 | 
			
| 
					 Savage, S. B., Lun, C. K. K., 1988. Particle Size Segregation in Inclined Chute Flow of Dry Cohesionless Granular Solids. Journal of Fluid Mechanics, 189: 311-335.  https://doi.org/10.1017/S002211208800103X 
						
					 | 
			
| 
					 Seed, H. B., 1968. The Fourth Terzaghi Lecture: Landslides during Earthquakes Due to Liquefaction. Journal of the Soil Mechanics and Foundations Division, 94(5): 1053-1122.  https://doi.org/10.1061/jsfeaq.0001182 
						
					 | 
			
| 
					 Shea, T., van Wyk de Vries, B., 2008. Structural Analysis and Analogue Modeling of the Kinematics and Dynamics of Rockslide Avalanches. Geosphere, 4(4): 657-686.  https://doi.org/10.1130/GES00131.1 
						
					 | 
			
| 
					 Shi, A. W., Cheng, Q. G., Wang, Y. F., et al., 2024. State of the Art on Fluidized Geomorphology of Rock Avalanche. Journal of Engineering Geology, 32(3): 978-995(in Chinese with English abstract). 
						
					 | 
			
| 
					 Shi, A. W., Wang, Y. F., Cheng, Q. G., et al., 2023. The Largest Rock Avalanche in China at Iymek, Eastern Pamir, and Its Spectacular Emplacement Landscape. Geomorphology, 421: 108521.  https://doi.org/10.1016/j.geomorph.2022.108521 
						
					 | 
			
| 
					 Shi, A. W., Wang, Y. F., Cheng, Q. G., et al., 2024a. Distinctive Shear Zones Demonstrate Pervasive Laminar Cataclastic Flow Throughout the Gigantic Iymek Rock Avalanche. Geomorphology, 452: 109109.  https://doi.org/10.1016/j.geomorph.2024.109109 
						
					 | 
			
| 
					 Shi, A. W., Wang, Y. F., Cheng, Q. G., et al., 2024b. Observations of Avalanche-Substrate Interactions in the Iymek Rock Avalanche deposit: A Possible Causative Mechanism. Engineering Geology, 341: 107710.  https://doi.org/10.1016/j.enggeo.2024.107710 
						
					 | 
			
| 
					 Shreve, R. L., 1959. Geology and Mechanics of the Blackhawk Rockslide, Lucerne Valley, California (Dissertation). California Institute of Technology, California. 
						
					 | 
			
| 
					 Shreve, R. L., 1966. Sherman Landslide, Alaska. Science, 154(3757): 1639-1643.  https://doi.org/10.1126/science.154.3757.1639 
						
					 | 
			
| 
					 Shreve, R. L., 1968a. The Blackhawk Landslide. Geological Society of America Bulletin, Special Paper, 108: 1-47. 
						
					 | 
			
| 
					 Shreve, R. L., 1968b. Leakage and Fluidization in Air-Layer Lubricated Avalanches. Geological Society of America Bulletin, 79(5): 653-658.  https://doi.org/10.1130/0016-7606(1968)79[653:LAFIAL]2.0.CO;2 
						
					 | 
			
| 
					 Shreve, R. L., 1987. Blackhawk Landslide, Southwestern San Bernardino County, California. In: Mason, L. H., ed., Cordilleran Section of the Geological Society of America. Geological Society of America, California, 109-114.  
						
					 | 
			
| 
					 Shugar, D. H., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373(6552): 300-306.  https://doi.org/10.1126/science.abh4455 
						
					 | 
			
| 
					 Stanley, T. A., Soobitsky, R. B., Amatya, P. M., et al., 2024. Landslide Hazard is Projected to Increase across High Mountain Asia. Earth's Future, 12(10): e2023EF004325.  https://doi.org/10.1029/2023EF004325 
						
					 | 
			
| 
					 Staron, L., Lajeunesse, E., 2009. Understanding How Volume Affects the Mobility of Dry Debris Flows. Geophysical Research Letters, 36(12): L12402.  https://doi.org/10.1029/2009GL038229 
						
