• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 35 Issue 5
    Sep.  2010
    Turn off MathJax
    Article Contents
    WANG Guo-can, ZHANG Ke-xin, CAO Kai, WANG An, XU Ya-dong, MENG Yan-ning, 2010. Expanding Processes of the Qinghai-Tibet Plateau during Cenozoic: An Insight from Spatio-Temporal Difference of Uplift. Earth Science, 35(5): 713-727. doi: 10.3799/dqkx.2010.086.
    Citation: WANG Guo-can, ZHANG Ke-xin, CAO Kai, WANG An, XU Ya-dong, MENG Yan-ning, 2010. Expanding Processes of the Qinghai-Tibet Plateau during Cenozoic: An Insight from Spatio-Temporal Difference of Uplift. Earth Science, 35(5): 713-727. doi: 10.3799/dqkx.2010.086.

    Expanding Processes of the Qinghai-Tibet Plateau during Cenozoic: An Insight from Spatio-Temporal Difference of Uplift

    doi: 10.3799/dqkx.2010.086.
    • Received Date: 2010-05-31
      Available Online: 2021-11-10
    • Publish Date: 2010-09-01
    • In this paper we deduce the expanding and forming processes of the Qinghai-Tibet plateau by summarizing the spatio-temporal difference of uplift during Cenozoic. The uplift in the Paleocene-Eocene(65—35 Ma) mainly showed rock uplift driven by thrusting in different crust levels. The major denudation areas included the Tianshuihai, the Qilian Shan, Songpan-Ganzi-Bayan Har and Gangdise etc. There appeared alluvial-pluvial plain with low elevation in the Qiangtang-Hoh Xil-Qaidam and Xining-Linxia areas, and maritime space in the western Kunlun and Himalaya areas. In the Late Oligocene-Early Miocene (25—17 Ma), intensive thrusting induced increased crust thickness in the southern Tibet (including the Gangdese and the northern Himalayan belt). Then in about 17—12 Ma, crust isostatic compensation drove the southern Tibet to reach the current high elevation. Foreland basin developed in the Qiangtang-Hoh Xil area, and basin-range lelief emerged in the northern margin of the Qinghai-Tibet plateau during the late Oligocene-early Miocene. In the middle-late Miocene (13—7 Ma), centering in the southern Tibet (the Gangdise-northern Himalayan belt), the plateau grew and expanded northwardly. The basin in the Qiangtang-Hoh Xil area uplifted regionally and reached quite high altitude. In the northern margin of the Qinghai-Tibet plateau, a series of mountains ulteriorly popped up to the basin. The modern basin-range relief formed by and large but still kept lower average attitude. Since Pliocene, the plateau has been expanding northward rapidly. Rapid unitary surface uplift has been happening in the vast area of the Qiangtang-Hoh Xil-Songpan-Garzê-Bayan Har, forming the hinterland of the current plateau. In the northern edge of the plateau, the series of mountains also have been acutely uplifting and expanding forward adjacent basin, and average attitude has also been going up. In the Himalaya, the southern edge of the plateau, the relief contrast has been strengthening by thrusting and eroding. A series of high mountains finalize, with super-elevation of more than 7 000 m, such as the Qomolangma.

       

    • loading
    • Arnaud, N.O., Brunel, M., Cantagrel, J.M., et al., 1993. High cooling and denudation rates at Kongur Shan, eastern Pamir (Xinjiang, China) revealed by 40Ar/39Ar alkali feldspar thermochronology. Tectonics, 12(6): 1335-1346. doi: 10.1029/93TC00767
      Beaumont, C., Jamieson, R.A., Nguyen, M.H., et al., 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414: 738-742. doi: 10.1038/414738a
      Blisniuk, P.M., Stern, L.A., 2005. Stable isotope paleoaltimetry: a critical review. American Journal of Science, 305: 1033-1074. doi: 10.2475/ajs.305.10.1033
      Burbank, D.W., Blythe, A.E., Putkonen, J., et al., 2003. Decoupling of erosion and precipitation in the Himalayas. Nature, 426: 652-655. doi: 10.1038/nature02187
      Burbank, D.W., Derry, L.A., France-Lanord, C., 1993, Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature, 364: 48-50. doi: 10.1038/364048a0
      Burchfiel, B.C., Chen, Z., Hodges, K.V., et al., 1992. The South Tibetan detachment system, Himalayan orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt. Special Paper—Geological Society of America, 269: 1-41.
