• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 33 Issue 4
    Jul.  2008
    Turn off MathJax
    Article Contents
    WU Zi-jun, JIA Nan, YUAN Lin-xi, SUN Li-guang, Danielle Fortin, 2008. Iron Biomineralization and Biometallogenesis in the Ancient-Wood Buried Zone from Coast of Zhoushan Island, Zhejiang Province. Earth Science, 33(4): 465-473.
    Citation: WU Zi-jun, JIA Nan, YUAN Lin-xi, SUN Li-guang, Danielle Fortin, 2008. Iron Biomineralization and Biometallogenesis in the Ancient-Wood Buried Zone from Coast of Zhoushan Island, Zhejiang Province. Earth Science, 33(4): 465-473.

    Iron Biomineralization and Biometallogenesis in the Ancient-Wood Buried Zone from Coast of Zhoushan Island, Zhejiang Province

    • Received Date: 2007-10-29
    • Publish Date: 2008-07-25
    • In the present study, we describe the formation of iron ores collected in the intertidal zone of the Zhoushan Island in Zhejiang Province in the East China Sea, where ancient-wood layers were buried.Morphological, mineralogical and geochemical analyses were performed on the iron ores and the surrounding geological material.The results show that the iron ores are not only composed of spherical and fibre-like aggregates of goethite, but also contain the dead bacterial sheaths, which present morphological characteristics reminiscent of bacterial activity.Similar present-day biomineralization characteristics were also observed in an iron seepage system near the studied intertidal zone.The presence of Leptothrix-like sheaths and Gallionella-like stalks in the present-day environment promoted the oxidization of Fe2+ to Fe3+ and the rapid precipitation of biogenic iron oxides around the bacteria.The role of bacteria in mineral formation in the seepage area is believed to represent an analogue mechanism for the formation of the iron ores.It is hypothesized that the degradation of the ancient wood provided humic substances which accelerated the leaching process of iron from the surrounding bedrock and soils, and then created local biogeochemical conditions which led to the biomineralization of the iron ores.The present findings help elucidate the role of bacteria and humic substances in the formation of iron ores in the history time.

       