					 | 
			
| 
					 Strom, A., Li, L., Lan, H. X., 2019. Rock Avalanche Mobility: Optimal Characterization and the Effects of Confinement. Landslides, 16(8): 1437-1452.  https://doi.org/10.1007/s10346-019-01181-z 
						
					 | 
			
| 
					 Strom, A. L., 1994. Mechanisms of Stratification and Abnormal Crushing of Rockslide Deposits. In: Oliveira, R., ed., 7th International Association for Engineering Geology and the Environment (IAEG) Congress. Balkema, Lisbon, Portugal, 1287-1295. 
						
					 | 
			
| 
					 Strom, A. L., 2018. Rockslides and Rock Avalanches of Central Asia. Elsevier, Amsterdam. 
						
					 | 
			
| 
					 Tahmasebi, P., 2023. A State-of-the-Art Review of Experimental and Computational Studies of Granular Materials: Properties, Advances, Challenges, and Future Directions. Progress in Materials Science, 138: 101157.  https://doi.org/10.1016/j.pmatsci.2023.101157 
						
					 | 
			
| 
					 Tang, H. M., 2025. Mechanism of the Coevolution of Landslides and River Valleys in the Three Gorges Reservoir Area. Chinese Science Bulletin, 70(21): 3505-3515(in Chinese with English abstract). doi:  10.1360/TB-2024-1225 
						
					 | 
			
| 
					 Tang, H. M., Li, C. D., Gong, W. P., et al., 2022. Fundamental Attribute and Research Approach of Landslide Evolution. Earth Science, 47(12): 4596-4608(in Chinese with English abstract). 
						
					 | 
			
| 
					 Teng, J. W., Zhang, Z. J., Zhang, B. M., et al., 1997. Environmental Change and the Uplift of Tibetan Plateau. Earth Science Frontiers, 4(S1): 247-254(in Chinese with English abstract). 
						
					 | 
			
| 
					 The Second Tibetan Plateau Scientific Expedition and Research, 2000. Geological Evolution of Karakorum Mountain-Kunlun Mountain Area. Science Press, Beijing(in Chinese). 
						
					 | 
			
| 
					 Tian, H. R., 2023. Study on Accumulation Characteristics of High-Speed Remote Landslide Based on UAV Photogrammetry (Dissertation). Southwest Jiaotong University, Chengdu(in Chinese with English abstract). 
						
					 | 
			
| 
					 Voigtländer, A., Houssais, M., Bacik, K. A., et al., 2024. Soft Matter Physics of the Ground beneath Our Feet. Soft Matter, 20(30): 5859-5888.  https://doi.org/10.1039/D4SM00391H 
						
					 | 
			
| 
					 Wang, C. S., Ding, X. L., 1998. The New Researching Progress of Tibet Plateau Uplift. Advances in Earth Science, 13(6): 526-532(in Chinese with English abstract). 
						
					 | 
			
| 
					 Wang, G. C., Cao, K., Zhang, K. X., et al., 2011. Temporal and Spatial Pattern of Cenozoic Tectonic Uplift in Qinghai-Tibet Plateau. Scientia Sinica (Terrae), 41(3): 332-349(in Chinese). doi:  10.1360/zd-2011-41-3-332 
						
					 | 
			
| 
					 Wang, Y. F., Chen, P. H., Qian, J. Z., et al., 2025. Geomorphic and Geologic Controls on Large-Scale Landslides in the Himalayan Region of China. Landslides, 22(5): 1725-1741.  https://doi.org/10.1007/s10346-024-02447-x 
						
					 | 
			
| 
					 Wang, Y. F., Dong, J. J., Cheng, Q. G., 2018a. Normal Stress-Dependent Frictional Weakening of Large Rock Avalanche Basal Facies: Implications for the Rock Avalanche Volume Effect. Journal of Geophysical Research: Solid Earth, 123(4): 3270-3282.  https://doi.org/10.1002/2018JB015602 
						
