• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 31 Issue 3
    May  2006
    Turn off MathJax
    Article Contents
    LIU Zai-hua, Dreybrodt W., LI Hua-ju, 2006. Comparison of Dissolution Rate-Determining Mechanisms between Limestone and Dolomite. Earth Science, 31(3): 411-416.
    Citation: LIU Zai-hua, Dreybrodt W., LI Hua-ju, 2006. Comparison of Dissolution Rate-Determining Mechanisms between Limestone and Dolomite. Earth Science, 31(3): 411-416.

    Comparison of Dissolution Rate-Determining Mechanisms between Limestone and Dolomite

    • Received Date: 2005-09-06
    • Publish Date: 2006-05-25
    • The dissolution rate-determining processes of carbonate rocks include: (1) heterogeneous reactions on rock surface; (2) mass transport of ions into solution from rock surface via diffusion; and (3) conversion reaction of CO2 into H+ and HCO3-. Generally, it is the slowest of these three processes that limits the dissolution rate of carbonate rock. However, it was found from experiments and theoretical analysis that under similar conditions, not only are the initial dissolution rates of dolomite lower by a factor of 3 to 60 than those of limestone, but also there are different dissolution rate-determining mechanisms between limestone and dolomite. For example, under conditions of CO2 partial pressures (pCO2) >100 Pa, limestone dissolution rates increase remarkably, by a factor of about 10 after the addition of carbonic anhydrase (CA) into the solution, which catalyzes the conversion reaction of CO 2. For dolomite, the increase of dissolution rate after the addition of CA appears at pCO2 < 10 000 Pa. The enhancement factor of CA on dolomite dissolution rates is much lower (a factor of only about 3). In addition, though dissolution of both limestone and dolomite is also determined by hydrodynamics (rotation speed or flow speed), especially under pCO2 < 1 000 Pa, the dissolution of limestone is more sensitive to hydrodynamic change than the dissolution of dolomite. These findings are of significance in understanding the differences in karstification and relevant problems of resources and environments of dolomite and limestone areas.

       

    • loading
    • Atkin, C. A., Patterson, B. D., Graham, D., 1972. Plant carbonic anhydrase: Ⅰ. Distribution of types among species. Plant. Physiol. , 50: 214-217. doi: 10.1104/pp.50.2.214
      Busenberg, E., Plummer, L. N., 1982. The kinetics of dissolution of dolomite in CO2-H2O systems at 1.5 to 65 ℃ and 0 to 1 atm pCO2. Am. J. Sci. , 282: 45-78. doi: 10.2475/ajs.282.1.45
      Dreybrodt, W., 1988. Processes in karst systems (series in physical environment). Springer-Verlag, Heidelberg, 140-182.
      Dreybrodt, W., Buhmann, D., 1991. A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion. Chem. Geol. , 90: 107-122. doi: 10.1016/0009-2541(91)90037-R
      Dreybrodt, W., Lauckner, J., Liu, Z., et al., 1996. The kinetics of the reaction CO2+H2O⇔H++HCO3- as one of the rate limiting steps for the dissolution of calcite in the system H2O-CO2-CaCO3. Geochim. Cosmochim. Acta, 60: 3375-3381. doi: 10.1016/0016-7037(96)00181-0
      Fridlyand, L. E., Kaler, V. L., 1987. Possible CO2 concentrating mechanism in chloroplasts of C3 plants: Role of carbonic anhydrase. Gen. Physiol. Biophys. , (6): 617-636. doi: 10.1002/bip.360261210
      Kern, M. D., 1960. The hydration of carbon dioxide. J. Chem. Educ. , 37: 14-23. doi: 10.1021/ed037p14
      Kump, L. R., Brantley, S. L., Arthur, M. A., 2000. Chemical weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci. , 28: 611-617. doi: 10.1146/annurev.earth.28.1.611
      Lindskog, S., Henderson, L., Kannan, K., et al., 1971. Carbonic anhydrase. In: Boyer, P., ed., The enzymes, Ⅴ. Academic Press, New York, 587-665.
      Liu, Z. H., Dreybrodt, W., 1997. Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H2O+CO2↔H++HCO3-. Geochim. Cosmochim. Acta, 61: 2879-2889. doi: 10.1016/S0016-7037(97)00143-9
      Liu, Z. H., Dreybrodt, W., 2001. Kinetics and rate-limiting mechanisms of dolomite dissolution at various CO2 partial pressures. Science in China (Series B), 44 (5): 500-509. doi: 10.1007/BF02880680
      Plummer, L. N., Wigley, T. M. L., Parkhurst, D. L., 1978. The kinetics of calcite dissolution in CO2-water system sat 5-60 ℃ and 0.0-1.0 atm CO2. Am. J. Sci. , 278: 179-216. doi: 10.2475/ajs.278.2.179
      Schindler, D. W., 1999. Carbon cycling: The mysterious missing sink. Nature, 398: 105-107. doi: 10.1038/18111
      Usdowski, E., 1982. Reactions and equilibria in the systems CO2-H2O and CaCO3-CO2-H2O: A review. Neues Jahrb Mineral Abh. , 144: 148-171.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)

      Article views (3925) PDF downloads(20) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return