• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 12
    Dec.  2025
    Turn off MathJax
    Article Contents
    Jia Bao, Deng Sen, Xian Chenggang, Zuo Xuan, Yang Jinghui, Gao Zhiye, Zhong Shibo, Zhang Dangzheng, Wu Nan, 2025. Shale Oil Mobility Based on Microscopic Wetting Properties of Mineral Components. Earth Science, 50(12): 4671-4684. doi: 10.3799/dqkx.2025.211
    Citation: Jia Bao, Deng Sen, Xian Chenggang, Zuo Xuan, Yang Jinghui, Gao Zhiye, Zhong Shibo, Zhang Dangzheng, Wu Nan, 2025. Shale Oil Mobility Based on Microscopic Wetting Properties of Mineral Components. Earth Science, 50(12): 4671-4684. doi: 10.3799/dqkx.2025.211

    Shale Oil Mobility Based on Microscopic Wetting Properties of Mineral Components

    doi: 10.3799/dqkx.2025.211
    • Received Date: 2025-07-04
    • Publish Date: 2025-12-25
    • As an important unconventional energy resource, the efficient development of shale oil is of great significance for ensuring energy security. Shale reservoirs exhibit characteristics of low porosity and permeability, complex pore structures, and diverse mineral compositions, resulting in extremely complex wettability characteristics. Wettability, as a key parameter controlling oil phase occurrence and flow, directly affects shale oil development efficiency. Traditional wettability studies mainly rely on macroscopic contact angle measurements, which struggle to accurately reveal wetting behavior in nanoscale pores and its control mechanisms on oil phase mobility. This study aims to establish a multi-scale wettability characterization method for shale reservoirs and reveal the intrinsic relationships among wettability characteristics, pore structure, and oil phase mobility. Based on Gulong shale samples, macro- and microscopic contact angle measurements were employed to characterize multi-scale wettability features, nuclear magnetic resonance technology was used to independently evaluate oil phase mobility in different-scale pores, and systematic correlation analysis was conducted to explore the control mechanisms of wettability on mobility. The study found that although microscopic contact angles are systematically larger than macroscopic values, the measurement trends from both methods are highly consistent, validating the reliability of cross-scale characterization. Different from previous single-scale understanding, this study reveals that pore structure and mobility require synergistic evaluation: optimal reservoirs may not be those with the highest proportion of large pores, but rather those with balanced pore structure (60%-80% large pore proportion) and high mobility in all pore sizes; additionally, mineral components exhibit differentiated control effects on multi-scale pore system recovery rates, with quartz content showing significant positive correlation with both large and small pore recovery rates, while different clay minerals demonstrate scale-dependent complex influences. Through correlation analysis, qualitative relationships between wettability and mobility, as well as quantitative evaluation models between mineral components and mobility, were established. This research provides new evaluation methods for shale oil reservoir sweet spot identification, emphasizing the need to comprehensively consider the synergistic effects of pore structure, wettability, and mobility.

       

    • loading
    • AlOmier, A., Cha, D., Ayirala, S., et al., 2024. Novel Fabrication of Mixed Wettability Micromodels for Pore-Scale Studies of Fluid-Rock Interactions. Lab on a Chip, 24(4): 882-895. https://doi.org/10.1039/D3LC01009k
      AlRatrout, A., Blunt, M. J., Bijeljic, B., 2018. Wettability in Complex Porous Materials, the Mixed-Wet State, and Its Relationship to Surface Roughness. PNAS, 115(36): 8901-8906. https://doi.org/10.1073/pnas.1803734115
      Arif, M., Zhang, Y. H., Iglauer, S., 2021. Shale Wettability: Data Sets, Challenges, and Outlook. Energy & Fuels, 35(4): 2965-2980. https://doi.org/10.1021/acs.energyfuels.0c04120
      Cassie, A. B. D., Baxter, S., 1944. Wettability of Porous Surfaces. Transactions of the Faraday Society, 40: 546-551. https://doi.org/10.1039/TF9444000546
      Donald, A. M., 2003. The Use of Environmental Scanning Electron Microscopy for Imaging Wet and Insulating Materials. Nature Materials, 2(8): 511-516. https://doi.org/10.1038/nmat898
      Drelich, J., Miller, J. D., Good, R. J., 1996. The Effect of Drop (Bubble) Size on Advancing and Receding Contact Angles for Heterogeneous and Rough Solid Surfaces as Observed with Sessile-Drop and Captive-Bubble Techniques. Journal of Colloid and Interface Science, 179(1): 37-50. https://doi.org/10.1006/jcis.1996.0186
      Hashemi, L., Glerum, W., Farajzadeh, R., et al., 2021. Contact Angle Measurement for Hydrogen/Brine/Sandstone System Using Captive-Bubble Method Relevant for Underground Hydrogen Storage. Advances in Water Resources, 154: 103964. https://doi.org/10.1016/j.advwatres.2021.103964
      He, W. Y., Liu, B., Zhang, J. Y., et al., 2023. Geological Characteristics and Key Scientific and Technological Problems of Gulong Shale Oil in Songliao Basin. Earth Science, 48(1): 49-62(in Chinese with English abstract).