					 | 
			
| 
					 Wang, Y. F., Cheng, Q. G., Lin, Q. W., et al., 2018b. Insights into the Kinematics and Dynamics of the Luanshibao Rock Avalanche (Tibetan Plateau, China) Based on Its Complex Surface Landforms. Geomorphology, 317: 170-183.  https://doi.org/10.1016/j.geomorph.2018.05.025 
						
					 | 
			
| 
					 Wang, Y. F., Cheng, Q. G., Lin, Q. W., et al., 2023. Rock Avalanches in the Tibetan Plateau of China. In: Alcántara-Ayala, I., et al., eds., Progress in Landslide Research and Technology, Volume 2 Issue 2, 2023. Cham: Springer Nature Switzerland: 55-111.  
						
					 | 
			
| 
					 Wang, Y. F., Cheng, Q. G., Shi, A. W., et al., 2019a. Characteristics and Transport Mechanism of the Nyixoi Chongco Rock Avalanche on the Tibetan Plateau, China. Geomorphology, 343: 92-105.  https://doi.org/10.1016/j.geomorph.2019.07.002 
						
					 | 
			
| 
					 Wang, Y. F., Cheng, Q. G., Shi, A. W., et al., 2019b. Sedimentary Deformation Structures in the Nyixoi Chongco Rock Avalanche: Implications on Rock Avalanche Transport Mechanisms. Landslides, 16(3): 523-532.  https://doi.org/10.1007/s10346-018-1117-7 
						
					 | 
			
| 
					 Wang, Y. F., Cheng, Q. G., Yuan, Y. Q., et al., 2020. Emplacement Mechanisms of the Tagarma Rock Avalanche on the Pamir-Western Himalayan Syntaxis of the Tibetan Plateau, China. Landslides, 17(3): 527-542.  https://doi.org/10.1007/s10346-019-01298-1 
						
					 | 
			
| 
					 Wang, Y. F., Cheng, Q. G., Zhu, Q., 2015. Surface Microscopic Examination of Quartz Grains from Rock Avalanche Basal Facies. Canadian Geotechnical Journal, 52(2): 167-181.  https://doi.org/10.1139/cgj-2013-0284 
						
					 | 
			
| 
					 Wang, Y. F., Dong, J. J., Cheng, Q. G., 2017. Velocity-Dependent Frictional Weakening of Large Rock Avalanche Basal Facies: Implications for Rock Avalanche Hypermobility? Journal of Geophysical Research: Solid Earth, 122(3): 1648-1676.  https://doi.org/10.1002/2016JB013624 
						
					 | 
			
| 
					 Wang, Y. F., Lin, Q. W., Li, K., et al., 2021. Review on Rock Avalanche Dynamics. Journal of Earth Sciences and Environment, 43(1): 164-181(in Chinese with English abstract). 
						
					 | 
			
| 
					 Wu, Z. H., 2024. The Earthquake-Controlling Process of Continental Collision-Extrusion Active Tectonic System around the Qinghai-Tibet Plateau: A Case Study of Strong Earthquakes since 1990. Journal of Geomechanics, 30(2): 189-205(in Chinese with English abstract). 
						
					 | 
			
| 
					 Xu, Z. Q., Li, G. W., Zhang, Z. M., et al., 2022. Review Ten Key Geological Issues of the Tibetan Plateau—Commemoration of the Centennial Anniversary of Acta Geologica Sinica. Acta Geologica Sinica, 96(1): 65-94(in Chinese with English abstract). 
						
					 | 
			
| 
					 Xu, Z. Q., Li, H. B., Yang, J. S., 2006. An Orogenic Plateau—The Orogenic Collage and Orogenic Types of the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4): 1-17(in Chinese with English abstract). 
						
					 | 
			
| 
					 Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2024. Himalayan Orogeny Dynamics. Geological Publishing House, Beijing (in Chinese). 
						
					 | 
			
| 
					 Yao, T. D., Piao, S. L., Shen, M. G., et al., 2017. Chained Impacts on Modern Environment of Interaction between Westerlies and Indian Monsoon on Tibetan Plateau. Bulletin of Chinese Academy of Sciences, 32(9): 976-984(in Chinese with English abstract). 
						
