• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 12
    Dec.  2025
    Turn off MathJax
    Article Contents
    Li Bin, Gao Yang, Zhuang Yu, Liu Xiaojie, Zhang Han, Qin Linpeng, Guo Zhen, Yin Yueping, 2025. Characteristics and Cascading Effects of the Blatten Avalanche in the Swiss Alps. Earth Science, 50(12): 4950-4969. doi: 10.3799/dqkx.2025.239
    Citation: Li Bin, Gao Yang, Zhuang Yu, Liu Xiaojie, Zhang Han, Qin Linpeng, Guo Zhen, Yin Yueping, 2025. Characteristics and Cascading Effects of the Blatten Avalanche in the Swiss Alps. Earth Science, 50(12): 4950-4969. doi: 10.3799/dqkx.2025.239

    Characteristics and Cascading Effects of the Blatten Avalanche in the Swiss Alps

    doi: 10.3799/dqkx.2025.239
    • Received Date: 2025-08-26
    • Publish Date: 2025-12-25
    • On 28 May 2025, a large rock-ice avalanche occurred at the Blatten village in Valais, Switzerland. The failure mobilized approximately 8.3 million m3 of material, traveled 3 300 m, and deposited over an area of 2.66 km2. The Blatten avalanche caused one fatality, buried the Blatten village and dammed the Lonza River. Integrating remote sensing analysis, seismic signal interpretation and numerical modeling, this study reconstructs the event and identifies its pronounced cascade amplification effects. The failure evolved through three distinct stages: high-altitude collapse, glacier melting and deformation, and transformation into a long-runout avalanche. Progressive debris accumulation and gradual glacier weakening were the key drivers of the large-scale hazard. In addition, low-friction ice and meltwater markedly reduced motion resistance, facilitating the long-runout movement. These findings highlight the need to account for the potential of multiple small-scale failures cascading into catastrophic events in avalanche risk assessments. The Blatten disaster offers important implications for hazard zoning and the planning of major infrastructure projects in high-mountain regions of western China.

       

