| Citation: | Li Bin, Gao Yang, Zhuang Yu, Liu Xiaojie, Zhang Han, Qin Linpeng, Guo Zhen, Yin Yueping, 2025. Characteristics and Cascading Effects of the Blatten Avalanche in the Swiss Alps. Earth Science, 50(12): 4950-4969. doi: 10.3799/dqkx.2025.239 |
|
Deng, Y., Gao, Q. Y., Wang, X., et al., 2025. A Large⁃Scale Rock Avalanche⁃Debris Flow Cascading Hazard in the Sedongpu Catchment, Southeastern Tibetan Plateau. Landslides, 22(1): 109-120. https://doi.org/10.1007/s10346⁃024⁃02382⁃x
|
|
Dong, Z. B., Su, L. J., Hu, B. L., et al., 2024. Friction Behaviors and Flow Resistances of Rock⁃Ice Avalanches. Cold Regions Science and Technology, 220: 104130. https://doi.org/10.1016/j.coldregions.2024.104130
|
|
Duncan, J. M., Wright, S. G., Brandon, T. L., 2014. Soil Strength and Slope Stability. John Wiley & Sons, Hoboken, N. J. .
|
|
Ekström, G., Stark, C. P., 2013. Simple Scaling of Catastrophic Landslide Dynamics. Science, 339(6126): 1416-1419. https://doi.org/10.1126/science.1232887
|
|
Fan, X. M., Feng, Z. T., Ni, T., et al., 2025. The Friction Behavior of Rock⁃Ice Avalanches in Relation to Rock⁃Ice Segregation: Insights from Flume Physical Experiments. Journal of Geophysical Research: Earth Surface, 130: e2024JF007904. https://doi.org/10.1029/2024jf007904
|
|
Gao, H. Y., Yin, Y. P., Li, B., et al., 2023a. Geomorphic Evolution of the Sedongpu Basin after Catastrophic Ice and Rock Avalanches Triggered by the 2017 Ms6.9 Milin Earthquake in the Yarlung Zangbo River Area, China. Landslides, 20(11): 2327-2341. https://doi.org/10.1007/s10346⁃023⁃02118⁃3
|
|
Gao, S. H., Yin, Y. P., Li, B., et al., 2024. Dynamic Characteristics of the Rock⁃Ice Avalanche Disaster Chain in the Zelongnong Basin, Yarlung Zangbo River Canyon Region. Journal of Engineering Geology, 32(3): 996-1009(in Chinese with English abstract).
|
|
Gao, Y., Li, B., Gao, H. Y., et al., 2023b. Risk Assessment of the Sedongpu High⁃Altitude and Ultra⁃Long⁃Runout Landslide in the Lower Yarlung Zangbo River, China. Bulletin of Engineering Geology and the Environment, 82(9): 360. https://doi.org/10.1007/s10064⁃023⁃03374⁃2
|
|
Gao, Y., Li, B., Zhang, H., et al., 2024a. Numerical Modeling of Mixed Two⁃Phase in Long Runout Flow⁃Like Landslide Using LPF3D. Landslides, 21(3): 641-660. https://doi.org/10.1007/s10346⁃023⁃02159⁃8
|
|
Gao, Y., Yin, Y. P., Li, B., et al., 2024b. Multistate Transition and Coupled Solid-Liquid Modeling of Motion Process of Long⁃Runout Landslide. Journal of Rock Mechanics and Geotechnical Engineering, 16(7): 2694-2714. https://doi.org/10.1016/j.jrmge.2023.12.001
|
|
Gruber, S., Haeberli, W., 2007. Permafrost in Steep Bedrock Slopes and Its Temperature⁃Related Destabilization Following Climate Change. Journal of Geophysical Research: Earth Surface, 112(F2): 2006JF000547. https://doi.org/10.1029/2006jf000547
|
|
Hibert, C., Ekström, G., Stark, C. P., 2014. Dynamics of the Bingham Canyon Mine Landslides from Seismic Signal Analysis. Geophysical Research Letters, 41(13): 4535-4541. https://doi.org/10.1002/2014gl060592
|
|
Huggel, C., Clague, J. J., Korup, O., 2012. Is Climate Change Responsible for Changing Landslide Activity in High Mountains? Earth Surface Processes and Landforms, 37(1): 77-91. https://doi.org/10.1002/esp.2223
|
|
Kääb, A., Leinss, S., Gilbert, A., et al., 2018. Massive Collapse of Two Glaciers in Western Xizang in 2016 after Surge⁃Like Instability. Nature Geoscience, 11(2): 114-120. https://doi.org/10.1038/s41561⁃017⁃0039⁃7
|
|
Li, Y., Cui, Y. F., Hu, X., et al., 2024. Glacier Retreat in Eastern Himalaya Drives Catastrophic Glacier Hazard Chain. Geophysical Research Letters, 51(8): e2024GL108202. https://doi.org/10.1029/2024gl108202
|
|
Liu, C. Z., Lü, J. T., Tong, L. Q., et al., 2019. Research on Glacial/Rock Fall⁃Landslide⁃Debris Flows in Sedongpu Basin along Yarlung Zangbo River in Tibet. Geology in China, 46(2): 219-234(in Chinese with English abstract).
