• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 36 Issue 5
    Sep.  2011
    Turn off MathJax
    Article Contents
    MA Hui, XU He-hua, SHI Xiao-bin, CHEN Ai-hua, LIU Tang-wei, 2011. Lithospheric Thermal-Rheological Structure of Nansha Trough Foreland Basin in South China Sea. Earth Science, 36(5): 939-948. doi: 10.3799/dqkx.2011.099
    Citation: MA Hui, XU He-hua, SHI Xiao-bin, CHEN Ai-hua, LIU Tang-wei, 2011. Lithospheric Thermal-Rheological Structure of Nansha Trough Foreland Basin in South China Sea. Earth Science, 36(5): 939-948. doi: 10.3799/dqkx.2011.099

    Lithospheric Thermal-Rheological Structure of Nansha Trough Foreland Basin in South China Sea

    doi: 10.3799/dqkx.2011.099
    • Received Date: 2011-05-28
    • Publish Date: 2011-09-15
    • In order to study the lithospheric thermodynamic properties of Nansha trough foreland basin, we simulate the deep lithosphere temperature field and rheological structure during the thrust faults tectonic activities from Middle Miocene to Holocene and after thrusting (static) in the basin using the finite element method, based on previous studies of geological and geophysical data together with a variety of rock thermodynamic parameters.Simulation results indicate that heat flow contribution from mantle reaches 60%-70% of surface heat flow which is controlled by deep mantle in Nansha trough foreland basin.Thrusting movements increase the surface heat flow in thrust-slip fault belts by 15%-25% to 70-75 mW/m2.Our results also show that the temperature of sedimentary layer is less than 200 ℃, while the temperature at Moho varies from 420 to 500 ℃; crust geothermal gradient ranges from 25 to 30 ℃/km.And calculated thickness of thermal lithosphere is about 80 km, which varies slightly laterally.The lithosphere in Nansha waters shows obvious rheological stratification properties, as a typical "sandwich" structure.Horizontally, lithosphere strength decreases in the direction from Nansha trough to thrust belt (NW to SE).The thickness of mechanical lithosphere is about 50 km and the effective elastic thickness ranges from 30 to 32 km.The simulated thermal lithosphere rheological structure also reveals that lithosphere of Nansha basin has rheological characteristics of strong mantle and weak crust, acting as high-strength block.Earthquake activities of Nansha waters are closely related to thermal structure, thermal activity and integrated strength of lithosphere.The weak thermal activity in the crust and high lithosphere strength may be important reasons for rare earthquake occurrence in this area.

       