      Chen, J., Heermance, R.V., Burbank, D.W., et al., 2007. Magnetochronology and its implications of the Xiyu conglomerate in the southwestern Chinese Tianshan foreland. Quaternary Sciences, 27(4): 576- 587 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DSJJ200704013.htm
      Chen, S.F., Wilson, C.J.L., 1996. Emplacement of the Longmen Shan thrust-nappe belt along the eastern margin of the Tibetan plateau. Journal of Structural Geology, 18(4): 413-430. doi: 10.1016/0191-8141(95)00096-V
      Chen, Z.L., Gong, H.L., Li, L., et al., 2006. Cenozoic uplifting and exhumation process of the Altyn Tagh Mountains. Earth Science Frontiers, 13(4): 91-102 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY200604007.htm
      Chung, S.L., Lo, C.H., Lee, T.Y., et al., 1998. Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature, 394: 769-773. doi: 10.1038/29511
      Clark, M.K., House, M.A., Royden, L.H., et al., 2005. Late Cenozoic uplift of southeastern Tibet. Geology, 33(6): 525-528. doi: 10.1130/G21265.1
      Coleman, M., Hodges, K., 1995. Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature, 374: 49-52. doi: 10.1038/374049a0
      Coleman, M.E., 1998. U-Pb constraints on Oligocene-Miocene deformation and anatexis within the Central Himalaya, Marsyandi valley, Nepal. American Journal of Science, 298(7): 553-571. doi: 10.2475/ajs.298.7.553
      Cui, Z.J., Gao, Q.Z., Liu, G.N., et al., 1996. Planation surfaces, palaeokarst and uplift of Xizang (Tibet) plateau. Science in China (Ser. D), 26(4): 378-386(in Chinese).
      Cui, Z.J., Wu, Y.Q., Liu, G.N., et al. 1998. On Kunlun-Yellow River tectonic movement. Science in China (Ser. D), 28(1): 53-59 (in Chinese). doi: 10.1007/BF02878741
      Currie, B.S., Rowley, D.B., Tabor, N.J., 2005. Middle Miocene paleoaltimetry of southern Tibet: implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology, 33: 181-184. doi: 10.1130/G21170.1
      Dai, S., Fang, X.M., Song, C.H., et al., 2005. Early tectonic uplift of the northern Tibetan plateau. Chinese Science Bulletin, 50(7): 673-683 (in Chinese). doi: 10.1360/csb2005-50-7-673
      DeCelles, P.G., Quade, J., Kapp, P., et al., 2007. High and dry in central Tibet during the Late Oligocene. Earth and Planetary Science Letters, 253(3-4): 389-401. doi: 10.1016/j.epsl.2006.11.001
      Derry, L.A., France-Lanord, C., 1996, Neogene Himalayan weathering history and river 87Sr/86Sr: impact on the marine Sr record. Earth and Planetary Science Letters, 142(1-2): 59-74. doi: 10.1016/0012-821X(96)00091-X
      Ding, L., 2003. Paleocene deep-water sediments and radiolarian faunas: implications for evolution of Yarlung-Zangbo foreland basin, southern Tibet. Science in China (Ser. D), 33(1): 47-58 (in Chinese). http://d.wanfangdata.com.cn/Periodical_zgkx-ed200301008.aspx
      Ding, L., Zhong, D.L., Pan, Y.S., et al., 1995. Fission track dating evidence on fast uplifting since Pliocene of the eastern Himalayan syntaxis. China Science Bulletin, 40(16): 1497-1500 (in Chinese). doi: 10.1360/csb1995-40-16-1497
      Fang, X.M., Song, C.H., Dai, S., et al., 2007. Cenozoic deformation and uplift of the NE Qinghai-Tibet plateau: evidence from high-resolution magnetostratigraphy and basin evolution. Earth Science Frontiers, 14(1): 230-242 (in Chinese with English abstract).
