• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 36 Issue 5
    Sep.  2011
    Turn off MathJax
    Article Contents
    SU Ming, JIE Xi-nong, JIANG Tao, LI Jun-liang, SUN Zhi-peng, TIAN Shan-shan, ZHANG Cheng, HE Yun-long, ZHANG Cui-mei, 2011. Characteristics of S40 Boundary and Its Significance in Qiongdongnan Basin, Northern Continental Margin of South China Sea. Earth Science, 36(5): 886-894. doi: 10.3799/dqkx.2011.093
    Citation: SU Ming, JIE Xi-nong, JIANG Tao, LI Jun-liang, SUN Zhi-peng, TIAN Shan-shan, ZHANG Cheng, HE Yun-long, ZHANG Cui-mei, 2011. Characteristics of S40 Boundary and Its Significance in Qiongdongnan Basin, Northern Continental Margin of South China Sea. Earth Science, 36(5): 886-894. doi: 10.3799/dqkx.2011.093

    Characteristics of S40 Boundary and Its Significance in Qiongdongnan Basin, Northern Continental Margin of South China Sea

    doi: 10.3799/dqkx.2011.093
    • Received Date: 2011-02-18
    • Publish Date: 2011-09-15
    • Based on the integrated study of 2D seismic data, well data and biostratigraphy in the Qiongdongnan basin (QDNB), the Late Miocene unconformity (S40) at about 11.6 Ma which separated the underlying Meishan and overlying Huangliu Formation is interpreted.The characters of S40 including sea level changes, seismic-sedimentary facies and subsidence rate show significant differences in its eastern and western areas as follows: (1) In the littoral-neritic area of the northwestern QDNB, it is angular with intense erosion of the underlying strata, and even erosion of the whole Meishan Formation. (2) In the bathyal-abyssal area of southeastern QDNB, Meishan Formation is characterized by higher amplitude, generally continuous-hummocky and even progradational reflection, whereas Huangliu Formation is featured with low-amplitude, continuous facies.We suggest that the S40 interface displaying different characteristics was controlled by different mechanism factors, the western basin was strongly eroded by the underlying strata under the influence of massive sea-level fall; whereas the eastern basin with great subsidence occurred due to the Xisha trough activity since Late Miocene.This tectonic activity caused the eastern QDNB to change abruptly from shallow water to semi-deep or deep water environment, consequently the basin exhibits deep and shallow landforms in the east and west respectively.This topography remains until the present day.The interpretation of S40 is helpful not only to explain the South China Sea evolution but also to predict potential reservoir target.

       