    • loading
    • Akai, J., Akai, K., Ito, M., et al., 1999. Biologically induced iron ore at Gunmairon mine, Japan. Am. Mineral. , 84 (1-2): 171-182. doi: 10.2138/am-1999-1-219
      Allwood, A. C., Walter, M. R., Kamber, B. S., et al., 2006. Stromatolite reef fromthe Early Archaean era of Australia. Nature, 441: 714-718. doi: 10.1038/nature04764
      Beard, B. L., Johnson, C. M., Cox, L., et al., 1999. Iron isotope biosignatures. Science, 285 (5435): 1889-1892. doi: 10.1126/science.285.5435.1889
      Brown, D. A., Sherriff, B. L., Sawicki, J. A., et al., 1999. Precipitation of iron minerals by a natural microbial consortium. Geochimicaet Cosmochimica Acta, 63 (15): 2163-2169. doi: 10.1016/S0016-7037(99)00188-X
      Chan, C. S., De Stasio, G., Welch, S. A., et al., 2004. Microbial polysaccharides template assembly of nanocrystalfibers. Science, 303 (5664): 1656-1658. doi: 10.1126/science.1092098
      Che, Y., Sun, Z. Y., Chen, J. Z., 2000. Microbial mineralizations of ironin modern sedimentation environments. Geological Journal of China Universities, 6 (2): 278-281 (in Chinese with English abstract).
      Croal, L. R., Johnson, C. M., Beard, B. L., et al., 2004. Iron isotope fractionation by Fe (Ⅱ) -oxidizing photoautotrophic bacteria. Geochimicaet Cosmochimica Acta, 68: 1227-1242. doi: 10.1016/j.gca.2003.09.011
      Dai, Y. D., Song, H. M., Shen, J. Y., 2003. Fossil bacteria in Xuanlong iron ore deposits of Hebei Province. Science in China (Series D), 33 (8): 751-759 (in Chinese).
      Edwards, K. J., Bach, W., McCollom, T. M., et al., 2004. Neutrophilic iron oxidizing bacteria in the ocean: Their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiology Journal, 21 (6): 393-404. doi: 10.1080/01490450490485863
      Ehrlich, H. L., 2002. Geomicrobiology of iron. In: Ehrlich, H. L., ed., Geomicrobiology. Marcel Dekker, Inc, New York, 345-428.
      Emerson, D., Weiss, J. V., 2004. Bacterial iron oxidation in circumneutral freshwater habitats: Findings from the field and laboratory. Geomicrobiology Journal, 21 (6): 405-414. doi: 10.1080/01490450490485881
      Ferris, F. G., 2005. Biogeochemical properties of bacteriogenic iron oxides. Geomicrobiology Journal, 22 (3-4): 79-85. doi: 10.1080/01490450590945861
      Ferris, F. G., Fyfe, W. S., Beveridge, T. J., 1988. Metallic ion binding by Bacillus Subtilis: Implications for the fossilization of microorganisms. Geology, 16 (2): 149-152. doi: 10.1130/0091-7613(1988)016<0149:MIBBBS>2.3.CO;2
      Ferris, F. G., Konhauser, K. O., Lyven, B., et al., 1999. Accumulation of metals by bacteriogenic iron oxides in a subterranean environment. Geomicrobiology Journal, 16 (2): 181-192. doi: 10.1080/014904599270677
      Fortin, D., Langley, S., 2005. Formation and occurrence of biogenic iron-rich minerals. Earth-Science Reviews, 72 (1-2): 1-19. doi: 10.1016/j.earscirev.2005.03.002
      Hallberg, R., Ferris, F. G., 2004. Biomineralization by Gallionella. Geomicrobiology Journal, 21 (5): 325-330. doi: 10.1080/01490450490454001
      Hu, M. A., 2000. Metallogenic significance of organisms and organic matters in low temperature mineralization system. Earth Science—Journal of China University of Geosciences, 25 (4): 375-379 (in Chinese with English abstract).
      James, R. E., Ferris, F. G., 2004. Evidence for microbial-mediated iron oxidation at a neutrophilic groundwater spring. Chem. Geol. , 212 (3-4): 301-311. doi: 10.1016/j.chemgeo.2004.08.020
      Kennedy, C. B., Martinez, R. E., Scott, S. D., et al., 2003a. Surface chemistry and reactivity of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge, Northeast Pacific Ocean. Geobiology, 1: 59-66. doi: 10.1046/j.1472-4669.2003.00001.x
      Kennedy, C. B., Scott, S. D., Ferris, F. G., 2003b. Characterization of bacteriogenic iron oxide deposits from Axial Volcano, Juan de Fuca Ridge, Northeast Pacific Ocean. Geomicrobiology Journal, 20 (3): 199-214. doi: 10.1080/01490450303873