      Garzione, C.N., DeCelles, P.G., Hodkinson, D.G., et al., 2003. East-west extension and Miocene environmental change in the southern Tibetan plateau: Thakkhola graben, Central Nepal. GSA Bulletin, 115(1): 3-20. doi:10.1130/0016-7606(2003)115<0003:EWEAME>2.0.CO;2
      Garzione, C.N., Dettman, D.L., Quade, J., et al., 2000a. High times on the Tibetan plateau: paleoelevation of the Thakkhola graben, Nepal. Geology, 28(4): 339-342. doi:10.1130/0091-7613(2000)28<339:HTOTTP>2.0.CO
      Garzione, C.N., Quade, J., DeCelles, P.G., et al., 2000b. Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth and Planetary Science Letters, 183(1-2): 215-229. doi: 10.1016/S0012-821X(00)00252-1
      Godard, V., Lave, J., Cattin, R., 2006. Numerical modelling of erosion processes in the Himalayas of Nepal: effects of spatial variations of rock strength and precipitation. Geological Society, London, Special Publications, 253: 341-358. doi: 10.1144/GSL.SP.2006.253.01.18
      Grujic, D., Coutand, I., Bookhagen, B., et al., 2006. Climate forcing of erosion, landscape, and tectonics in the Bhutan Himalayas. Geology, 34(10): 801-804. doi: 10.1130/G22648.1
      Harris, N., 1995. Significance of weathering Himalayan metasedimentary rocks and leucogranites for the Sr isotope evolution of sea water during Early Miocene. Geology, 23(9): 759-798. doi:10.1130/0091-7613(1995)023<0795:SOWHMR>2.3.CO;2
      Harrison, T.M., Copeland, P., Kidd, W., et al., 1995. Activation of the Nyainqentanghla shear zone: implications for uplift of the southern Tibetan plateau. Tectonics, 14(3): 658-676. doi: 10.1029/95TC00608
      Huntington, K.W., Blythe, A.E., Hodges, K.V., 2006. Climate change and Late Pliocene acceleration of erosion in the Himalaya. Earth and Planetary Science Letters, 252(1-2): 107-118. doi: 10.1016/j.epsl.2006.09.031
      Kohn, M.J., Dettman, D.L., 2007. Paleoaltimetry from stable isotope compositions of fossils. Reviews in Mineralogy & Geochemistry, 66(1): 119-154. doi: 10.2138/rmg.2007.66.5
      Lai, Q.Z., Ding, L., Wang, H.W., et al., 2006. Constraining the stepwise migration of the eastern Tibetan plateau margin by apatite fission track thermochronology. Science in China (Ser. D), 36(9): 785-796 (in Chinese).
      Li, G.B., Wan, X.Q., Qi, H.R.G., et al., 2002. Eocene fossil carbonate microfacies and sedimentary environment in Gangba-Tingri, southern Tibet. Chinese Geology, 29(4): 401-406 (in Chinese with English abstract).
      Li, H.B., Yang, J.S., 2004. Evidence for Cretaceous uplift of the northern Qinghai-Tibetan plateau. Earth Science Frontiers, 11(4): 345-359 (in Chinese with English abstract).
      Li, H.B., Yang, J.S., Xu, Z.Q., et al., 2001. Age of the Altyn Tagh fault: evidence from U-Pb SHRIMP dating of the syn-tectonic zircon. Geological Review, (3): 315-316 (in Chinese).
      Li, J.J., Fang, X.M., 1998. Uplift of the Tibetan plateau and environmental changes. Chinese Science Bulletin, 43(15): 1569-1574 (in Chinese). doi: 10.1360/csb1998-43-15-1569
      Li, J.J., Fang, X.M., Pan, B.T., et al., 2001. Late Cenozoic intensive uplift of Qinghai-Xizang plateau and its impacts on environments in surrounding area. Quaternary Sciences, 21(5): 381-391 (in Chinese with English abstract). http://www.researchgate.net/publication/284098400_Late_Cenozoic_intensive_uplift_of_Qinghai-Xizang_Plateau_and_its_impacts_on_environments_in_surrounding_area
      Liu, J.L., Pan, H.X., Ren, S.M., et al., 2003. Flower-structures formed in two levels along the Altun fault. Chinese Journal of Geology, 38(1): 52-59 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200301006.htm
      Liu, Y.J., Genser, J., Neubauer, F., et al., 2005. 40Ar/39Ar mineral ages from basement rocks in the eastern Kunlun Mountains, NW China, and their tectonic implications. Tectonophysics, 398(3-4): 199-224. doi: 10.1016/j.tecto.2005.02.007
      Molnar, P., 2004. Late Cenozoic increase in accumulation rates of terrestrial sediment: how might climate change have affected erosion rates? Annual Review of Earth and Planetary Sciences, 32: 67-89. doi: 10.1146/annurev.earth.32.091003.143456
      Molnar, P., England, P., 1990. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature, 346: 29-34. doi: 10.1038/346029a0
      Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan plateau, and the Indian monsoon. Reviews of Geophysics, 31: 357-396. doi: 10.1029/93RG02030
      Molnar, P., Houseman, G.A., England, P.C., 2006. Earth science: palaeo-altimetry of Tibet. Nature, 444, E4. doi: 10.1038/nature05368
      Pan, G.T., Wang, P.S., Xu, Y.R., et al., 1990. Cenozoic tectonic evolution of Qinghai-Xizang plateau. Geological Publishing House, Beijing, 1-165 (in Chinese).
