• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 37 Issue 1
    Jan.  2012
    Turn off MathJax
    Article Contents
    DENG Xiao-dong, LI Jian-wei, ZHANG Wei, Vasconcelos Paulo, ZHAO Xin-fu, 2012. Genesis of Granitic Pegmatites and Enclosed Graphic Texture in the Tonglüshan Fe-Cu (Au) Skarn Deposit: Constraints from K-Feldspar 40Ar/39Ar Dating, Trace-Element Geochemistry, and Fluid Inclusion Systematics. Earth Science, 37(1): 77-92. doi: 10.3799/dqkx.2012.008
    Citation: DENG Xiao-dong, LI Jian-wei, ZHANG Wei, Vasconcelos Paulo, ZHAO Xin-fu, 2012. Genesis of Granitic Pegmatites and Enclosed Graphic Texture in the Tonglüshan Fe-Cu (Au) Skarn Deposit: Constraints from K-Feldspar 40Ar/39Ar Dating, Trace-Element Geochemistry, and Fluid Inclusion Systematics. Earth Science, 37(1): 77-92. doi: 10.3799/dqkx.2012.008

    Genesis of Granitic Pegmatites and Enclosed Graphic Texture in the Tonglüshan Fe-Cu (Au) Skarn Deposit: Constraints from K-Feldspar 40Ar/39Ar Dating, Trace-Element Geochemistry, and Fluid Inclusion Systematics

    doi: 10.3799/dqkx.2012.008
    • Received Date: 2011-08-15
    • Publish Date: 2012-01-15
    • Tonglüshan Fe-Cu (Au) deposit is one of the largest skarn deposits in middle-lower Yangtze River metallogenic belt, which is associated with the Early Cretaceous Yangxin quartz diorite stock. Granitic pegmatites are well developed in the southeast mining area, emplaced in the Yangxin quartz diorite pluton and cut by garnet-diopside skarn. The cross-cutting relationships thus indicate that the granitic pegmatites are temporarily intermediate between the quartz diorite and skarn. Granitic pegmatites consist mainly of K-feldspar, plagioclase, and quartz, with conspicuous graphic textures marked by intergrowths of K-feldspar and quartz. K-feldspar with graphic textures from one granitic pegmatite dike has been successfully dated by the 40Ar/39Ar laser microprobe incremental heating technique, yielding a well-defined plateau age of 136.0±1.0 Ma (2σ), which is interpreted to be the emplacement age of the granitic pegmatite dike. The age constraints indicate that the pegmatites formed coevally with the quartz diorite stock in the mine and related skarn Cu-Au mineralization. In situ laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) provides a wealth of information on the major and trace elements of K-feldspar from granitic pegmatites and quartz diorite. The average bulk compositions of K-feldspar from the pegmatite and quartz diorite are represented by Or81Ab18 and Or78Ab21, respectively. K-feldspar minerals with graphic textures have higher Si and lower Al than those without graphic texture. Textural and geochemical data indicate that graphic textures in the pegmatites resulted from alternating growth of K-feldspar and quartz due to dynamic alteration of the relative concentration of SiO2 and Al2O3 in areas proximal to the outer zone of growing K-feldspar crystals. Both K-feldspars from quartz diorite and granitic pegmatite are enriched in large-ion lithophile elements (LILE), but the pegmatite contains more abundant Rb and Pb and lesser amounts of Ba, Sr, Li, and Cs. In the Rb-Ba, La-Ba, K/Ba-Ba, and Rb/Sr-Ba diagrams, samples of the pegmatite and quartz diorite display a trend predicted by the Rayleigh factional crystallization, indicating that the granitic pegmatite was generated by strong fractional crystallization of quartz dioritic magma. However, Pb, Li, and Ga deviate obviously from the trend of fractional crystallization, indicating these elements may have been complexed by a fluid phase. Abundance of melt and fluid inclusions in quartz minerals from the granitic pegmatites demonstrates that the pegmatite formed from melt and fluid coexisting system. This study provides a better understanding of the formation of pegmatites, exsolution of ore fluids from evolving magmas, and hydrothermal mineralization.