      Huo, X., Sun, L. H., Li, B. W., et al., 2023. Influencing Factors and Research Progress of Shale Reservoir Wettability. Applied Chemical Industry, 52(12): 3354-3358, 3364(in Chinese with English abstract).
      Jasper, W. J., Rasipuram, S., 2017. Relationship between Contact Angle and Contact Line Radius for Micro to Atto Liter Size Oil Droplets. Journal of Molecular Liquids, 248: 920-926. https://doi.org/10.1016/j.molliq.2017.10.134
      Klauser, W., von Kleist-Retzow, F. T., Fatikow, S., 2022. Line Tension and Drop Size Dependence of Contact Angle at the Nanoscale. Nanomaterials, 12(3): 369. https://doi.org/10.3390/nano12030369
      Kou, H. B., Li, W. G., Zhang, X. Y., et al., 2019. Temperature-Dependent Coefficient of Surface Tension Prediction Model without Arbitrary Parameters. Fluid Phase Equilibria, 484: 53-59. https://doi.org/10.1016/j.fluid.2018.11.024
      Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061
      Moore, D. M., Reynolds, R. C., 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York.
      Ni, J. W., Cao, Z. Y., Pan, J., et al., 2024. Study on Construction of Micro-Nano Structure and Hydrophobicity of Ni-Ti Alloy Surface. Machine Tool & Hydraulics, 52(4): 44-49, 55(in Chinese with English abstract).
      Oosterlaken, B. M., de With, G., 2022. How Reliable are Surface Tension Data? Accounts of Materials Research, 3(9): 894-899. https://doi.org/10.1021/accountsmr.2c00129
      Ou, J. F., Amirfazli, A., Chini, S. F., 2025. The Sessile Drop Work of Adhesion Revisited. International Journal of Adhesion and Adhesives, 136: 103872. https://doi.org/10.1016/j.ijadhadh.2024.103872
      Ponomar, M., Krasnyuk, E., Butylskii, D., et al., 2022. Sessile Drop Method: Critical Analysis and Optimization for Measuring the Contact Angle of an Ion-Exchange Membrane Surface. Membranes, 12(8): 765. https://doi.org/10.3390/membranes12080765
      Rao, S. H., Deng, Y. J., Cai, W. J., et al., 2021. Study of the Contact Angle of Water Droplet on the Surface of Natural K-Feldspar with the Combination of Ar+ Polishing and Atomic Force Microscopy Scanning. Chemical Engineering Science, 241: 116705. https://doi.org/10.1016/j.ces.2021.116705
      Sarkar, S., Roy, T., Roy, A., et al., 2021. Revisiting the Supplementary Relationship of Dynamic Contact Angles Measured by Sessile-Droplet and Captive-Bubble Methods: Role of Surface Roughness. Journal of Colloid and Interface Science, 581: 690-697. https://doi.org/10.1016/j.jcis.2020.07.098
      Shi, K. Y., Chen, J. Q., Pang, X. Q., et al., 2024. A Review of Methods for Measuring the Wettability of Reservoir Minerals. Special Oil & Gas Reservoirs, 31(2): 1-9(in Chinese with English abstract).