      Parrish, R.R., Hodges, K.V., 1993. Miocene (22±1 Ma) metamorphism and two stage thrusting in the Greater Himalayan sequence, Annapurna Sanctuary, Nepal. Geological Society of America Abstract with Program, 25A: 174. http://www.researchgate.net/publication/237089131_Miocene_22_1_Ma_metamorphism_and_two-stage_thrusting_in_the_Greater_Himalayan_sequence_Annapurna_Sanctuary_Nepal
      Qian, D.Y., 1985. A discussion on the age of Qiuwu coal measures and the preliminary correlation of the molasse formation at the Ladakh-Gandise marginal mountain Chain. Contribution to the Geology of the Qinghai-Xizang plateau, 16: 229-241 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QZDZ198501016.htm
      Rowley, D.B., Currie, B. S, 2006. Palaeo-altimetry of the Late Eocene to Miocene Lunpola basin, Central Tibet, Nature, 439: 677-681. doi: 10.1038/nature04506
      Rowley, D.B., 2007. Stable isotope-based paleoaltimetry: theory and validation. Reviews in Mineralogy & Geochemistry, 66(2): 23-52. http://www.researchgate.net/publication/250130735_Stable_Isotope-Based_Paleoaltimetry_Theory_and_Validation
      Schlup, M., Carter, A., Cosca, M., et al., 2003. Exhumation history of eastern Ladakh revealed by 40Ar/39Ar and fission-track ages: the Indus River-Tso Morari transect, NW Himalaya. Journal of the Geological Society, 160(3): 385-399. doi: 10.1144/0016-764902-084
      Shao, L.Y., He, Z.P., Gu, J.Y., et al., 2006. Lithofacies palaeogeography of the Paleogene in Tarim basin. Journal of Palaeogeography, 8 (3): 353-364 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=GDLX200603008&dbcode=CJFD&year=2006&dflag=pdfdown
      Shi, Y.F., Li, J.J., Li, B.Y., et al., 1999. Uplift of the Qinghai-Xizang (Tibetan) plateau and East Asia environmental change during Late Cenozoic. Acta Geographica Sinica, 54(1): 10-21 (in Chinese with English abstract).
      Song, C.H., Fang, X.M., Li, J.J., et al., 2001. Tectonic uplift and sedimentary evolution of the Jiuxi basin in the northern margin of the Tibetan plateau since 13 MaBP. Science in China (Ser. D), 31(Suppl. ): 155-162 (in Chinese).
      Sorkhabi, R.B., Stump, E., Foland, K.A., et al., 1996. Fission-track and 40Ar/39Ar evidence for episodic denudation of the Gangotri granites in the Garhwal Higher Himalaya, India. Tectonophysics, 260(1-3): 187-199. doi: 10.1016/0040-195(96)00083-2
      Spicer, R.A., Harris, N.B.W., Widdowson, M., et al., 2003. Constant elevation of southern Tibet over the past 15 million years. Nature, 421: 622-624. doi: 10.1038/nature01356
      Tapponnier, P., Xu, Z, Q, Roger, F., et al., 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978
      Thiede, R.C., Bookhagen, B., Arrowsmith, J.R., et al., 2004. Climatic control on rapid exhumation along the southern Himalayan Front. Earth and Planetary Science Letters, 222(3-4): 791-806. doi: 10.1016/j.epsl.2004.03.015
      Thiede, R.C., Ehlers, T.A., Bookhagen, B., et al., 2009. Erosional variability along the Northwest Himalaya. Journal of Geophysical Research, 114, F01015. doi: 10.1029/2008JF001010
      Vannay, J.C., Grasemann, B., Rahn, M., et al., 2004. Miocene to Holocene exhumation of metamorphic crustal wedges in the Himalayan orogen: evidence for tectonic extrusion coupled to fluvial erosion. Tectonics, 23(TC1014): 1-24. doi: 10.1029/2002TC001429
      Wan, X.Q., 1990. Cretaceous-early tertiary foraminfera of Xizang (Tibet) and evolution of the Tethys-Himalayan sea. Acta Micropalaeontologica Sinica, 7(2): 169-186 (in Chinese with English abstract).
