Citation: | WU Zi-jun, JIA Nan, YUAN Lin-xi, SUN Li-guang, Danielle Fortin, 2008. Iron Biomineralization and Biometallogenesis in the Ancient-Wood Buried Zone from Coast of Zhoushan Island, Zhejiang Province. Earth Science, 33(4): 465-473. |
Akai, J., Akai, K., Ito, M., et al., 1999. Biologically induced iron ore at Gunmairon mine, Japan. Am. Mineral. , 84 (1-2): 171-182. doi: 10.2138/am-1999-1-219
|
Allwood, A. C., Walter, M. R., Kamber, B. S., et al., 2006. Stromatolite reef fromthe Early Archaean era of Australia. Nature, 441: 714-718. doi: 10.1038/nature04764
|
Beard, B. L., Johnson, C. M., Cox, L., et al., 1999. Iron isotope biosignatures. Science, 285 (5435): 1889-1892. doi: 10.1126/science.285.5435.1889
|
Brown, D. A., Sherriff, B. L., Sawicki, J. A., et al., 1999. Precipitation of iron minerals by a natural microbial consortium. Geochimicaet Cosmochimica Acta, 63 (15): 2163-2169. doi: 10.1016/S0016-7037(99)00188-X
|
Chan, C. S., De Stasio, G., Welch, S. A., et al., 2004. Microbial polysaccharides template assembly of nanocrystalfibers. Science, 303 (5664): 1656-1658. doi: 10.1126/science.1092098
|
Che, Y., Sun, Z. Y., Chen, J. Z., 2000. Microbial mineralizations of ironin modern sedimentation environments. Geological Journal of China Universities, 6 (2): 278-281 (in Chinese with English abstract).
|
Croal, L. R., Johnson, C. M., Beard, B. L., et al., 2004. Iron isotope fractionation by Fe (Ⅱ) -oxidizing photoautotrophic bacteria. Geochimicaet Cosmochimica Acta, 68: 1227-1242. doi: 10.1016/j.gca.2003.09.011
|
Dai, Y. D., Song, H. M., Shen, J. Y., 2003. Fossil bacteria in Xuanlong iron ore deposits of Hebei Province. Science in China (Series D), 33 (8): 751-759 (in Chinese).
|
Edwards, K. J., Bach, W., McCollom, T. M., et al., 2004. Neutrophilic iron oxidizing bacteria in the ocean: Their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiology Journal, 21 (6): 393-404. doi: 10.1080/01490450490485863
|
Ehrlich, H. L., 2002. Geomicrobiology of iron. In: Ehrlich, H. L., ed., Geomicrobiology. Marcel Dekker, Inc, New York, 345-428.
|
Emerson, D., Weiss, J. V., 2004. Bacterial iron oxidation in circumneutral freshwater habitats: Findings from the field and laboratory. Geomicrobiology Journal, 21 (6): 405-414. doi: 10.1080/01490450490485881
|
Ferris, F. G., 2005. Biogeochemical properties of bacteriogenic iron oxides. Geomicrobiology Journal, 22 (3-4): 79-85. doi: 10.1080/01490450590945861
|
Ferris, F. G., Fyfe, W. S., Beveridge, T. J., 1988. Metallic ion binding by Bacillus Subtilis: Implications for the fossilization of microorganisms. Geology, 16 (2): 149-152. doi: 10.1130/0091-7613(1988)016<0149:MIBBBS>2.3.CO;2
|
Ferris, F. G., Konhauser, K. O., Lyven, B., et al., 1999. Accumulation of metals by bacteriogenic iron oxides in a subterranean environment. Geomicrobiology Journal, 16 (2): 181-192. doi: 10.1080/014904599270677
|
Fortin, D., Langley, S., 2005. Formation and occurrence of biogenic iron-rich minerals. Earth-Science Reviews, 72 (1-2): 1-19. doi: 10.1016/j.earscirev.2005.03.002
|
Hallberg, R., Ferris, F. G., 2004. Biomineralization by Gallionella. Geomicrobiology Journal, 21 (5): 325-330. doi: 10.1080/01490450490454001
|
Hu, M. A., 2000. Metallogenic significance of organisms and organic matters in low temperature mineralization system. Earth Science—Journal of China University of Geosciences, 25 (4): 375-379 (in Chinese with English abstract).