    • loading
    • Deng, Y., Gao, Q. Y., Wang, X., et al., 2025. A Large⁃Scale Rock Avalanche⁃Debris Flow Cascading Hazard in the Sedongpu Catchment, Southeastern Tibetan Plateau. Landslides, 22(1): 109-120. https://doi.org/10.1007/s10346⁃024⁃02382⁃x
      Dong, Z. B., Su, L. J., Hu, B. L., et al., 2024. Friction Behaviors and Flow Resistances of Rock⁃Ice Avalanches. Cold Regions Science and Technology, 220: 104130. https://doi.org/10.1016/j.coldregions.2024.104130
      Duncan, J. M., Wright, S. G., Brandon, T. L., 2014. Soil Strength and Slope Stability. John Wiley & Sons, Hoboken, N. J. .
      Ekström, G., Stark, C. P., 2013. Simple Scaling of Catastrophic Landslide Dynamics. Science, 339(6126): 1416-1419. https://doi.org/10.1126/science.1232887
      Fan, X. M., Feng, Z. T., Ni, T., et al., 2025. The Friction Behavior of Rock⁃Ice Avalanches in Relation to Rock⁃Ice Segregation: Insights from Flume Physical Experiments. Journal of Geophysical Research: Earth Surface, 130: e2024JF007904. https://doi.org/10.1029/2024jf007904
      Gao, H. Y., Yin, Y. P., Li, B., et al., 2023a. Geomorphic Evolution of the Sedongpu Basin after Catastrophic Ice and Rock Avalanches Triggered by the 2017 Ms6.9 Milin Earthquake in the Yarlung Zangbo River Area, China. Landslides, 20(11): 2327-2341. https://doi.org/10.1007/s10346⁃023⁃02118⁃3
      Gao, S. H., Yin, Y. P., Li, B., et al., 2024. Dynamic Characteristics of the Rock⁃Ice Avalanche Disaster Chain in the Zelongnong Basin, Yarlung Zangbo River Canyon Region. Journal of Engineering Geology, 32(3): 996-1009(in Chinese with English abstract).
      Gao, Y., Li, B., Gao, H. Y., et al., 2023b. Risk Assessment of the Sedongpu High⁃Altitude and Ultra⁃Long⁃Runout Landslide in the Lower Yarlung Zangbo River, China. Bulletin of Engineering Geology and the Environment, 82(9): 360. https://doi.org/10.1007/s10064⁃023⁃03374⁃2
      Gao, Y., Li, B., Zhang, H., et al., 2024a. Numerical Modeling of Mixed Two⁃Phase in Long Runout Flow⁃Like Landslide Using LPF3D. Landslides, 21(3): 641-660. https://doi.org/10.1007/s10346⁃023⁃02159⁃8
      Gao, Y., Yin, Y. P., Li, B., et al., 2024b. Multistate Transition and Coupled Solid-Liquid Modeling of Motion Process of Long⁃Runout Landslide. Journal of Rock Mechanics and Geotechnical Engineering, 16(7): 2694-2714. https://doi.org/10.1016/j.jrmge.2023.12.001
      Gruber, S., Haeberli, W., 2007. Permafrost in Steep Bedrock Slopes and Its Temperature⁃Related Destabilization Following Climate Change. Journal of Geophysical Research: Earth Surface, 112(F2): 2006JF000547. https://doi.org/10.1029/2006jf000547
      Hibert, C., Ekström, G., Stark, C. P., 2014. Dynamics of the Bingham Canyon Mine Landslides from Seismic Signal Analysis. Geophysical Research Letters, 41(13): 4535-4541. https://doi.org/10.1002/2014gl060592
      Huggel, C., Clague, J. J., Korup, O., 2012. Is Climate Change Responsible for Changing Landslide Activity in High Mountains? Earth Surface Processes and Landforms, 37(1): 77-91. https://doi.org/10.1002/esp.2223
      Kääb, A., Leinss, S., Gilbert, A., et al., 2018. Massive Collapse of Two Glaciers in Western Xizang in 2016 after Surge⁃Like Instability. Nature Geoscience, 11(2): 114-120. https://doi.org/10.1038/s41561⁃017⁃0039⁃7
      Li, Y., Cui, Y. F., Hu, X., et al., 2024. Glacier Retreat in Eastern Himalaya Drives Catastrophic Glacier Hazard Chain. Geophysical Research Letters, 51(8): e2024GL108202. https://doi.org/10.1029/2024gl108202
      Liu, C. Z., Lü, J. T., Tong, L. Q., et al., 2019. Research on Glacial/Rock Fall⁃Landslide⁃Debris Flows in Sedongpu Basin along Yarlung Zangbo River in Tibet. Geology in China, 46(2): 219-234(in Chinese with English abstract).
      Marcer, M., Cicoira, A., Cusicanqui, D., et al., 2021. Rock Glaciers throughout the French Alps Accelerated and Destabilised since 1990 as Air Temperatures Increased. Communications Earth & Environment, 2: 81. https://doi.org/10.1038/s43247⁃021⁃00150⁃6
      Mergili, M., Jaboyedoff, M., Pullarello, J., et al., 2020. Back Calculation of the 2017 Piz Cengalo-Bondo Landslide Cascade with R. avaflow: We can do and What We can Learn. Natural Hazards and Earth System Sciences, 20(2): 505-520. https://doi.org/10.5194/nhess⁃20⁃505⁃2020
      Munch, J., Zhuang, Y., Dash, R. K., et al., 2024. Dynamic Thermomechanical Modeling of Rock⁃Ice Avalanches: Understanding Flow Transitions, Water Dynamics, and Uncertainties. Journal of Geophysical Research: Earth Surface, 129(10): e2024JF007805. https://doi.org/10.1029/2024jf007805
      Nian, T. K., Zhao, R. D., Zheng, D. F., et al., 2024. Advances in the Study of Ice⁃Rock Avalanche Disaster Chains in Yarlung Zangbo River Basin in Southeast Tibet. Journal of Hydraulic Engineering, 55(10): 1146-1162(in Chinese with English abstract).
      Petley, D., 2025a. The 28 May 2025 Update on the Landslide Threatening Blatten in Switzerland. Available Online: https://eos.org/thelandslideblog/blatten⁃4