    • loading
    • [1]
      An, M. J., Shi, Y. L., 2007. Three-dimensional temperature field of Chinese continental crust and upper mantle. Science in China (Ser. D), 37(6): 736-745 (in Chinese).
      [2]
      Burov, E. B., 2010. The equivalent elastic thickness(Te), seismicity and the long-term rheology of continental lithosphere: time to burn-out"crème brûlée"? Tectonophysics, 484(1-4): 4-26. doi: 10.1016/j.tecto.2009.06.013.
      [3]
      Burov, E. B., Diament, M., 1992. Flexure of the continental lithosphere with multilayered rheology. Geophysical Journal International, 109(2): 449-468. doi: 10.1111/j.1365-246X.1992.tb00107.x.
      [4]
      Burov, E. B., Diament, M., 1995. The effective elastic thickness(Te)of continental lithosphere: what does it really mean? Journal of Geophysical Research, 100(B3): 3905-3927. doi: 10.1029/94JB02770.
      [5]
      Cloetingh, S., Burov, E. B., 1996. Thermomechanical structure of European continental lithosphere: constraints from rheological profiles and EET estimates. Geophysical Journal International, 124(3): 695-723. doi: 10.1111/j.1365-246X.1996.tb05633.x.
      [6]
      Fernàndez, M., Ranalli, G., 1997. The role of rheology in extensional basin formation modelling. Tectonophysics, 282(1-4): 129-145. doi: 10.1016/S0040-1951(97)00216-3.
      [7]
      Franke, D., Barckhausen, U., Heyde, I., et al., 2008. Seismic images of a collision zone offshore NW Sabah/Borneo. Marine and Petroleum Geology, 25(7): 606-624. doi: 10.1016/j.marpetgeo.2007.11.004.
      [8]
      Fu, Y. T., Li, J. L., Zhou, H., et al., 2000. Comments on the effective elastic thickness of continental lithosphere. Geological Review, 46(2): 149-159 (in Chinese with English abstract). http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=geology&resid=28/6/495
      [9]
      Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of AsianEarth Sciences, 20(4): 353-431. doi: 10.1016/S1367-9120(01)00069-4.
      [10]
      Hesse, S., Back, S., Franke, D., 2010. The structural evolution of folds in a deepwater fold and thrust belt: a case studyfrom the Sabah continental margin offshore NW Borneo, SE Asia. Marine and Petroleum Geology, 27(2): 442-454. doi: 10.1016/j.marpetgeo.2009.09.004.
      [11]
      Hutchison, C. S., 2004. Marginal basin evolution: the southern South China Sea. Marine and Petroleum Geology, 21(9): 1129-1148. doi: 10.1016/j.marpetgeo.2004.07.002.
      [12]
      Hutchison, C. S., 2010. The North-West Borneo trough. Marine Geology, 271(1-2): 32-43. doi: 10.1016/j.margeo.2010.01.007.
      [13]
      Lin, A., Watts, A. B., 2002. Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. J. Geophys. Res., 107(B9): 2185, doi: 10.1029/2001JB000669.
      [14]
      Liu, S. W., Wang, L. S., Gong, Y. L., et al., 2005. Thermalrheological structure of the lithosphere beneath Jiyang depression: its implications for geodynamics. Science in China (Ser. D), 48(10): 1569-1584. doi: 10.1360/02yd0286.
      [15]
      Liu, S. W., Wang, L. S., Jia, C. Z., et al., 2008. Thermalrheological structure of continental lithosphere beneath major basins in central-western China: implications for foreland basin formation. Earth Science Frontiers, 15(3): 113-122 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200803009.htm
      [16]
      Maggi, A., Jackson, J. A., McKenzie, D., et al., 2000. Earth quake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology, 28(6): 495-498. doi:10.1130/0091-7613(2000)28<495:EFDEET>2.0.CO;2.
      [17]
      McNutt, M., 1990. Flexure reveals great depth. Nature, 343: 596-597. doi: 10.1038/343596a0.
      [18]
      Morley, C., 2002. A tectonic model for the tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics, 347(4): 189-215. doi: 10.1016/S0040-1951(02)00061-6.
      [19]
      Morley, C. K., 2009. Growth of folds in a deep-water setting. Geosphere, 5(2): 59-89. doi: 10.1130/GES00186.1.
      [20]
      Ou, X. G., Jin, Z. M., Xia, B., et al., 2006. Prediction of thermal conductivity of underground rocks from P-wavevelocity of ultrahigh-pressure metamorphic rocks. Earth Science—Journal of China University of Geosciences, 31(4): 564-568 (in Chinese with English abstract). http://www.researchgate.net/publication/288632071_Prediction_of_thermal_conductivity_of_underground_rocks_from_P-wave_velocity_of_ultrahigh-pressure_metamorphic_rocks
      [21]
      Ranalli, G., Murphy, D. C., 1987. Rheological stratificationof the lithosphere. Tectonophysics, 132(4): 281-295. doi: 10.1016/0040-1951(87)90348-9.
      [22]
      Shi, X. B., Qiu, X. L., Xia, K. Y., et al., 2003. Characteristics of surface heat flow in the South China Sea. Journal of Asian Earth Sciences, 22(3): 265-277. doi: 10.1016/S1367-9120(03)00059-2.
      [23]
      Shi, X. B., Zhou, D., Qiu, X. L., et al., 2002. Thermal andrheological structures of the Xisha trough, South China Sea. Tectonophysics, 351(4): 285-300. doi: 10.1016/S0040-1951(02)00162-2.
      [24]
      Shi, X. B., Zhou, D., Zhang, Y. X., 2000. Lithospheric thermal-rheological structures of the continental margin in the northern South China Sea. Chinese Science Bulletin, 45(22): 2107-2112. doi: 10.1007/BF03183537.