|
James, R. E., Ferris, F. G., 2004. Evidence for microbial-mediated iron oxidation at a neutrophilic groundwater spring. Chem. Geol. , 212 (3-4): 301-311. doi: 10.1016/j.chemgeo.2004.08.020
|
Kennedy, C. B., Martinez, R. E., Scott, S. D., et al., 2003a. Surface chemistry and reactivity of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge, Northeast Pacific Ocean. Geobiology, 1: 59-66. doi: 10.1046/j.1472-4669.2003.00001.x
|
Kennedy, C. B., Scott, S. D., Ferris, F. G., 2003b. Characterization of bacteriogenic iron oxide deposits from Axial Volcano, Juan de Fuca Ridge, Northeast Pacific Ocean. Geomicrobiology Journal, 20 (3): 199-214. doi: 10.1080/01490450303873
|
Kennedy, C. B., Scott, S. D., Ferris, F. G., 2004. Hydrothermal phase stabilization of2-line ferrihydrite by bacteria. Chem. Geol. , 212: 269-277. doi: 10.1016/j.chemgeo.2004.08.017
|
Konhauser, K. O., Hamade, T., Raiswell, R., et al., 2002. Could bacteria have formed the Precambrian banded iron formations? Geology, 30 (12): 1079-1082. doi: 10.1130/0091-7613(2002)030<1079:CBHFTP>2.0.CO;2
|
Lizasa, K., Kawasaki, K., Maeda, K., et al., 1998. Hydrothermal sulfide-bearing Fe-Si oxyhydroxide deposits from the Coriohs Thoughs, Vanuatu backarc, southwestern Pacific. Marine Geology, 145: 1-21. doi: 10.1016/S0025-3227(97)00112-6
|
Martinez, R. E., Smith, D. S., Pedersen, K., et al., 2003. Surface chemical heterogeneity of bacteriogenic iron oxides from a subterranean environment. Environ. Sci. Technol. , 37 (24): 5671-5677. doi: 10.1021/es0342603
|
McKay, D. S., Gibson, E. K. J., Thomas-Keprta, K. L., et al., 1996. Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273 (5277): 924-930. doi: 10.1126/science.273.5277.924
|
Peng, X. T., Zhou, H. Y., Wu, Z. J., et al., 2007. Biomineralization phototrophic microbes in silica-enriched hot springs in South China. Chinese Science Bulletin, 52 (3): 367-379. doi: 10.1007/s11434-007-0042-2
|
Pierson, B. K., Parenteau, M. N., Griffin, B. M., 1999. Phototrophs in high-iron-concentration microbial mats: Physiological ecology of phototrophs in an iron-depositing hot spring. Appl. Environ. Microbiol. , 65 (12): 5474-5483. doi: 10.1128/AEM.65.12.5474-5483.1999
|
Roden, E. E., Sobolev, D., Glazer, B., et al., 2004. Potential for microscale bacterial Fe redox cycling at the aerobicanaerobic interface. Geomicrobiol. J. , 21: 379-391. doi: 10.1080/01490450490485872
|
Sun, L. G., Xie, Z. Q., Shen, X. S., et al., 2000. Ancientwood layer at Guanyin Bayin Zhujiajian, Zhejiang Province being discovered and its significance. Ziran Zazhi, 22 (6): 354-358 (in Chinese with English abstract).
|
Tazaki, K., 2000. Formation of bandediron-manganese structures by natural microbial communities. Clays and Clay Minerals, 48 (5): 511-520. doi: 10.1346/CCMN.2000.0480503
|
Xie, S. C., Yin, H. F., Xie, X. N., et al., 2007. On the geobiological evaluation of hydrocarbon source rocks. Earth Science—Journal of China University of Geosciences, 32 (6): 727-740 (in Chinese with English abstract).
|
Yin, H. F., Xie, S. C., Zhou, X. G., 1994. Advances and trends on the study of microbial metallogenesis. Earth Science Frontiers, 1 (3-4): 148-156 (in Chinese with English abstract).
|
Zhang, Z., Zhang, B. G., Hu, J., et al., 2006. A preliminary discussion on the bio-metallogenesis of Tl deposits in the low-temperature minerogenetic province of southwestern China. Science in China (Series D), 36 (10): 894-904 (in Chinese).
|
车遥, 孙振亚, 陈敬中, 2000. 现代沉积环境中铁的微生物矿化作用. 高校地质学报, 6 (2): 278-281. doi: 10.3969/j.issn.1006-7493.2000.02.027
|
戴永定, 宋海明, 沈继英, 2003. 河北宣龙铁矿化石细菌. 中国科学(D辑), 33 (8): 751-759. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200308005.htm
|
胡明安, 2000. 低温成矿系列中生物有机质的矿床学意义. 地球科学——中国地质大学学报, 25 (4): 375-379. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200004007.htm
|
彭晓彤, 周怀阳, 吴自军, 等, 2007. 热泉微生物的矿化作用和机制: 来自华南富硅热泉光合自养微生物席中的证据. 科学通报, 52 (1): 89-99. doi: 10.3321/j.issn:0023-074X.2007.01.016
|
孙立广, 谢周清, 沈显生, 等, 2000. 浙江朱家尖观音湾古木层的发现及其意义. 自然杂志, 22 (6): 354-358. doi: 10.3969/j.issn.0253-9608.2000.06.011
|
谢树成, 殷鸿福, 解习农, 等, 2007. 地球生物学方法与海相优质烃源岩形成过程的正演和评价. 地球科学——中国地质大学学报, 32 (6): 727-740. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706002.htm
|
殷鸿福, 谢树成, 周修高, 1994. 微生物成矿作用研究的新进展和新动向. 地学前缘, 1 (3-4): 148-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY404.004.htm
|
张忠, 张宝贵, 胡静, 等, 2006. 中国西南低温成矿域铊矿床生物成矿初步研究. 中国科学(D辑), 36 (10): 894-904. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200610002.htm
|