|
|
Marcer, M., Cicoira, A., Cusicanqui, D., et al., 2021. Rock Glaciers throughout the French Alps Accelerated and Destabilised since 1990 as Air Temperatures Increased. Communications Earth & Environment, 2: 81. https://doi.org/10.1038/s43247⁃021⁃00150⁃6
|
|
Mergili, M., Jaboyedoff, M., Pullarello, J., et al., 2020. Back Calculation of the 2017 Piz Cengalo-Bondo Landslide Cascade with R. avaflow: We can do and What We can Learn. Natural Hazards and Earth System Sciences, 20(2): 505-520. https://doi.org/10.5194/nhess⁃20⁃505⁃2020
|
|
Munch, J., Zhuang, Y., Dash, R. K., et al., 2024. Dynamic Thermomechanical Modeling of Rock⁃Ice Avalanches: Understanding Flow Transitions, Water Dynamics, and Uncertainties. Journal of Geophysical Research: Earth Surface, 129(10): e2024JF007805. https://doi.org/10.1029/2024jf007805
|
|
Nian, T. K., Zhao, R. D., Zheng, D. F., et al., 2024. Advances in the Study of Ice⁃Rock Avalanche Disaster Chains in Yarlung Zangbo River Basin in Southeast Tibet. Journal of Hydraulic Engineering, 55(10): 1146-1162(in Chinese with English abstract).
|
|
Petley, D., 2025a. The 28 May 2025 Update on the Landslide Threatening Blatten in Switzerland. Available Online:
|
|
Petley, D., 2025b. The Incipient Major Rock Slope Failure at Blatten in Switzerland. Available Online:
|
|
Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze⁃Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114(in Chinese with English abstract).
|
|
Pfluger, F., Weber, S., Steinhauser, J., et al., 2025. Massive Permafrost Rock Slide under a Warming Polythermal Glacier Deciphered through Mechanical Modeling (Bliggspitze, Austria). Earth Surface Dynamics, 13(1): 41-70. https://doi.org/10.5194/esurf⁃13⁃41⁃2025
|
|
Roe, G. H., Baker, M. B., Herla, F., 2017. Centennial Glacier Retreat as Categorical Evidence of Regional Climate Change. Nature Geoscience, 10(2): 95-99. https://doi.org/10.1038/ngeo2863
|
|
Schneider, D., Huggel, C., Haeberli, W., et al., 2011. Unraveling Driving Factors for Large Rock-Ice Avalanche Mobility. Earth Surface Processes and Landforms, 36(14): 1948-1966. https://doi.org/10.1002/esp.2218
|
|
Shen, Y. J., Chen, S. W., Zhang, L., et al., 2022. High⁃Altitude Initiation, Dynamic Collapse and Phase Transformation of Mountain Snow⁃Ice Melt Geological Disaster Chain. Journal of Glaciology and Geocryology, 44(2): 643-656(in Chinese with English abstract).
|
|
Shugar, D. H., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373(6552): 300-306. https://doi.org/10.1126/science.abh4455
|
|
SwissInfo, 2025. Blatten Glacier Fractures Increase Sharply. Available Online:
|
|
Yang, Q. Q., Su, Z. M., Chen, L. Z., et al., 2015. Flume Tests on Influence of Ice to Mobility of Rock⁃Ice Avalanches. Journal of Engineering Geology, 23(6): 1117-1126(in Chinese with English abstract).
|
|
Yin, Y. P., 2000. Study on Characteristics and Disaster Reduction of Giant Landslides on Yigong Expressway in Bomi, Xizang. Hydrogeology and Engineering Geology, 27(4): 8-11(in Chinese with English abstract).