      Sun, L. D., Jia, C. Z., Zhang, J. F., et al., 2024. Resource Potential of Gulong Shale Oil in the Key Areas of Songliao Basin. Acta Petrolei Sinica, 45(12): 1699-1714(in Chinese with English abstract).
      Sun, L. D., Liu, H., He, W. Y., et al., 2021. An Analysis of Major Scientific Problems and Research Paths of Gulong Shale Oil in Daqing Oilfield, NE China. Petroleum Exploration and Development, 48(3): 453-463(in Chinese with English abstract).
      Tzitzilis, D., Tsekeridis, C., Ntakoumis, I., et al., 2024. Transition of Liquid Drops on Microstructured Hygrophobic Surfaces from the Impaled Wenzel State to the "Fakir" Cassie-Baxter State. Langmuir, 40(26): 13422-13427. https://doi.org/10.1021/acs.langmuir.4c00618
      Wan, X. F., Liu, C. C., Zhao, D. F., et al., 2023. Hotspot and Development Trend of Shale Oil Research. Earth Science, 48(2): 793-813(in Chinese with English abstract).
      Wang, X. Y., Ke, P., Du, F., 2024. Research on the Dynamic Contact Angle Model for the Droplet Impact Process. Applied Mathematics and Mechanics, 45(9): 1133-1146(in Chinese with English abstract).
      Wang, Z. N., Luo, X. R., Liu, K. Y., et al., 2021. Impact of Chlorites on the Wettability of Tight Oil Sandstone Reservoirs in the Upper Triassic Yanchang Formation, Ordos Basin, China. Science China: Earth Sciences, 51(7): 1123-1134(in Chinese).
      Wei, Y. Q., Zhang, J., Jiang, B., et al., 2025. Tribological Properties for the Interaction of Point Contact Interface. Tribology, 46(2): 1-13(in Chinese with English abstract).
      Xiang, L. Y., Li, C. D., Li, H. L., et al., 2022. Surface Wettability of Ca-Montmorillonite Based on Molecular Dynamics Simulation. Science Technology and Engineering, 22(36): 15952-15958(in Chinese with English abstract).
      Yang, T., 2022. Research on Micromechanical Properties of Breccia Based on Atomic Force Microscope. Fly Ash Comprehensive Utilization, 36(3): 29-35, 93(in Chinese with English abstract).
      Yang, Y., Cai, M., Chu, Y. P., et al., 2024. Effect of Wettability on Fracturing Fluid Microscale Flow in Shale Oil Reservoirs. International Journal of Hydrogen Energy, 67: 500-505. https://doi.org/10.1016/j.ijhydene.2024.04.212
      Yu, C., Zhang, Y. P., Wang, Z. H., et al., 2024. The Influence of Mineral Wettability on the Adsorption of Shale Gas. Journal of Atomic and Molecular Physics, 41(2): 41-50(in Chinese with English abstract).
      Yu, Y. J., Wang, H. Y., Liu, D. X., et al., 2023. Development Status and Feasibility Evaluation Index System of Continental Shale Oil Demonstration Area in China. Earth Science, 48(1): 191-205(in Chinese with English abstract).
      Yuan, S. Y., Lei, Z. D., Li, J. S., et al., 2023. Key Theoretical and Technical Issues and Countermeasures for Effective Development of Gulong Shale Oil, Daqing Oilfield, NE China. Petroleum Exploration and Development, 50(3): 562-572(in Chinese with English abstract).
      Zhang, B., Wang, J. J., Liu, Z. P., et al., 2014. Beyond Cassie Equation: Local Structure of Heterogeneous Surfaces Determines the Contact Angles of Microdroplets. Scientific Reports, 4: 5822. https://doi.org/10.1038/srep05822
      Zhang, H. L., Xu, Z. J., Sun, W., et al., 2023. Hydroxylation Structure of Quartz Surface and Its Molecular Hydrophobicity. Applied Surface Science, 612: 155884. https://doi.org/10.1016/j.apsusc.2022.155884
      Zhou, B., Wang, W. M., Guo, H. K., et al., 2004. Measurement on Scale of Wettability of Porous Media with NMR Methods. Earth Science, 29(4): 495-499(in Chinese with English abstract).
