Citation: | ZHAO Peng-da, XIA Qing-lin, 2009. Chinese Scholars'Achievements and Contributions to the Development of Mathematical Geosciences. Earth Science, 34(2): 225-231. |
During the past forty years, in the mathematical geology domains, such as mineral resource quantitative assessment and nonlinear theory and their application in ore geology and mineral exploration, Chinese scholars have developed new theories and new methods which have advanced the relevant subjects. For example, the theory of geological anomaly quantitative prediction and mineral resource assessment, the theory of "three components" digital ore-finding, the idea of comprehensive information for mineral prognosis, the theory of mineral deposit growth at the edge of chaos, the multifractal theories and nonlinear information extraction and integration methods, such as concentration-area model (C-A) and spectrum-area model (S-A), the model of fuzzy weight of evidence (FWofE), and etc.. All these have not only advanced geomathematics but also provided new ways of applying geomathematical methods in mineral prospecting, environment and geological disaster predicting. Chinese scholars have made significant contributions to the development of mathematical geosciences, and so some of them occupied important posts of International Association for Mathematical Geosciences (IAMG). In addition, Chinese scholars also contribute to IAMG by means of our association as well as to the expertise such as serving as journal editors, conference hosts and council members. China has become one of the current international centers for research in mathematical geology.
Agterberg, F. P., 2003. Past and future of mathematical geology. Journal of China University of Geosciences, 14 (3): 191-198.
|
Bonham-Carter, G., Cheng, Q. M., 2008. Progress in geomathematics. Springer, Berlin.
|
Chen, Y., 1989. Applicationin geosciences of fractal and chaos. Academic Magazine Press, Beijing (in Chinese).
|
Cheng, Q. M., 1994. Multifractal modeling and spatial analysis with GIS: Gold mineral potential esti mation in the Mitchell-Sulphurets area, northwestern British Columbia (Dissertation). Univ. Ottawa, Canada.
|
Cheng, Q. M., 2005. A new model for incorporating spatial association and singularity in interpolation of exploratory data. In: Leuangthong, O., Deutsch, C. V., eds., Geostatistics banff 2004. Quantitative geology and geostatistics (14). Springer, 1017-1025.
|
Cheng, Q. M., 2007. Mapping singularities with streamsediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol. Reviews, 32 (1-2): 314-324. doi: 10.1016/j.oregeorev.2006.10.002
|
Cheng, Q. M., Agterberg, F. P., Ballantyne, S. B., 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51 (2): 109-130. doi: 10.1016/0375-6742(94)90013-2
|
Cook, N. J., 2008. Publishingin ore geology: Reflections on 5 years of Ore Geology Reviews as an IAGOD journal. Ore Geology Reviews, 34 (3): 217-221. doi: 10.1016/j.oregeorev.2008.04.002
|
Deng, J. L., 1985. The grey system. National Defence Industry Press, Beijing (in Chinese).
|
Dong, W. Q., Zhou, G. Y., Xia, L. X., 1979. Quantification theory and application. Jilin People's Press, Changchun (in Chinese).
|
Hou, J. R., Yin, Z. N., Li, W. M., et al., 1998. The practical geostatistics. Geological Publishing House, Beijing (in Chinese).
|
Institute of Geology, Chinese Academy of Sciences, 1978. Introduction to mathematical geology. Geological Publishing House, Beijing (in Chinese).
|
Li, C. J., Ma, S. H., Zhu, X. S., et al., 1999. Fractal, chaos and ANNin mineral exploration. Geological Publishing House, Beijing (in Chinese with English abstract).
|
Li, Y. W., Zhao, J. M., Li, C. Y., 2007. Undiscovered mineral resources assessment based on GMS, DSS and GIS. Seismic Publishing House, Beijing (in Chinese).
|
Liu, C. Z., Sun, H. W., 1981. The basic methods and application of mathematical geology. Geological Publishing House, Beijing (in Chinese).
|
Lovejoy, S., Schertzer, D., 2007. Scaling and multifractal fields in the solid earth and topography. Nonlinear Processes Geophysics, 14: 465-502. doi: 10.5194/npg-14-465-2007
|
Merriam, D. F., 1981. Roots of quantitative geology. In: Merriam, D. F., ed., Down-to-earth statistics, solutions looking for geological problems. Syracuse University Geology Contribution, 8: 1-15.
|
Qin, C. X., Zhai, Y. S., 1992. Some self-si milarities in economic geology and their significance. Mineral Deposits, 11 (3): 259-266 (in Chinese with English abstract).
|
Shen, B. M., 1993. Fractal structure factor andits application in geology. Acta Petrologica Sinica, 9 (3): 268-276 (in Chinese with English abstract).
|
Wang, S. C., 2002. The theory and method of comprehensive information for mineral resources assessment. Science Press, Beijing (in Chinese).