      [25]
      Simons, W. J. F., Socquet, A., Vigny, C., et al., 2007. A decade of GPS in Southeast Asia: resolving Sundaland motion and boundaries. Journal of Geophysical Research, 112: B06420, doi: 10.1029/2005JB003868.
      [26]
      Su, D. Q., Huang, C. L., Xia, K. Y., 1996. The crust in the NanSha trough. Scientic Geologica Sinica, 31(4): 410-415 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzkx199604009.htm
      [27]
      Toussaint, G., Burov, E., Avouac, J. P., 2004. Tectonic evolution of a continental collision zone: a thermomechanical numerical model. Tectonics, 23(6): TC6003. doi: 10.1029/2003TC001604.
      [28]
      Wang, L. S., Li, C., Yang, C., 1996. The lithospheric thermal structure beneath Tarim basin, western China. Acta Geophysica Sinica, 39(6): 794-803 (in Chinese with English abstract).
      [29]
      Watts, A. B., Burov, E. B., 2003. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth and Planetary Science Letters, 213(1-2): 113131. doi: 10.1016/S0012-821X(03)00289-9.
      [30]
      Watts, A. B., 1992. The effective elastic thickness of the lithosphere and the evolution of foreland basins. Basin Research, 4(3-4): 169-178. doi: 10.1111/j.13652117.1992.tb00043.x.
      [31]
      Williams, J., Ruiz, J., Rosenburg, M. A., et al., 2011. Insolation driven variations of mercury's lithospheric strength. Journal of Geophysical Research, 116: E01008. doi: 10.1029/2010JE003655.
      [32]
      Wu, S. M., Zhou, D., Liu, H. L., 2004. Tectonic framework and evolutionary charateristics of Nansha block, South China Sea. Geotectonica et Metallogenia, 28(1): 23-28 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DGYK200401003&dbcode=CJFD&year=2004&dflag=pdfdown
      [33]
      Wu, Y., Jin, Z. M., Ou, X. G., et al., 2005. Lithosphereic thermal structure beneath the area of the Chinese continental scientific drilling site (CCSD). Acta Petrologica Sinica, 21(2): 439-450 (in Chinese with English abstract). http://www.researchgate.net/profile/Yao_Wu11/publication/287195678_Lithospheric_thermal_structure_beneath_the_area_of_the_Chinese_Continental_Scientific_Drilling_Site_CCSD/links/5672291d08ae54b5e45fbbe7.pdf
      [34]
      Zang, S. X., Li, C., Ning, J. Y., et al., 2003. A preliminary model for 3-D rheological structure of the lithosphere in North China. Science in China (Ser. D), 46(5): 461473. doi: 10.1360/03yd9040.
      [35]
      Zhang, J., Song, H. B., 2001. The thermal structure of main sedimentary basins in the northern margin of the South China Sea. Journal of Geomechanics, 7(3): 238-244 (in Chinese with English abstract). http://www.researchgate.net/publication/283689077_The_thermal_structure_of_main_sedimentary_basins_in_the_northern_margin_of_the_South_China_Sea
      [36]
      Zhao, L. H., Jiang, X. D., Jin, Y., et al., 2004. Effective elastic thickness of continental lithosphere in western China. Earth Science—Journal of China University ofGeosciences, 29(2): 183-190 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200402010.htm
      [37]
      Zhou, D., Yao, B. C., 2009. Tectonics and sedimentary basins of the South China Sea: challenges and progresses. Journal of Earth Science, 20(1): 1-12. doi: 10.1007/s12583-009-0001-8.
      [38]
      Zhou, D., Yu, H. S., Xu, H. H., et al., 2003. Modeling of thermo-rheological structure of lithosphere under the foreland basin and mountain belt of Taiwan. Tectonophysics, 374(3-4): 115-134. doi: 10.1016/S00401951(03)00236-1.
      [39]
      安美建, 石耀霖, 2007. 中国大陆地壳和上地幔三维温度场. 中国科学(D辑), 37(6): 736-745. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200706003.htm
      [40]
      付永涛, 李继亮, 周辉, 等, 2000. 大陆岩石圈有效弹性厚度研究综述. 地质论评, 46(2): 149-159. doi: 10.3321/j.issn:0371-5736.2000.02.005
      [41]
      刘绍文, 王良书, 贾承造, 等, 2008. 中国中西部盆地区岩石圈热—流变学结构及其对前陆盆地成因演化的意义. 地学前缘, 15(3): 113-122. doi: 10.3321/j.issn:1005-2321.2008.03.008
      [42]
      欧新功, 金振民, 夏斌, 等, 2006. 利用超高压变质岩的P波速度估算地下岩石的热导率. 地球科学——中国地质大学学报, 31(4): 564-568. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200604014.htm
      [43]
      苏达权, 黄慈流, 夏戡原, 1996. 论南沙海槽的地壳性质. 地质科学, 31(4): 409-415. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199604009.htm
      [44]
      王良书, 李成, 杨春, 1996. 塔里木盆地岩石层热结构特征. 地球物理学报, 39(6): 794-803. doi: 10.3321/j.issn:0001-5733.1996.06.009
      [45]
      吴世敏, 周蒂, 刘海龄, 2004. 南沙地块构造格局及其演化特征. 大地构造与成矿学, 28(1): 23-28. doi: 10.3969/j.issn.1001-1552.2004.01.004
      [46]
      吴耀, 金振民, 欧新功, 等, 2005. 中国大陆科学钻探(CCSD)主孔地区岩石圈热结构. 岩石学报, 21(2): 439-450. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200502019.htm
      [47]
      张健, 宋海斌, 2001. 南海北部大陆架盆地热结构. 地质力学学报, 7(3): 238-244. doi: 10.3969/j.issn.1006-6616.2001.03.007
      [48]
      赵俐红, 姜效典, 金煜, 等, 2004. 中国西部大陆岩石圈的有效弹性厚度研究. 地球科学——中国地质大学学报, 29(2): 183-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200402010.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(2)

      Article views (3438) PDF downloads(82) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return