       

    • loading
    • Anovitz, L.M., Blencoe, J.G., 1999. Dry melting of high albite. American Mineralogist, 84(11): 1830-1842. http://www.degruyter.com/view/j/ammin.1999.84.issue-11-12/am-1999-11-1210/am-1999-11-1210.xml
      Baker, T., Achterberg, E.V., Ryan, C.G., et al., 2004. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology, 32(2): 117-120. doi: 10.1130/G19950.1
      Carstens, H., 1983. Simultaneous crystallization of quartz-feldspar intergrowths from granitic magmas. Geology, 11(6): 339-341. doi: 10.1130/0091-7613(1983)11<339:SCOQIF>2.0.CO;2
      Černý, P., Meintzer, R.E., 1988. Fertile granites in the Archean and Proterozoic fields of rare-element pegmatites: crustal environment, geochemistry and petrogenic relationships. In: Taylor, R.P., Strong, D.F., eds., Recent advances in the geology of granite-related mineral deposits. Canadian Institute of Mining and Metallurgy, 39(Special): 170-207.
      Černý, P., Meintzer, R.E., Anderson, A.J., 1985. Extreme fractionation in rare-element granitic pegmatites; selected examples of data and mechanisms. Canadian Mineralogist, 23: 381-421. http://pubs.geoscienceworld.org/canmin/article-pdf/23/3/381/3420016/381.pdf
      Chen, J.F., Zhou, T.X., Xing, F.M., et al., 1994. Isotopic geochemistry of copper-bearing rocks from middle-lower area of Yangtze River. In: Chen, H.S., ed., Isotope geochemistry studies. Zhejiang University Press, Hangzhou, 214-229 (in Chinese).
      Dostal, J., Chatterjee, A.K., 2010. Lead isotope and trace element composition of K-feldspars from peraluminous granitoids of the Late Devonian South Mountain batholith (Nova Scotia, Canada): implications for petrogenesis and tectonic reconstruction. Contributions to Mineralogy and Petrology, 159(4): 563-578. doi: 10.1007/s00410-009-0442-1
      Fenn, P.M., 1986. On the origin of graphic granite. American Mineralogist, 71(3-4): 325-330. http://ci.nii.ac.jp/naid/80002931654
      Hanson, G.N., 1978. The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth and Planetary Science Letters, 38(1): 26-43. doi: 10.1016/0012-821X(78)90124-3
      Harrison, T.M., McDougall, I., 1982. The thermal significance of potassium feldspar K-Ar ages inferred from 40Ar/39Ar age spectrum results. Geochimica et Cosmochimica Acta, 46(10): 1811-1820. doi: 10.1016/0016-7037(82)90120-X
      Hu, Z.C., Gao, S., Liu, Y.S., et al., 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry, 23: 1093-1101. doi: 10.1039/B804760J
      Icenhower, J., London, D., 1996. Experimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt. American Mineralogist, 81(5-6): 719-734. doi: 10.2138/am-1996-5-619
      Jahns, R.H., Burnham, C.W., 1969. Experimental studies of pegmatite genesis; l, a model for the derivation and crystallization of granitic pegmatites. Economic Geology, 64(8): 843-864. doi: 10.2113/gsecongeo.64.8.843
      Kirkham, R.V., Sinclair, W.D., 1988. Comb quartz layers in felsic intrusions and their relationship to porphyry deposits. In: Taylor, R.P., Strong, D.F., eds., Recent advances in the geology of granite-related mineral deposits. Canadian Institute of Mining and Metallurgy, 39(Special): 50-71.
      Kontak, D.J., Martin, R.F., 1997. Alkali feldspar in the peraluminous South Mountain batholith, Nova Scotia; trace-element data. Canandian Mineralogist, 35: 959-977. http://pubs.geoscienceworld.org/canmin/article-pdf/35/4/959/3447087/959.pdf
      Lee, J.K.W., 1995. Multipath diffusion in geochronology. Contributions to Mineralogy and Petrology, 120(1): 60-82. doi: 10.1007/BF00311008
      Lentz, D.R., Fowler, A.D., 1992. A dynamic model for quartz-feldspar graphic intergrowths from granitic pegmatites in the southwestern Grenville Province. Canandian Mineralogist, 30: 571-585. http://pubs.geoscienceworld.org/canmin/article-pdf/30/3/571/3420424/571.pdf
      Li, H.M., Wang, D.H., Guo, B.J., et al., 2008. 40Ar-39Ar age of potash feldspar from the Banchang Ag-Cu-Pb-Zn-(Mo) deposit in Henan and its geological significance. Acta Geoscientica Sinica, 29(2): 154-160 (in Chinese with English abstract).