      Zhou, X. H., Chen, D. X., Xia, Y. X., et al., 2022. Spontaneous Imbibition Characteristics and Influencing Factors of Chang 7 Shale Oil Reservoirs in Longdong Area, Ordos Basin. Earth Science, 47(8): 3045-3055(in Chinese with English abstract).
      Zou, C. N., Yang, Z., Zhang, G. S., et al., 2023. Theory, Technology and Practice of Unconventional Oil and Gas Geology. Earth Science, 48(6): 2376-2397(in Chinese with English abstract).
      何文渊, 柳波, 张金友, 等, 2023. 松辽盆地古龙页岩油地质特征及关键科学问题探索. 地球科学, 48(1): 49-62. doi: 10.3799/dqkx.2022.320
      霍旭, 孙灵辉, 李博文, 等, 2023. 页岩储层润湿性的影响因素及研究进展. 应用化工, 52(12): 3354-3358, 3364.
      倪家伟, 曹自洋, 潘杰, 等, 2024. 镍钛合金表面微纳结构构建及其疏水性能研究. 机床与液压, 52(4): 44-49, 55.
      施砍园, 陈君青, 庞雄奇, 等, 2024. 储层矿物润湿性的测量方法综述. 特种油气藏, 31(2): 1-9.
      孙龙德, 贾承造, 张君峰, 等, 2024. 松辽盆地古龙页岩油重点地区资源潜力. 石油学报, 45(12): 1699-1714.
      孙龙德, 刘合, 何文渊, 等, 2021. 大庆古龙页岩油重大科学问题与研究路径探析. 石油勘探与开发, 48(3): 453-463.
      万晓帆, 刘丛丛, 赵德锋, 等, 2023. 页岩油研究热点与发展趋势. 地球科学, 48(2): 793-813. doi: 10.3799/dqkx.2022.443
      王翔宇, 柯鹏, 杜锋, 2024. 液滴冲击过程动态接触角模型研究. 应用数学和力学, 45(9): 1133-1146.
      王忠楠, 罗晓容, 刘可禹, 等, 2021. 鄂尔多斯盆地上三叠统延长组致密砂岩储层绿泥石对润湿性的影响. 中国科学: 地球科学, 51(7): 1123-1134.
      蔚远江, 王红岩, 刘德勋, 等, 2023. 中国陆相页岩油示范区发展现状及建设可行性评价指标体系. 地球科学, 48(1): 191-205.
      魏永峭, 张晋, 蒋兵, 等, 2025. 基于点接触界面相互作用的摩擦学性能研究. 摩擦学学报, 46(2): 1-13.
      项林语, 李长冬, 李浩林, 等, 2022. 基于分子动力学模拟的钙基蒙脱石表面润湿性研究. 科学技术与工程, 22(36): 15952-15958.
      杨涛, 2022. 基于原子力显微镜的角砾岩微观力学性质研究. 粉煤灰综合利用, 36(3): 29-35, 93.
      余曹, 张玉苹, 汪周华, 等, 2024. 页岩矿物不同润湿性表征与吸附微观机理. 原子与分子物理学报, 41(2): 41-50.
      袁士义, 雷征东, 李军诗, 等, 2023. 古龙页岩油有效开发关键理论技术问题与对策. 石油勘探与开发, 50(3): 562-572.
      周波, 王为民, 郭和坤, 等, 2004. 孔隙介质润湿性的核磁共振刻度特征的测量. 地球科学, 29(4): 495-499. http://www.earth-science.net/article/id/1514
      周小航, 陈冬霞, 夏宇轩, 等, 2022. 鄂尔多斯盆地陇东地区长7段页岩油储层自发渗吸特征及影响因素. 地球科学, 47(8): 3045-3055. doi: 10.3799/dqkx.2022.208
      邹才能, 杨智, 张国生, 等, 2023. 非常规油气地质学理论技术及实践. 地球科学, 48(6): 2376-2397. doi: 10.3799/dqkx.2023.091
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(3)

      Article views (226) PDF downloads(19) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return