|
|
Yin, Y. P., Li, B., Zhang, T. T., et al., 2021a. The February 7 of 2021 Glacier⁃Rock Avalanche and the Outburst Flooding Disaster Chain in Chamoli, India. The Chinese Journal of Geological Hazard and Control, 32(3): 1-8(in Chinese with English abstract).
|
|
Yin, Y. P., Zhu, S. N., Li, B., et al., 2021b. High Altitude Remote Geological Hazards on the Qinghai Tibet Plateau. Science Press, Beijing(in Chinese).
|
|
Yin, Y. P., Xing, A. G., 2012. Aerodynamic Modeling of the Yigong Gigantic Rock Slide⁃Debris Avalanche, Tibet, China. Bulletin of Engineering Geology and the Environment, 71(1): 149-160. https://doi.org/10.1007/s10064⁃011⁃0348⁃9
|
|
Yin, Y. P., Zhang, S. L., Huo, Z. H., et al., 2025. Study on the May 28 Birch High⁃Altitude and Long⁃Runout Ice⁃Rock Avalanche in the Swiss Alps. The Chinese Journal of Geological Hazard and Control, 36(4): 1-14(in Chinese with English abstract).
|
|
Zhang, T. T., Yin, Y. P., Li, B., et al., 2022. Characteristics and Dynamic Analysis of the October 2018 Long⁃Runout Disaster Chains in the Yarlung Zangbo River Downstream, Tibet, China. Natural Hazards, 113(3): 1563-1582. https://doi.org/10.1007/s11069⁃022⁃05358⁃z
|
|
Zhang, Z. Y., Liu, D. R., Fan, G., et al., 2025. Movement Characteristics of Rock⁃Ice Avalanches: Insights from Flume Tests. Cold Regions Science and Technology, 237: 104538. https://doi.org/10.1016/j.coldregions.2025.104538
|
|
Zhuang, Y., Dash, R. K., Bühler, Y., et al., 2025. Fluidization and Snow Cover Effects in Rock⁃IcerSnow Avalanches: Lessons from Piz Cengalo, Fluchthorn, and Piz Scerscen Events. Computers and Geotechnics, 186: 107456. https://doi.org/10.1016/j.compgeo.2025.107456
|
|
Zhuang, Y., Yin, Y. P., Xing, A. G., et al., 2020. Combined Numerical Investigation of the Yigong Rock Slide⁃Debris Avalanche and Subsequent Dam⁃Break Flood Propagation in Tibet, China. Landslides, 17(9): 2217-2229. https://doi.org/10.1007/s10346⁃020⁃01449⁃9
|
|
高少华, 殷跃平, 李滨, 等, 2024. 雅鲁藏布江大峡谷则隆弄高位冰岩崩灾害链动力学特征. 工程地质学报, 32(3): 996-1009.
|
|
彭建兵, 张永双, 黄达, 等, 2023. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应. 地球科学, 48(8): 3099-3114. doi: 10.3799/dqkx.2023.137
|
|
刘传正, 吕杰堂, 童立强, 等, 2019. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究. 中国地质, 46(2): 219-234.
|
|
年廷凯, 赵润东, 郑德凤, 等, 2024. 藏东南雅江流域冰-岩崩灾害链研究进展. 水利学报, 55(10): 1146-1162.
|
|
申艳军, 陈思维, 张蕾, 等, 2022. 冰雪型地质灾害链高位萌生、动力溃散及物相转化过程剖析. 冰川冻土, 44(2): 643-656.
|
|
杨情情, 苏志满, 陈锣增, 等, 2015. 冰屑对冰-岩碎屑流运动特性影响作用的初步分析. 工程地质学报, 23(6): 1117-1126.
|
|
殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究. 水文地质工程地质, 27(4): 8-11.
|
|
殷跃平, 李滨, 张田田, 等, 2021a. 印度查莫利"2·7"冰岩山崩堵江溃决洪水灾害链研究. 中国地质灾害与防治学报, 32(3): 1-8.
|
|
殷跃平, 朱赛楠, 李滨, 等, 2021b. 青藏高原高位远程地质灾害, 北京: 科学出版社.
|
|
殷跃平, 张仕林, 霍子豪, 等, 2025. 瑞士阿尔卑斯桦树"5·28"高位远程冰岩崩-碎屑流研究. 中国地质灾害与防治学报, 36(4): 1-14.
|