      Li, J.W., Deng, X.D., Zhou, M.F., et al., 2010. Laser ablation ICP-MS titanite U-Th-Pb dating of hydrothermal ore deposits: a case study of the Tonglushan Cu-Fe-Au skarn deposit, SE Hubei Province, China. Chemical Geology, 270(1-4): 56-67. doi: 10.1016/j.chemgeo.2009.11.005
      Li, J.W., Zhao, X.F., Zhou, M.F., et al., 2009. Late Mesozoic magmatism from the Daye region, eastern China: U/Pb ages, petrogenesis, and geodynamic implications. Contributions to Mineralogy and Petrology, 157(3): 383-409. doi: 10.1007/s00410-008-0341-x
      Liu, Y., Hu, Z., Gao, S., et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004
      Liu, Y., Hu, Z., Zong, K., et al., 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4
      London, D., 2005. Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos, 80(1-4): 281-303. doi: 10.1016/j.lithos.2004.02.009
      London, D., Černý, P., Loomis, J., et al., 1990. Phosphorus in alkali feldspars of rare-element granitic pegmatites. Canadian Mineralogist, 28: 771-786. http://www.researchgate.net/publication/285023222_Phosphorus_in_alkali_feldspars_of_rare-element_granitic_pegmatites
      London, D., Morgan, G.B., Hervig, R.L., 1989. Vapor-undersaturated experiments with Macusani glass +H2O at 200 MPa, and the internal differentiation of granitic pegmatites. Contributions to Mineralogy and Petrology, 102(1): 1-17. doi: 10.1007/BF01160186
      Lovera, O.M., Grove, M., Harrison, T.M., 2002. Systematic analysis of K-feldspar 40Ar/39Ar step heating results Ⅱ: relevance of laboratory argon diffusion properties to nature. Geochimica et Cosmochimica Acta, 66(7): 1237-1255. doi: 10.1016/S0016-7037(01)00846-8
      Lovera, O.M., Richter, F.M., Harrison, T.M., 1989. The 40Ar/39Ar thermochronometry for slowly cooled samples having a distribution of diffusion domain sizes. Journal of Geophysical Research, 94(B12): 17917-17935. doi: 10.1029/JB094iB12p17917
      Mclaren, S., Dunlap, W.J., Powell, R., 2007. Understanding K-feldspar 40Ar/39Ar data: reconciling models, methods and microtextures. Journal of the Geological Society, London, 164(5): 941-944. doi: 10.1144/0016-76492006-180
      Neiva, A.M.R., 1995. Distribution of trace elements in feldspars of granitic aplites and pegmatites from Alijo-Sanfins, northern Portugal. Mineralogical Magazine, 59(1): 35-45. http://minmag.geoscienceworld.org/content/59/1/35
      Nomade, S., Renne, P.R., Vogel, N., et al., 2005. Alder creek sanidine (ACs-2): a Quaternary 40Ar/39Ar dating standard tied to the Cobb Mountain geomagnetic event. Chemical Geology, 218(3-4): 315-338. doi: 10.1016/j.chemgeo.2005.01.005
      Quidelleur, X., Grove, M., Lovera, O.M., et al., 1997. Thermal evolution and slip history of the Renbu Zedong thrust, southeastern Tibet. Journal of Geophysical Research, 102(B2): 2659-2679. doi: 10.1029/96JB02483
      Renne, P.R., Sharp, W.D., Deino, A.L., et al., 1997. 40Ar/39Ar dating into the historical realm: calibration against Pliny the Younger. Science, 277(5330): 1279-1280. doi: 10.1126/science.277.5330.1279
      Renne, P.R., Swisher, C.C., Deino, A.L., et al., 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology, 145(1-2): 117-152. doi: 10.1016/S0009-2541(97)00159-9
      Reynolds, P., Ravenhurst, C., Zentilli, M., et al., 1998. High-precision 40Ar/39Ar dating of two consecutive hydrothermal events in the Chuquicamata porphyry copper system, Chile. Chemical Geology, 148(1-2): 45-60. doi: 10.1016/S0009-2541(97)00129-0
      Seclaman, M., Constantinescu, E., 1972. Metasomatic origin of some micrographic intergrowths. American Mineralogist, 57: 932-940.
      Shu, Q.A., Chen, P.L., Chen, J.R., 1992. Geology of iron-copper deposits in eastern Hubei Province, China. Ministry of Metallurgical Industry Publishing House, Beijing, 160-165 (in Chinese).