      Kennedy, C. B., Scott, S. D., Ferris, F. G., 2004. Hydrothermal phase stabilization of2-line ferrihydrite by bacteria. Chem. Geol. , 212: 269-277. doi: 10.1016/j.chemgeo.2004.08.017
      Konhauser, K. O., Hamade, T., Raiswell, R., et al., 2002. Could bacteria have formed the Precambrian banded iron formations? Geology, 30 (12): 1079-1082. doi: 10.1130/0091-7613(2002)030<1079:CBHFTP>2.0.CO;2
      Lizasa, K., Kawasaki, K., Maeda, K., et al., 1998. Hydrothermal sulfide-bearing Fe-Si oxyhydroxide deposits from the Coriohs Thoughs, Vanuatu backarc, southwestern Pacific. Marine Geology, 145: 1-21. doi: 10.1016/S0025-3227(97)00112-6
      Martinez, R. E., Smith, D. S., Pedersen, K., et al., 2003. Surface chemical heterogeneity of bacteriogenic iron oxides from a subterranean environment. Environ. Sci. Technol. , 37 (24): 5671-5677. doi: 10.1021/es0342603
      McKay, D. S., Gibson, E. K. J., Thomas-Keprta, K. L., et al., 1996. Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273 (5277): 924-930. doi: 10.1126/science.273.5277.924
      Peng, X. T., Zhou, H. Y., Wu, Z. J., et al., 2007. Biomineralization phototrophic microbes in silica-enriched hot springs in South China. Chinese Science Bulletin, 52 (3): 367-379. doi: 10.1007/s11434-007-0042-2
      Pierson, B. K., Parenteau, M. N., Griffin, B. M., 1999. Phototrophs in high-iron-concentration microbial mats: Physiological ecology of phototrophs in an iron-depositing hot spring. Appl. Environ. Microbiol. , 65 (12): 5474-5483. doi: 10.1128/AEM.65.12.5474-5483.1999
      Roden, E. E., Sobolev, D., Glazer, B., et al., 2004. Potential for microscale bacterial Fe redox cycling at the aerobicanaerobic interface. Geomicrobiol. J. , 21: 379-391. doi: 10.1080/01490450490485872
      Sun, L. G., Xie, Z. Q., Shen, X. S., et al., 2000. Ancientwood layer at Guanyin Bayin Zhujiajian, Zhejiang Province being discovered and its significance. Ziran Zazhi, 22 (6): 354-358 (in Chinese with English abstract).
      Tazaki, K., 2000. Formation of bandediron-manganese structures by natural microbial communities. Clays and Clay Minerals, 48 (5): 511-520. doi: 10.1346/CCMN.2000.0480503
      Xie, S. C., Yin, H. F., Xie, X. N., et al., 2007. On the geobiological evaluation of hydrocarbon source rocks. Earth Science—Journal of China University of Geosciences, 32 (6): 727-740 (in Chinese with English abstract).
      Yin, H. F., Xie, S. C., Zhou, X. G., 1994. Advances and trends on the study of microbial metallogenesis. Earth Science Frontiers, 1 (3-4): 148-156 (in Chinese with English abstract).
      Zhang, Z., Zhang, B. G., Hu, J., et al., 2006. A preliminary discussion on the bio-metallogenesis of Tl deposits in the low-temperature minerogenetic province of southwestern China. Science in China (Series D), 36 (10): 894-904 (in Chinese).
      车遥, 孙振亚, 陈敬中, 2000. 现代沉积环境中铁的微生物矿化作用. 高校地质学报, 6 (2): 278-281. doi: 10.3969/j.issn.1006-7493.2000.02.027
      戴永定, 宋海明, 沈继英, 2003. 河北宣龙铁矿化石细菌. 中国科学(D辑), 33 (8): 751-759. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200308005.htm
      胡明安, 2000. 低温成矿系列中生物有机质的矿床学意义. 地球科学——中国地质大学学报, 25 (4): 375-379. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200004007.htm
      彭晓彤, 周怀阳, 吴自军, 等, 2007. 热泉微生物的矿化作用和机制: 来自华南富硅热泉光合自养微生物席中的证据. 科学通报, 52 (1): 89-99. doi: 10.3321/j.issn:0023-074X.2007.01.016
      孙立广, 谢周清, 沈显生, 等, 2000. 浙江朱家尖观音湾古木层的发现及其意义. 自然杂志, 22 (6): 354-358. doi: 10.3969/j.issn.0253-9608.2000.06.011
      谢树成, 殷鸿福, 解习农, 等, 2007. 地球生物学方法与海相优质烃源岩形成过程的正演和评价. 地球科学——中国地质大学学报, 32 (6): 727-740. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706002.htm
      殷鸿福, 谢树成, 周修高, 1994. 微生物成矿作用研究的新进展和新动向. 地学前缘, 1 (3-4): 148-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY404.004.htm
      张忠, 张宝贵, 胡静, 等, 2006. 中国西南低温成矿域铊矿床生物成矿初步研究. 中国科学(D辑), 36 (10): 894-904. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200610002.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(2)

      Article views (4022) PDF downloads(100) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return