					 | 
			
| 
					 Yao, T. D., Yu, W. S., Wu, G. J., et al., 2019. Glacier Anomalies and Relevant Disaster Risks on the Tibetan Plateau and Surroundings. Chinese Science Bulletin, 64(27): 2770-2782(in Chinese). doi:  10.1360/TB-2019-0246 
						
					 | 
			
| 
					 Yin, Y. P., Zhu, S. N., Li, B., 2021. High-Level Remote Geological Disasters in Qinghai-Tibet Plateau. Science Press, Beijing (in Chinese). 
						
					 | 
			
| 
					 Yuan, D. Y., Feng, J. G., Zheng, W. J., et al., 2020. Migration of Large Earthquakes in Tibetan Block Area and Disscussion on Major Active Region in the Future. Seismology and Geology, 42(2): 297-315(in Chinese with English abstract). 
						
					 | 
			
| 
					 Zeng, Q. L., Zhang, L. Q., Davies, T., et al., 2019. Morphology and Inner Structure of Luanshibao Rock Avalanche in Litang, China and Its Implications for Long-Runout Mechanisms. Engineering Geology, 260: 105216.  https://doi.org/10.1016/j.enggeo.2019.105216 
						
					 | 
			
| 
					 Zhang, T. G., Wang, W. C., An, B. S., et al., 2023. Enhanced Glacial Lake Activity Threatens Numerous Communities and Infrastructure in the Third Pole. Nature Communications, 14: 8250.  https://doi.org/10.1038/s41467-023-44123-z 
						
					 | 
			
| 
					 Zhang, Y. S., Du, G. L., Guo, C. B., et al., 2021. Research on Typical Geomechanical Model of High-Position Landslides on the Sichuan-Tibet Traffic Corridor. Acta Geologica Sinica, 95(3): 605-617(in Chinese with English abstract). 
						
					 | 
			
| 
					 Zhao, B., Su, L. J., Wang, Y. S., et al., 2023. Insights into Some Large-Scale Landslides in Southeastern Margin of Qinghai-Tibet Plateau. Journal of Rock Mechanics and Geotechnical Engineering, 15(8): 1960-1985.  https://doi.org/10.1016/j.jrmge.2022.09.005 
						
					 | 
			
| 
					 Zhao, B., Zhang, Q., Wang, L. J., et al., 2025. Preliminary Analysis of Failure Characteristics of the 2025 Junlian Rock Avalanche, China. Landslides, 22(8): 2593-2605.  https://doi.org/10.1007/s10346-025-02556-1 
						
					 | 
			
| 
					 Zhong, D. L., Ding, L., 1996. Discussion on Uplift Process and Mechanism of Qinghai-Tibet Plateau. Science in China (Ser. D), 26(4): 289-295(in Chinese). 
						
					 | 
			
| 
					 Zhong, Y., Allen, S. K., Zheng, G. X., et al., 2024. Large Rock and Ice Avalanches Frequently Produce Cascading Processes in High Mountain Asia. Geomorphology, 449: 109048.  https://doi.org/10.1016/j.geomorph.2023.109048 
						
					 | 
			
| 
					 Zhu, L., Tang, X., He, S. M., et al., 2025. Geomorphology and Sedimentology of the Nyixoi Chongco Rock Avalanche and Implications for Emplacement Mechanisms. Journal of Geophysical Research: Earth Surface, 130(3): e2024JF007666.  https://doi.org/10.1029/2024JF007666 
						
					 | 
			
| 
					 Zou, Q., Guo, X. J., Luo, Y., et al., 2021. Spatial Pattern and Response of Landslide and Debris Flow Risks in China-Pakistan Economic Corridor. Bulletin of Chinese Academy of Sciences, 36(2): 160-169(in Chinese with English abstract). 
						