      Wang, C.S., Zhao, X.X., Liu. Z.F., et al., 2008a. Constraints on the early uplift history of the Tibetan plateau. PNAS, 105(13): 4987-4992. doi: 10.1073/pnas.0703595105
      Wang, E.Q., Chen, L.Z., Chen, Z.L., 2002. Tectonic and climatic element-controlled evolution of the Yalungzangbu River in southern Tibet. Quaternary Sciences, 22 (4): 365-373 (in Chinese with English abstract).
      Wang, E.Q., Wan, J.L., Liu, J., 2003. Late Cenozoic geological evolution of the foreland basin bordering the West Kunlun range in Pulu area: constrain on timing of uplift of northern margin of the Tibet plateau. Journal of Geophysical Research, 108(B8): 2401. doi: 10.1029/2002JB001877
      Wang, G., Wan, J.L., Wang, E.Q., et al., 2006. Extensional collapse of the southern part of the Gaoligong range in the western Yunnan, China and its tectonic origin. Acta Geologia Sinica, 80(9): 1262-1273 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200609004.htm
      Wang, G.C., Garver, J.I., Liu, C., 2008b. Cenozoic tectonic history in the Gyirong-Nyalam area, South Tibet: evidence from fission-track thermochronology. In: Garver, J.I., Montario, M., eds., Proceedings from the 11th International Conference on thermochronometry, Anchorage Alaska, Sept. 2008.
      Wang, G.C., Xiang, S.Y., Wang, A., et al., 2007. Thermochronological constraint to the processes of the East Kunlun and adjacent areas in Mesozoic-Early Cenozoic. Earth Science—Journal of China University of Geosciences, 32(5): 605-614, 680 (in Chinese with English abstract).
      Wang, J., 1998. Uplift of the Karibasheng and Kuzigan granite in the West Kunlun Mountains—evidence from apatite fission track analysis. Geological Review, 44(4): 435-442 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=3089886
      Wang, Y.B., Wang, Y., Liu, X., et al., 2001. Apatite fission-track records of Mesozoic and Cenozoic episodic reactivation of the Tianshan and West Kunlun Mountains. Regional Geology of China, 20(1): 94-99 (in Chinese with English abstract). http://www.researchgate.net/publication/285912752_Apatite_fission-track_records_of_Mesozoic_and_Cenozoic_episodic_reactivation_of_the_Tianshan_and_West_Kunlun_Mountains
      Wei, Q.R., Li, D.W., Wang, G.C., et al., 2007. Zircon SHRIMP U-Pb dating and geochemical characteristics of Chabaoma Formation volcanic rocks in northern Tibetan plateau and its petrogenesis. Acta Petrologica Sinica, 23(11): 2727-2736 (in Chinese with English abstract).
      Whipple, K.X., Tucker, G.E., 1999. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research—Solid Earth, 104(B8): 17661-17674. doi: 10.1029/1999JB900120
      Willett, S.D., 1999. Orogeny and orography: the effects of erosion on the structure of mountain belts. Journal of Geophysical Research—Solid Earth, 104(B12): 28957-28981. doi: 10.1029/1999JB900248
      Williams, H., Turner, S., Kelley, S., Harris, N., 2001. Age and composition of dikes in southern Tibet: new constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29(4): 339-342. doi:10.1130/0091-7613(2001) 029<0339:AACODI>2.0.CO;2
      Wu, Z.H., Hu, D.G., Liu, Q.S., et al., 2005. Chronological analyses of the thermal evolution of granite and the uplift process of the Nyainqentanglha range in Central Tibet. Acta Geoscientica Sinica, 26 (6): 505-512 (in Chinese with English abstract). http://www.oalib.com/paper/1559529
      Wu, Z.H., Meng, X.G., Hu, D.G., et al., 2004. New results and major progress in regional geological survey of the Damxung County sheet. Geological Bulletin of China, 23(5-6): 484-491 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2004Z1014.htm
      Xiao, J.D., 1988. The Early Tertiary Ouli Formation and its scleractinia in Ngari region, Xizang (Tibet). Contribution to the Geology of the Qinghai-Xizang (Tibet) plateau, 19: 120-131 (in Chinese).
