• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 34 Issue 2
    Mar.  2009
    Turn off MathJax
    Article Contents
    LI Zeng-hua, CHENG Qiu-ming, XIE Shu-yun, XU De-yi, XIA Qing-lin, ZHANG Sheng-yuan, 2009. Application of P-A Fractal Model for Characterizing Distributions of Pyrrhotites in Seven Layers of Basalts in Gejiu District, Yunnan, China. Earth Science, 34(2): 275-280.
    Citation: LI Zeng-hua, CHENG Qiu-ming, XIE Shu-yun, XU De-yi, XIA Qing-lin, ZHANG Sheng-yuan, 2009. Application of P-A Fractal Model for Characterizing Distributions of Pyrrhotites in Seven Layers of Basalts in Gejiu District, Yunnan, China. Earth Science, 34(2): 275-280.

    Application of P-A Fractal Model for Characterizing Distributions of Pyrrhotites in Seven Layers of Basalts in Gejiu District, Yunnan, China

    • Received Date: 2008-12-15
    • Publish Date: 2009-03-25
    • The study on micro-pores of soils, pore-fracture-holes of sedimentary rocks and microstructures of minerals at different scales has attracted more and more attention.Typical fractal models, including P-A and box-counting methods, have also been used for such kind of studies.Basalts from seven sections in Laochang deposit, Yunnan Province, are well developed, but their forming processes and their contributions to deposits of Sn and other metals are still in issue.Based on the GIS-based P-A and box-counting fractal models, this paper focuses on the size distribution and irregularity analysis of pyrrhotites of the basalts.Three parameters DA (fractal dimension of area), DPA (fractal dimension of area and perimeter) and DP (fractal dimension of perimeter) of pyrrhotite are calculated.The results show that, from the first-section basalt to the seventh-section basalt, with the depth of rock body increasing, the values of DA and DP change a little, but the value of DPA shows an increasing trend.This indicates that the shapes of pyrrhotites become more and more irregular as the depth increases, probably due to the increase of temperature and pressure.

       

    • loading
    • Cheng, Q. M., 1995. The peri meter-area fractal model anditsapplication to geology. Math. Geol. , 27 (1): 69-82. doi: 10.1007/BF02083568
      Cheng, Q. M., 2001. GIS-based statistical and fractal/multifractal analysis of surface stream patterns in the Oak Ridges-Moraine. Computers & Geosciences, 27 (5): 513-526. https://www.academia.edu/73827132/GIS_based_statistical_and_fractal_multifractal_analysis_of_surface_stream_patterns_in_the_Oak_Ridges_Moraine
      Cheng, Q. M., Agterberg, F. P., Ballantyne, S. B., 1994. Theseparation of geochemical anomalies from backgroundby fractal methods. Journal of Geochemical Exploration, 51 (2): 109-130. doi: 10.1016/0375-6742(94)90013-2
      Ding, B. H., Li, W. C., Wang, F. M., 1999. Analysis of fractal image and design of fractal dimension calculationprogram. Journal of University of Science and Technology Beijing, 21 (3): 304-307 (in Chinese with Eng-lish abstract). https://www.sciencedirect.com/science/article/pii/S1877705812022618
      Goodchild, M. F., 1988. Lakes on fractal surfaces: A null hypothesis for lake-rich landscapes. Math. Geol. , 20 (6): 615-630. doi: 10.1007/BF00890580
      Gulbin, Y. L., Evangulova, E. B., 2003. Morphometry of quartz aggregates in granites: Fractal images referring to nucleation and growth processes. Math. Geol. , 35 (7): 819-833. doi: 10.1023/B:MATG.0000007781.90498.5e
      Li, Y. S., Qin, D. X., Dang, Y. T., 2006. Lithological featuresof basalt in Gejiu eastern area, Yunnan Province. Science & Technology Review, 24 (02): 70-72 (in Chinesewith English abstract).
      Li, Y. S., Qin, D. X., Hong, T., et al., 2007. The orecontrolling of basalt of the Indo-Chinese epoch in eastern Gejiu, Yunnan Province. Nonferrous Metals (Mining Section), 59 (1): 26-29 (in Chinese with Englishabstract).
      Lovejoy, S., 1982. Area-peri meter relation for rain and cloudareas. Science, 216 (4542): 185-187. doi: 10.1126/science.216.4542.185
      Mandelbrot, B. B., 1982. The fractal geometry of nature. W. H. Freeman, New York, 468.
      Mandelbrot, B. B., 1983. The fractal geometry of nature (updated and augmented edition). W. H. Freeman, New York, 468.
      Mandelbrot, B. B., Passoja, D. E., Paullay, A. J., 1984. Fractal character of fracture surfaces of metals. Nature, 308 (5961): 721-722. doi: 10.1038/308721a0
      Wang‚ Z. J. ‚Cheng ‚Q. M. ‚Xia‚ Q. L. ‚2005. The P-A fractal model characterizing microstructure of minerals. In: Cheng‚ Q. M. ‚et al. ‚eds. ‚Proceedings of IAMG'05: GIS and spatial analysis. China University of Geosciences Press, ‚Wuhan‚ 317-322.
      Wang, Z. J., Cheng, Q. M., 2006. Characterization of microtexture of quartz mylonite deformation process usingfractal P-A model. Earth Science-Journal of China University of Geosciences, 31 (3): 361-365 (in Chinese with English abstract).
      Wang, Z. J., Cheng, Q. M., Li, C., et al., 2007. Fractal modelling of the microstructure property of quartz mylonite during deformation process. Math. Geol. , 39 (1): 53-68. doi: 10.1007/s11004-006-9065-5
      Wang, Z. J., Cheng, Q. M., Xu, D. Y., et al., 2008. Fractal modeling of sphalerite banding in Jinding Pb-Zn deposit, Yunnan, southwestern China. Journal of China University of Geosciences, 19 (1): 77-84. doi: 10.1016/S1002-0705(08)60027-8
      Zhang, Z., Mao, H., Cheng, Q. M., 2001. Fractal geometryof element distribution on mineral surfaces. Math. Geol. , 33 (2): 217-228. doi: 10.1023/A:1007587318807
      Zuo ‚R. ‚Cheng‚ Q. M. ‚ Xia‚ Q. L. ‚ et al. ‚2008. Application of fractal models to distinguish between different mineral phases. Mathematical Geosciences, ‚ DOI: 10.1007/s11004-008-9191-3.
      丁保华, 李文超, 王福明, 1999. 分形图像分析与分形维数计算程序的设计. 北京科技大学学报, 21 (3): 304-307. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD199903024.htm
      黎应书, 秦德先, 党玉涛, 2006. 云南个旧东区玄武岩岩石学特征. 科技导报, 24 (02): 70-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB200602026.htm
      黎应书, 秦德先, 洪托, 等, 2007. 个旧东区印支期玄武岩的控矿作用. 有色金属(矿山部分), 59 (1): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU200701006.htm
      王志敬, 成秋明, 2006. P-A分形模型定量度量糜棱岩变形过程中石英微结构的变化. 地球科学——中国地质大学学报, 31 (3): 361-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603011.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(3)

      Article views (4067) PDF downloads(62) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return