					 | 
			
| 
					 陈德亮, 徐柏青, 姚檀栋, 等, 2015. 青藏高原环境变化科学评估: 过去、现在与未来. 科学通报, 60(32): 3025-3035, 1-2. 
					
					 | 
			
| 
					 成都地质学院工程地质研究室, 1989. 龙羊峡水电站重大工程地质问题研究. 成都: 成都科技大学出版社, 52-116. 
					
					 | 
			
| 
					 程谦恭, 彭建兵, 胡广韬, 等, 1999. 高速岩质滑坡动力学. 成都: 西南交通大学出版社. 
					
					 | 
			
| 
					 程谦恭, 王玉峰, 林棋文, 等, 2024. 喜马拉雅造山带高速远程滑坡动力学机理研究的思考. 地质学报, 98(11): 3238-3254. 
					
					 | 
			
| 
					 程谦恭, 张倬元, 黄润秋, 2007. 高速远程崩滑动力学的研究现状及发展趋势. 山地学报, 25(1): 72-84. 
					
					 | 
			
| 
					 崔鹏, 陈容, 向灵芝, 等, 2014. 气候变暖背景下青藏高原山地灾害及其风险分析. 气候变化研究进展, 10(2): 103-109. 
					
					 | 
			
| 
					 邓起东, 程绍平, 马冀, 等, 2014. 青藏高原地震活动特征及当前地震活动形势. 地球物理学报, 57(7): 2025-2042. 
					
					 | 
			
| 
					 冯止依, 程谦恭, 王玉峰, 等, 2023. 高速远程滑坡摩擦生热减阻机理研究现状及展望. 工程地质学报, 31(3): 999-1017. 
					
					 | 
			
| 
					 韩旭东, 杨秀元, 孙秀娟, 等, 2024. 高位堆积体远程滑坡动力侵蚀过程量化预测模型. 岩土力学, 45(4): 1190-1200. 
					
					 | 
			
| 
					 何可, 王玉峰, 程谦恭, 等, 2024. 高速远程滑坡底部裹挟机理研究现状及展望. 工程地质学报, 32(3): 904-917. 
					
					 | 
			
| 
					 侯增谦, 郑远川, 卢占武, 等, 2020. 青藏高原巨厚地壳: 生长、加厚与演化. 地质学报, 94(10): 2797-2815. 
					
					 | 
			
| 
					 李吉均, 方小敏, 1998. 青藏高原隆起与环境变化研究. 科学通报, 43(15): 1569-1574. 
					
					 | 
			
| 
					 李坤, 程谦恭, 林棋文, 等, 2022. 高速远程滑坡颗粒流研究进展. 地球科学, 47(3): 893-912. doi:  10.3799/dqkx.2021.169 
					
					 | 
			
| 
					 李郎平, 兰恒星, 2022. 滑坡运动路径复杂度研究: 综述与展望. 地球科学, 47(12): 4663-4680. doi:  10.3799/dqkx.2021.224 
					
					 | 
			
| 
					 李廷栋, 1995. 青藏高原隆升的过程和机制. 地球学报, 16(1): 1-9. 
					
					 | 
			
| 
					 李天话, 程谦恭, 王玉峰, 等, 2022. 高速远程滑坡滑震研究述评. 工程地质学报, 30(6): 1929-1946. 
					
					 | 
			
| 
					 梁晓峰, 陈凌, 田小波, 等, 2023. 青藏高原地壳结构特征指示的高原隆升机制. 中国科学: 地球科学, 53(12): 2808-2829. 
					
					 | 
			
| 
					 林棋文, 程谦恭, 李坤, 等, 2023. 高速远程滑坡碎屑化运动机理研究综述. 工程地质学报, 31(3): 815-829. 
					
					 | 
			
| 
					 潘桂棠, 刘宇平, 郑来林, 等, 2013. 青藏高原碰撞构造与效应. 广州: 广东科技出版社. 
					
					 | 
			
| 
					 彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389. 
					
					 | 
			
| 
					 彭建兵, 马润勇, 卢全中, 等, 2004. 青藏高原隆升的地质灾害效应. 地球科学进展, 19(3): 457-466. 
					