      Xiang, H.F., Wan, J.L., Han, Z.J., et al., 2006. Geological analysis and FT dating of the large-scale right-lateral strike-slip movement of the Red River fault zone. Science in China (Ser. D), 36(11): 977-987 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JDXG200703002.htm
      Xu, Z.Q., Cai, Z.H., Zhang, Z.M., et al., 2008. Tectonic and fabric kinematics of the Namche Barwa terrane, eastern Himalayan syntaxis. Acta Petrologica Sinica, 24(7): 1463-1476 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200807005.htm
      Yin, A., Dang, Y.Q., Chen, X.H., et al., 2007. Cenozoic evolution and tectonic reconstruction of the Qaidam basin: evidence from seismic profiles. Journal of Geomechanics, 13 (3): 193-211 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200703000.htm
      Yuan, D.Y., Zhang, P.Z., Fang, X.M., et al., 2007. Late Cenozoic tectonic deformation of the Linxia basin, northeastern margin of the Qinghai-Tibet plateau. Earth Science Frontiers, 14(1): 243-250 (in Chinese with English abstract).
      Yuan, W.M., Wang, S.C., Li, S.R., et al., 2001. Apatite fission track dating evidence on the tectonization of Gangdese block, South Qinghai-Tibetan plateau. Chinese Science Bulletin, 46(20): 1739-1742 (in Chinese). doi: 10.1360/csb2001-46-20-1739
      Zeitler, P.K., 1985. Cooling history of the NW Himalaya, Pakistan. Tectonics, 4(1): 127-151. doi: 10.1029/TC004i001p00127
      Zhang, B.G., Mu, X.N., 1979. The discovery of the Tertiary marine deposits to the north of the Yarlung Tsangpo River, Xizang. Acta Stratigraphica Sinica, 3(1): 65-66 (in Chinese).
      Zhang, J.J., Ji, J.Q., Zhong, D.L., et al., 2003. Structural pattern of eastern Himalayan syntaxis in Namjagbarwa and its formation process. Science in China (Ser. D), 33(4): 373-383 (in Chinese). http://qikan.cqvip.com/Qikan/Article/Detail?id=1001210760
      Zhang, K.X., Wang, G.C., Cao, K., et al., 2008. Cenozoic sedimentary records and geochronological constraints of differential uplift of the Qinghai-Tibet plateau. Science in China (Ser. D), 38(12): 1575-1588.
      Zhang, K.X., Wang, G.C., Chen, F.N., et al., 2007. Coupling between the uplift of Qinghai-Tibet plateau and distribution of basins of Paleogene-Neogene. Earth Science—Journal of China University of Geosciences, 32(5): 583-597 (in Chinese with English abstract).
      Zhang, P.Z., Molnar, P., Downs, W.R., 2001. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature, 410: 891-897. doi: 10.1038/35073504
      Zhang, P.Z., Zheng, D.W., Yin, G.M., et al., 2006. Discussion on Late Cenozoic growth and rise of northeastern margin of the Tibetan plateau. Quaternary Sciences, 26(1): 5-13 (in Chinese with English abstract).
      Zhang, Y., Li, Y., Zhou, R.J., et al., 2006. The denudation of the eastern margin of the Qinghai-Xizang plateau since the Late Cenozoic: evidence from the fission-track ages. Sedimentary Geology and Tethyan Geology, 26(1): 97-102 (in Chinese with English abstract).
      Zhao, Z.Z., Li, Y.T., Ye, H.F., et al., 2001. Stratigraphy of the Qinghai-Tibet plateau. Science Press, Beijing, 1-542 (in Chinese).
      Zhong, D.L., Ding, L., 1996. Rising process of the Qinghai-Xizang (Tibet) plateau and its mechanism. Science in China (Ser. D), 26 (4): 289-295(in Chinese).