      Petley, D., 2025b. The Incipient Major Rock Slope Failure at Blatten in Switzerland. Available Online: https://eos.org/thelandslideblog/blatten⁃1
      Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze⁃Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114(in Chinese with English abstract).
      Pfluger, F., Weber, S., Steinhauser, J., et al., 2025. Massive Permafrost Rock Slide under a Warming Polythermal Glacier Deciphered through Mechanical Modeling (Bliggspitze, Austria). Earth Surface Dynamics, 13(1): 41-70. https://doi.org/10.5194/esurf⁃13⁃41⁃2025
      Roe, G. H., Baker, M. B., Herla, F., 2017. Centennial Glacier Retreat as Categorical Evidence of Regional Climate Change. Nature Geoscience, 10(2): 95-99. https://doi.org/10.1038/ngeo2863
      Schneider, D., Huggel, C., Haeberli, W., et al., 2011. Unraveling Driving Factors for Large Rock-Ice Avalanche Mobility. Earth Surface Processes and Landforms, 36(14): 1948-1966. https://doi.org/10.1002/esp.2218
      Shen, Y. J., Chen, S. W., Zhang, L., et al., 2022. High⁃Altitude Initiation, Dynamic Collapse and Phase Transformation of Mountain Snow⁃Ice Melt Geological Disaster Chain. Journal of Glaciology and Geocryology, 44(2): 643-656(in Chinese with English abstract).
      Shugar, D. H., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373(6552): 300-306. https://doi.org/10.1126/science.abh4455
      SwissInfo, 2025. Blatten Glacier Fractures Increase Sharply. Available Online: https://www.swissinfo.ch/eng/various/blatten⁃vs⁃glacier⁃fractures⁃increase⁃sharply/89418301
      Yang, Q. Q., Su, Z. M., Chen, L. Z., et al., 2015. Flume Tests on Influence of Ice to Mobility of Rock⁃Ice Avalanches. Journal of Engineering Geology, 23(6): 1117-1126(in Chinese with English abstract).
      Yin, Y. P., 2000. Study on Characteristics and Disaster Reduction of Giant Landslides on Yigong Expressway in Bomi, Xizang. Hydrogeology and Engineering Geology, 27(4): 8-11(in Chinese with English abstract).
      Yin, Y. P., Li, B., Zhang, T. T., et al., 2021a. The February 7 of 2021 Glacier⁃Rock Avalanche and the Outburst Flooding Disaster Chain in Chamoli, India. The Chinese Journal of Geological Hazard and Control, 32(3): 1-8(in Chinese with English abstract).
      Yin, Y. P., Zhu, S. N., Li, B., et al., 2021b. High Altitude Remote Geological Hazards on the Qinghai Tibet Plateau. Science Press, Beijing(in Chinese).
      Yin, Y. P., Xing, A. G., 2012. Aerodynamic Modeling of the Yigong Gigantic Rock Slide⁃Debris Avalanche, Tibet, China. Bulletin of Engineering Geology and the Environment, 71(1): 149-160. https://doi.org/10.1007/s10064⁃011⁃0348⁃9
      Yin, Y. P., Zhang, S. L., Huo, Z. H., et al., 2025. Study on the May 28 Birch High⁃Altitude and Long⁃Runout Ice⁃Rock Avalanche in the Swiss Alps. The Chinese Journal of Geological Hazard and Control, 36(4): 1-14(in Chinese with English abstract).
      Zhang, T. T., Yin, Y. P., Li, B., et al., 2022. Characteristics and Dynamic Analysis of the October 2018 Long⁃Runout Disaster Chains in the Yarlung Zangbo River Downstream, Tibet, China. Natural Hazards, 113(3): 1563-1582. https://doi.org/10.1007/s11069⁃022⁃05358⁃z
      Zhang, Z. Y., Liu, D. R., Fan, G., et al., 2025. Movement Characteristics of Rock⁃Ice Avalanches: Insights from Flume Tests. Cold Regions Science and Technology, 237: 104538. https://doi.org/10.1016/j.coldregions.2025.104538
      Zhuang, Y., Dash, R. K., Bühler, Y., et al., 2025. Fluidization and Snow Cover Effects in Rock⁃IcerSnow Avalanches: Lessons from Piz Cengalo, Fluchthorn, and Piz Scerscen Events. Computers and Geotechnics, 186: 107456. https://doi.org/10.1016/j.compgeo.2025.107456
      Zhuang, Y., Yin, Y. P., Xing, A. G., et al., 2020. Combined Numerical Investigation of the Yigong Rock Slide⁃Debris Avalanche and Subsequent Dam⁃Break Flood Propagation in Tibet, China. Landslides, 17(9): 2217-2229. https://doi.org/10.1007/s10346⁃020⁃01449⁃9
      高少华, 殷跃平, 李滨, 等, 2024. 雅鲁藏布江大峡谷则隆弄高位冰岩崩灾害链动力学特征. 工程地质学报, 32(3): 996-1009.
      彭建兵, 张永双, 黄达, 等, 2023. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应. 地球科学, 48(8): 3099-3114. doi: 10.3799/dqkx.2023.137
      刘传正, 吕杰堂, 童立强, 等, 2019. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究. 中国地质, 46(2): 219-234.
      年廷凯, 赵润东, 郑德凤, 等, 2024. 藏东南雅江流域冰-岩崩灾害链研究进展. 水利学报, 55(10): 1146-1162.
      申艳军, 陈思维, 张蕾, 等, 2022. 冰雪型地质灾害链高位萌生、动力溃散及物相转化过程剖析. 冰川冻土, 44(2): 643-656.
      杨情情, 苏志满, 陈锣增, 等, 2015. 冰屑对冰-岩碎屑流运动特性影响作用的初步分析. 工程地质学报, 23(6): 1117-1126.
      殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究. 水文地质工程地质, 27(4): 8-11.
      殷跃平, 李滨, 张田田, 等, 2021a. 印度查莫利"2·7"冰岩山崩堵江溃决洪水灾害链研究. 中国地质灾害与防治学报, 32(3): 1-8.
      殷跃平, 朱赛楠, 李滨, 等, 2021b. 青藏高原高位远程地质灾害, 北京: 科学出版社.
      殷跃平, 张仕林, 霍子豪, 等, 2025. 瑞士阿尔卑斯桦树"5·28"高位远程冰岩崩-碎屑流研究. 中国地质灾害与防治学报, 36(4): 1-14.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(18)  / Tables(2)

      Article views (202) PDF downloads(18) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return