					 | 
			
| 
					 史安文, 程谦恭, 王玉峰, 等, 2024. 高速远程滑坡流态化地貌研究综述. 工程地质学报, 32(3): 978-995. 
					
					 | 
			
| 
					 唐辉明, 2025. 三峡库区滑坡与河谷协同演化机制. 科学通报, 70(21): 3505-3515. 
					
					 | 
			
| 
					 唐辉明, 李长冬, 龚文平, 等, 2022. 滑坡演化的基本属性与研究途径. 地球科学, 47(12): 4596-4608. doi:  10.3799/dqkx.2022.461 
					
					 | 
			
| 
					 滕吉文, 张中杰, 张秉铭, 等, 1997. 青藏高原的隆升与环境变化. 地学前缘, 4(增刊1): 247-254. 
					
					 | 
			
| 
					 田浩然, 2023. 基于无人机摄影测量的高速远程滑坡堆积特征研究(硕士学位论文). 成都: 西南交通大学. 
					
					 | 
			
| 
					 王成善, 丁学林, 1998. 青藏高原隆升研究新进展综述. 地球科学进展, 13(6): 526-532. 
					
					 | 
			
| 
					 王国灿, 曹凯, 张克信, 等, 2011. 青藏高原新生代构造隆升阶段的时空格局. 中国科学: 地球科学, 41(3): 332-349. 
					
					 | 
			
| 
					 王玉峰, 林棋文, 李坤, 等, 2021. 高速远程滑坡动力学研究进展. 地球科学与环境学报, 43(1): 164-181. 
					
					 | 
			
| 
					 吴中海, 2024. 青藏高原陆陆碰撞-挤出活动构造体系控震作用: 以1990年以来强震活动为例. 地质力学学报, 30(2): 189-205. 
					
					 | 
			
| 
					 许志琴, 李广伟, 张泽明, 等, 2022. 再探青藏高原十大关键地学科学问题: 《地质学报》百年华诞纪念. 地质学报, 96(1): 65-94. 
					
					 | 
			
| 
					 许志琴, 李海兵, 杨经绥, 2006. 造山的高原: 青藏高原巨型造山拼贴体和造山类型. 地学前缘, 13(4): 1-17. 
					
					 | 
			
| 
					 许志琴, 杨经绥, 李海兵等, 2024. 喜马拉雅造山动力学. 北京: 地质出版社. 
					
					 | 
			
| 
					 姚檀栋, 朴世龙, 沈妙根, 等, 2017. 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应. 中国科学院院刊, 32(9): 976-984. 
					
					 | 
			
| 
					 姚檀栋, 余武生, 邬光剑, 等, 2019. 青藏高原及周边地区近期冰川状态失常与灾变风险. 科学通报, 64(27): 2770-2782. 
					
					 | 
			
| 
					 殷跃平, 朱赛楠, 李滨, 等, 2021. 青藏高原高位远程地质灾害. 北京: 科学出版社. 
					
					 | 
			
| 
					 袁道阳, 冯建刚, 郑文俊, 等, 2020. 青藏地块区大地震迁移规律与未来主体活动区探讨. 地震地质, 42(2): 297-315. 
					
					 | 
			
| 
					 张永双, 杜国梁, 郭长宝, 等, 2021. 川藏交通廊道典型高位滑坡地质力学模式. 地质学报, 95(3): 605-617. 
					
					 | 
			
| 
					 中国科学院青藏高原综合科学考察队, 2000. 喀喇昆仑山-昆仑山地区地质演化. 北京: 科学出版社. 
					
					 | 
			
| 
					 钟大赉, 丁林, 1996. 青藏高原的隆起过程及其机制探讨. 中国科学(D辑: 地球科学), 26(4): 289-295. 
					
					 | 
			
| 
					 邹强, 郭晓军, 罗渝, 等, 2021. 中巴经济走廊滑坡泥石流灾害格局与风险应对. 中国科学院院刊, (362): 160-169. 
					
					 |