    • loading
    • [1]
      Haq, B. U., Hardenbol, J., Vail, P. R., 1987. Chronology of fluctuating sea-levels since the Triassic. Science, 235(4793): 1156-1167. doi: 10.1126/science.235.4793.1156.
      [2]
      Li, S. T., Lin, C. S., Zhang, Q. M., et al., 1998. The dynamic process of screen rift of continental marginal basin in the northern South China Sea and the tectonic events since 10 Ma. Chinese Science Bulletin, 43(8): 797-810 (in Chinese). doi: 10.1360/csb1998-43-8-797
      [3]
      Liu, F. L., Wu, L. S., 2006. Topographic and morphologic characteristics and genesis analysis of Xisha trough Sea area in the South China Sea. Marine Geology & Quaternary Geology, 26(3): 7-14 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200603001.htm
      [4]
      Ren, J. Y., 2004. Tectonic significance of S6' boundary in Dongying depression, Bohai Gulf basin. Earth Science—Journal of China University of Geosciences, 29(1): 69-76, 92 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200401013.htm
      [5]
      Shao, L., Li, X. H., Wang, P. X., et al., 2004. Sedimentary record of the tectonic evolution of the South China Sea since the Oligocene: evidence from deep sea sediments of ODP Site 1148. Advances in Earth Science, 19(4): 539-544 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXJZ200404008.htm
      [6]
      Steckler, M. S., Watts, A. B., 1978. Subsidence of the Atlantic-type continental margin off New York. Earth and Planetary Science Letters, 41(1): 1-13. doi: 10.1016/0012-821X(78)90036-5.
      [7]
      Su, M., Li, J. L., Jiang, T., et al., 2009. Morphological features and formation mechanism of central Canyon in the Qiongdongnan basin. Marine Geology & Quaternary Geology, 29(4): 85-93 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-HYDZ200904017.htm
      [8]
      Tao, Z. P., Deng, H. W., Su, Z. F., et al., 2005. Transformation characteristics of sequence boundary and stratum statistics of Paleogene third-order sequences. Journalof Oil and Gas Technology (Journal of Jianghan Petroleum Institute-J. JPI), 27(3): 409-412 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX2005S3000.htm
      [9]
      Xie, X. N., Müller, R. D., Ren, J. Y., et al., 2008. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea. Marine Geology, 247(3-4): 129-144. doi: 10.1016/j.margeo.2007.08.005.
      [10]
      Yang, M. Z., Wang, M. J., Liang, J. Q., et al., 2003. Tectonic subsidence and its control on hydrocarbon resources in the Wan'an basin in the South China Sea. Marine Geology & Quaternary Geology, 23(2): 85-88 (in Chinese with English abstract). http://www.researchgate.net/publication/285754757_Tectonic_subsidence_and_its_control_on_hydrocarbon_resources_in_the_Wan'an_basin_in_the_South_China_Sea
      [11]
      Yao, B. C., Wan, L., Liu Z. H., et al., 2004a. Tectonic significance and its petroleum effect of the Wan'an tectonic movement in the south of the South China Sea. Marine Geology & Quaternary Geology, 24(1): 69-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200401010.htm
      [12]
      Yao, B. C., Wan, L., Wu, N. Y., 2004b. Cenozoic plate tectonic activities in the great South China Sea area. Geology in China, 31(2): 113-122 (in Chinese with English abstract). http://www.researchgate.net/publication/291025969_Cenozoic_plate_tectonic_activities_in_the_Great_South_China_Sea_area
      [13]
      Zhao, Q. H., Wang, P. X., Cheng, X. R., et al., 2001. A record of Miocene carbon excursions in the South China Sea. Science in China (Ser. D), 31(10): 808-815 (in Chinese). doi: 10.1007/BF02907087
      [14]
      李思田, 林畅松, 张启明, 等, 1998. 南海北部大陆边缘盆地幕式裂陷的动力过程及10 Ma以来的构造事件. 科学通报, 43(8): 797-810. doi: 10.3321/j.issn:0023-074X.1998.08.003
      [15]
      刘方兰, 吴庐山, 2006. 西沙海槽海域地形地貌特征及成因. 海洋地质与第四纪地质, 26(3): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200603001.htm
      [16]
      任建业, 2004. 渤海湾盆地东营凹陷S6'界面的构造变革意义. 地球科学——中国地质大学学报, 29(1): 69-76, 92.
      [17]
      邵磊, 李献华, 汪品先, 等, 2004. 南海渐新世以来构造演化的沉积记录——ODP1148站深海沉积物中的证据. 地球科学进展, 19(4): 539-544. doi: 10.3321/j.issn:1001-8166.2004.04.008
      [18]
      苏明, 李俊良, 姜涛, 等, 2009. 琼东南盆地中央峡谷的形态及成因. 海洋地质与第四纪地质, 29(4): 85-93. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200904017.htm
      [19]
      陶宗普, 邓宏文, 苏宗富, 等, 2005. 层序界面的转换性质与济阳坳陷下第三系三级层序统层. 石油天然气学报(江汉石油学院学报), 27(3): 409-412. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX2005S3000.htm
      [20]
      杨木壮, 王明君, 梁金强, 等, 2003. 南海万安盆地构造沉降及其油气成藏控制作用. 海洋地质与第四纪地质, 23(2): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200302013.htm
      [21]
      姚伯初, 万玲, 刘振湖, 等, 2004a. 南海南部海域新生代万安运动的构造意义及其油气资源效应. 海洋地质与第四纪地质, 24(1): 69-77. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200401010.htm
      [22]
      姚伯初, 万玲, 吴能友, 2004b. 大南海地区新生代板块构造活动. 中国地质, 31(2): 113-122. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200402000.htm
      [23]
      赵泉鸿, 汪品先, 成鑫荣, 等, 2001. 中新世"碳位移"事件在南海的记录. 中国科学(D辑), 31(10): 808-815. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200110002.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (3538) PDF downloads(87) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return