      Simpson, D.R., 1962. Graphic granite from the Ramona pegmatite district, California. American Mineralogist, 47: 1123-1138. http://www.researchgate.net/publication/286199905_Graphic_granite_from_the_Ramona_pegmatite_district_California
      Steiger, R.H., Jäeger, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362. doi: 10.1016/0012-821X(77)90060-7
      Sterner, S.M., Hall, D.L., Bodnar, R.J., 1988. Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions. Geochimica et Cosmochimica Acta, 52(5): 989-1005. doi: 10.1016/0016-7037(88)90254-2
      Swisher, C.C., Wang, Y., Wang, X., et al., 1999. Cretaceous age for the feathered dinosaurs of Liaoning, China. Nature, 400: 58-61. doi: 10.1038/21872
      Vasconcelos, P.M., 1999. K-Ar and 40Ar/39Ar geochronology of weathering processes. Annual Review of Earth and Planetary Sciences, 27: 183-229. doi: 10.1146/annurev.earth.27.1.183
      Warnock, A.C., Zeitler, P.K., 1998. 40Ar/39Ar thermochronometry of K-feldspar from the KTB borehole, Germany. Earth and Planetary Science Letters, 158(1-2): 67-79. doi: 10.1016/S0012-821X(98)00044-2
      White, J.C., 2003. Trace-element partitioning between alkali feldspar and peralkalic quartz trachyte to rhyolite magma. Part Ⅱ: empirical equations for calculating trace-element partition coefficients of large-ion lithophile, high field-strength, and rare-earth elements. American Mineralogist, 88(2-3): 330-337. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsammin&resid=88/2-3/316
      Wilson, N.S.F., Zentilli, M., Reynolds, P.H., et al., 2003. Age of mineralization by basinal fluids at the El Soldado manto-type copper deposit, Chile; 40Ar/39Ar geochronology of K-feldspar. Chemical Geology, 197(1-4): 161-176. doi: 10.1016/S0009-2541(02)00350-9
      Woodruff, D.P., 1980. The solid-liquid interface. Cambrige University Press, Cambridge, U.K. 192p.
      Xie, G.Q., Zhao, H.J., Zhao, C.S., et al., 2009. Re-Os dating of molybdenite from Tonglüshan ore district in southeastern Hubei Province, Middle-Lower Yangtze River belt and its geological significance. Mineral Deposits, 28(3): 227-239 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200903002.htm
      Yu, Y.C., Li, G., Xiao, G.Q., et al., 1985. Geology and hydrothermal alteration of Tonglushan Cu-Fe skarns deposits, Daye, Hubei Province. Xianling: Geological Survey of Edong Press, 218 (in Chinese).
      Zhai, Y.S., Yao, S.Z., Lin, X.D., et al., 1992. Fe-Cu (Au) Metallogeny of the Middle-Lower Changjiang Region. Geological Publishing House, Beijing, 235 (in Chinese).
      Zhao, B., Li, Y.S., Zhao, J.S., 1995. The evidence from inclusions for magma-genetic skarn. Geochimica, 24(2): 198-200 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX502.013.htm
      Zhao, H.J., Mao, J.W., Xiang, J.F., et al., 2010. Mineralogy and Sr-Nd-Pb isotopic composition of quartz diorite in Tonglushan deposit, Hubei Province. Acta Petrologica Sinica, 26(3): 768-784 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201003011.htm
      陈江峰, 周泰禧, 邢凤鸣, 等, 1994. 长江中下游成矿带含铜岩体的同位地球化学研究. 见: 陈好寿编, 同位素地球化学研究. 杭州: 浙江大学出版社, 214-219.
      李厚民, 王登红, 郭保健, 等, 2008. 河南板厂银多金属矿床钾长石氩-氩年龄及其地质意义. 地球学报, 29(2): 154-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200802005.htm
      舒全安, 陈培良, 程建荣, 1992. 鄂东铁铜矿产地质. 北京: 冶金工业出版社, 160-165.
      谢桂青, 赵海杰, 招财胜, 等, 2009. 鄂东南铜绿山矿田矽卡岩型铜铁金矿床的辉钼矿Re-Os同位素年龄及其地质意义. 矿床地质, 28(3): 227-239. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200903002.htm
      余元昌, 李刚, 肖国荃, 等, 1985. 湖北省大冶县铜绿山接触交代铜铁矿床. 咸宁: 鄂东南地质大队, 218.
      翟裕生, 姚书振, 林新多, 等, 1992. 长江中下游游区铁铜(金)成矿规律. 北京: 地质出版社, 235.
      赵斌, 李院生, 赵劲松, 1995. 岩浆成因夕卡岩的包裹体证据. 地球化学, 24(2): 198-200. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX502.013.htm
      赵海杰, 毛景文, 向君峰, 等, 2010. 湖北铜绿山矿床石英闪长岩的矿物学及Sr-Nd-Pb同位素特征. 岩石学报, 26(3): 768-784. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003011.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(3)

      Article views (4009) PDF downloads(111) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return