      陈杰, Heermance, R.V., Burbank, D.W., 等, 2007. 中国西南天山西域砾岩的磁性地层年代与地质意义. 第四纪研究, 27(4): 576-587. doi: 10.3321/j.issn:1001-7410.2007.04.014
      陈正乐, 宫红良, 李丽, 等, 2006. 阿尔金山脉新生代隆升-剥露过程. 地学前缘, 13(4): 91-102. doi: 10.3321/j.issn:1005-2321.2006.04.008
      崔之久, 高全洲, 刘耕年, 等, 1996. 夷平面、古岩溶与青藏高原隆升. 中国科学(D辑), 26(4): 378-386. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604014.htm
      崔之久, 伍永秋, 刘耕年, 等, 1998. 关于"昆仑-黄河运动". 中国科学(D辑), 28(1): 53-59. doi: 10.3321/j.issn:1006-9267.1998.01.007
      戴霜, 方小敏, 宋春晖, 等, 2005. 青藏高原北部的早期隆升. 科学通报, 50(7): 673-683. doi: 10.3321/j.issn:0023-074X.2005.07.011
      丁林, 2003. 西藏雅鲁藏布江缝合带古新世深水沉积和放射虫动物群的发现及对前陆盆地演化的制约. 中国科学(D辑), 33(1): 47-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200301005.htm
      丁林, 钟大赉, 潘裕生, 等, 1995. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据. 科学通报, 40(16): 1497-1500. doi: 10.3321/j.issn:0023-074X.1995.16.018
      方小敏, 宋春晖, 戴霜, 等, 2007. 青藏高原东北部阶段性变形隆升: 西宁、贵德盆地高精度磁性地层和盆地演化记录. 地学前缘, 14(1): 230-242. doi: 10.3321/j.issn:1005-2321.2007.01.022
      来庆洲, 丁林, 王宏伟, 等, 2006. 青藏高原东部边界扩展过程的磷灰石裂变径迹热历史制约. 中国科学(D辑), 36(9): 785-796. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200609000.htm
      李国彪, 万晓樵, 其和日格, 等, 2002. 藏南岗巴-定日地区始新世化石碳酸盐岩微相与沉积环境. 中国地质, 29(4): 401-406. doi: 10.3969/j.issn.1000-3657.2002.04.013
      李海兵, 杨经绥, 2004. 青藏高原北部白垩纪隆升的证据. 地学前缘, 11(4): 345-359. doi: 10.3321/j.issn:1005-2321.2004.04.002
      李海兵, 杨经绥, 许志琴, 等, 2001. 阿尔金断裂带的形成时代——来自于同构造生长锆石U-Pb SHRIMP定年证据. 地质论评, (3): 315-316. doi: 10.3321/j.issn:0371-5736.2001.03.018
      李吉均, 方小敏, 1998. 青藏高原隆起与环境变化研究. 科学通报, 43(15): 1569-1574. doi: 10.3321/j.issn:0023-074X.1998.15.001
      李吉均, 方小敏, 潘宝田, 等, 2001. 新生代晚期青藏高原强烈隆起及其对周边环境的影响. 第四纪研究, 21(5): 381-391. doi: 10.3321/j.issn:1001-7410.2001.05.001
      刘俊来, 潘宏勋, 任收麦, 等, 2003. 阿尔金断裂双层花状构造的厘定. 地质科学, 38(1): 52-59. doi: 10.3969/j.issn.1009-6248.2003.01.008
      潘桂棠, 王培生, 徐耀荣, 等, 1990. 青藏高原新生代构造演化. 北京: 地质出版社, 1-165.
      钱定宇, 1985. 论秋乌煤系及拉达克至冈底斯陆缘山链磨拉石的时代. 青藏高原地质文集, 16: 229-241. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198304001016.htm
      邵龙义, 何志平, 顾家裕, 等, 2006. 塔里木盆地古近纪岩相古地理. 古地理学报, 8(3): 353-364. doi: 10.3969/j.issn.1671-1505.2006.03.008
      施雅风, 李吉均, 李炳元, 等, 1999. 晚新生代青藏高原的隆升与东亚环境变化. 地理学报, 54(1): 10-21. doi: 10.3321/j.issn:0375-5444.1999.01.002
      宋春晖, 方小敏, 李吉均, 等, 2001. 青藏高原北缘酒西盆地13 Ma以来沉积演化与构造隆升. 中国科学(D辑), 31(增刊): 155-162. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2001S1023.htm
      万晓樵, 1990. 西藏白垩纪-早第三纪有孔虫与特提斯-喜马拉雅海的演化. 微体古生物学报, 7(2): 169-186. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT199002004.htm
      王二七, 陈良忠, 陈智樑, 2002. 在构造和气候因素制约下的雅鲁藏布江的演化. 第四纪研究, 22(4): 365-373. doi: 10.3321/j.issn:1001-7410.2002.04.009