|
Wang, Z. H., 1976. Introduction to probability theory and its application. Science Press, Beijing (in Chinese).
|
Xie, H. P., 1996. Fractal in rock mechanics. Science Press, Beijing (in Chinese).
|
Ye, T. C., Zhu, Y. S., Xia, Q. L., et al., 2004. The method and technology for solid mineral resources prediction and assessment. Land Press, Beijing (in Chinese).
|
Yu, C. W., 1987. Ore-forming processes and dissipative structures. Acta Geologica Sinica, 61 (4): 336-349 (in Chinese with English abstract).
|
Yu, C. W., 2003. The complexity of geosystems. Geological Publishing House, Beijing (in Chinese).
|
Yu, C. W., 2006. Fractal growth of mineral deposits at the edge of chaos. Anhui Education Press, Hefei (in Chinese).
|
Zhang, Y. T., Du, J. S., 1998. The methods of probability statistics in artificial intelligence. Science Press, Beijing (in Chinese).
|
Zhao, P. D., 1982. On the mathematical characteristics of geological bodies. Earth Science—Journal of Wuhan College of Geology, 7 (1): 145-155 (in Chinese with English abstract).
|
Zhao, P. D., Cheng, Q. M., Xia, Q. L., 2008. Quantitative predictionfor deep mineral exploration. Journal of China University of Geosciences, 19 (4): 309-318. doi: 10.1016/S1002-0705(08)60063-1
|
Zhao, P. D., Chi, S. D., 1991. A preli minary view on geological anomaly. Earth Science—Journal of China University of Geosciences, 16 (3): 241-248 (in Chinese with English abstract).
|
Zhao, P. D., Hu, W. L., Li, Z. J., 1983. The statistical prediction of mineral deposits. Geological Publishing House, Beijing (in Chinese).
|
Zhao, Z. Y., Xu, Y. M., 1996. Introduction to fuzzy theory and neural networks and their application. Tsinghua University Press, Beijing (in Chinese).
|
Zhu, Y. S., 1984. Introduction to mineral resource evaluation methods. Geological Publishing House, Beijing (in Chnese).
|
陈颙, 1989. 分形与混沌在地球科学中的应用. 北京: 学术期刊出版社.
|
邓聚龙, 1985. 灰色系统. 北京: 国防工业出版社.
|
董文泉, 周光亚, 夏立显, 1979. 数量化理论及其应用. 长春: 吉林人民出版社.
|
侯景儒, 尹镇南, 李维明, 等, 1998. 实用地质统计学. 北京: 地质出版社.
|
李长江, 麻土华, 朱兴盛, 等, 1999. 矿产勘查中的分形、混沌与ANN. 北京: 地质出版社.
|
李裕伟, 赵精满, 李晨阳, 2007. 基于GMS、DSS和GIS的潜在矿产资源评价方法. 北京: 地震出版社.
|
刘承祚, 孙惠文, 1981. 数学地质基本方法及应用. 北京: 地质出版社.
|
秦长兴, 翟裕生, 1992. 矿床学中若干自相似现象及其意义. 矿床地质, 11 (3): 259-266. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199203008.htm
|
沈步明, 1993. 分形结构因子及其在地质学上的应用. 岩石学报, 9 (3): 268-276. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199303004.htm
|
王世称, 2002. 综合信息矿产预测理论与方法. 北京: 科学出版社.
|
王梓坤, 1976. 概率论基础及应用. 北京: 科学出版社.
|
谢和平, 1996. 分形——岩石力学导论. 北京: 科学出版社.
|
叶天竺, 朱裕生, 夏庆霖, 等, 2004. 固体矿产预测评价方法技术. 北京: 大地出版社.
|
於崇文, 1987. 成矿作用与耗散结构. 地质学报, 61 (4): 336-349. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198704004.htm
|
於崇文, 2003. 地质系统的复杂性. 北京: 地质出版社.
|
於崇文, 2006. 矿床在混沌边缘分形生长. 合肥: 安徽教育出版社.
|
张尧庭, 杜劲松, 1998. 人工智能中的概率统计方法. 北京: 科学出版社.
|
赵鹏大, 1982. 试论地质体的数学特征. 地球科学——武汉地质学院学报, 7 (1): 145-155. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198201014.htm
|
赵鹏大, 池顺都, 1991. 初论地质异常. 地球科学——中国地质大学学报, 16 (3): 241-248. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199103000.htm
|
赵鹏大, 胡旺亮, 李紫金, 1983. 矿床统计预测. 北京: 地质出版社.
|
赵振宇, 徐用懋, 1996. 模糊理论和神经网络的基础与应用. 北京: 清华大学出版社.
|
中国科学院地质研究所, 1978. 数学地质引论. 北京: 地质出版社.
|
朱裕生, 1984. 矿产资源评价方法导论. 北京: 地质出版社.
|