      王刚, 万景林, 王二七, 等, 2006. 高黎贡山脉南部的晚新生代构造-重力垮塌及其成因. 地质学报, 80(9): 1262-1273. doi: 10.3321/j.issn:0001-5717.2006.09.004
      王国灿, 向树元, 王岸, 等, 2007. 东昆仑及相邻地区中生代—新生代早期构造过程的热年代学记录. 地球科学——中国地质大学学报, 32(5): 605-614, 680. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705005.htm
      王军, 1998. 西昆仑卡日巴生岩体和苦子干岩体的隆升—来自磷灰石裂变径迹分析的证据. 地质论评, 44(4): 435-442. doi: 10.3321/j.issn:0371-5736.1998.04.013
      王彦斌, 王永, 刘训, 等, 2001. 天山、西昆仑山中、新生代幕式活动的磷灰石裂变径迹纪录. 中国区域地质, 20(1): 94-99. doi: 10.3969/j.issn.1671-2552.2001.01.018
      魏启荣, 李德威, 王国灿, 等, 2007. 青藏高原北部查保马组火山岩的锆石SHRIMP U-Pb定年和地球化学特点及其成因意义. 岩石学报, 23(11): 2727-2736. doi: 10.3969/j.issn.1000-0569.2007.11.005
      吴珍汉, 胡道功, 刘琦胜, 等, 2005. 念青唐古拉花岗岩热演化历史和山脉隆升过程的热年代学分析. 地球学报, 26(6): 505-512. doi: 10.3321/j.issn:1006-3021.2005.06.004
      吴珍汉, 孟宪刚, 胡道功, 等, 2004. 当雄县幅地质调查新成果及主要进展. 地质通报, 23(5-6): 484-491. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2004Z1014.htm
      向宏发, 万景林, 韩竹军, 等, 2006. 红河断裂带大型右旋走滑运动发生时代的地质分析与FT测年. 中国科学(D辑), 36(11): 977-987. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200611000.htm
      肖劲东, 1988. 西藏阿里地区早第三纪欧利组及六射珊瑚. 青藏高原地质文集, 19: 120-131. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198800001014.htm
      许志琴, 蔡志慧, 张泽明, 等, 2008. 喜马拉雅东构造结—南迦巴瓦构造及组构运动学. 岩石学报, 24(7): 1463-1476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807005.htm
      尹安, 党玉琪, 陈宣华, 等, 2007. 柴达木盆地新生代演化及其构造重建——基于地震剖面的解释. 地质力学学报, 13(3): 193-211. doi: 10.3969/j.issn.1006-6616.2007.03.001
      袁道阳, 张培震, 方小敏, 等, 2007. 青藏高原东北缘临夏盆地晚新生代构造变形及过程. 地学前缘, 14(1): 243-250. doi: 10.3321/j.issn:1005-2321.2007.01.023
      袁万明, 王世成, 李胜荣, 等, 2001. 西藏冈底斯带构造活动的裂变径迹证据. 科学通报, 46(20): 1739-1742. doi: 10.3321/j.issn:0023-074X.2001.20.017
      章炳高, 穆西南, 1979. 西藏雅鲁藏布江以北海相第三系的发现. 地层学杂志, 3(1): 65-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ197901005.htm
      张进江, 季建清, 钟大赉, 等, 2003. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨. 中国科学(D辑), 33(4): 373-383. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200304009.htm
      张克信, 王国灿, 陈奋宁, 等, 2007. 青藏高原古近纪—新近纪隆升与沉积盆地分布耦合. 地球科学——中国地质大学学报, 32(5): 583-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200705002.htm
      张培震, 郑德文, 尹功明, 等, 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论. 第四纪研究, 26(1): 5-13. doi: 10.3321/j.issn:1001-7410.2006.01.002
      张毅, 李勇, 周荣军, 等, 2006. 晚新生代以来青藏高原东缘的剥蚀过程: 来自裂变径迹的证据. 沉积与特提斯地质, 26(1): 97-102. doi: 10.3969/j.issn.1009-3850.2006.01.016
      赵政璋, 李永铁, 叶和飞, 等, 2001. 青藏高原地层. 北京: 科学出版社, 1-542.
      钟大赉, 丁林, 1996. 青藏高原的隆起过程及其机制探讨. 中国科学(D辑), 26(4): 289-295. doi: 10.3321/j.issn:1006-9267.1996.04.001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(1)

      Article views (148) PDF downloads(62) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return