• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 37 Issue 5
    Sep.  2012
    Turn off MathJax
    Article Contents
    ZHANG Yan-fei, WU Yao, LIU Peng-lei, WANG Yan-bin, WANG Chao, JIN Zhen-min, 2012. Walker Type Multi-Anvil Apparatus and Its Applications in Geosciences. Earth Science, 37(5): 955-965. doi: 10.3799/dqkx.2012.104
    Citation: ZHANG Yan-fei, WU Yao, LIU Peng-lei, WANG Yan-bin, WANG Chao, JIN Zhen-min, 2012. Walker Type Multi-Anvil Apparatus and Its Applications in Geosciences. Earth Science, 37(5): 955-965. doi: 10.3799/dqkx.2012.104

    Walker Type Multi-Anvil Apparatus and Its Applications in Geosciences

    doi: 10.3799/dqkx.2012.104
    • Received Date: 2012-04-03
      Available Online: 2021-11-10
    • Publish Date: 2012-09-15
    • High temperature and high pressure (HTHP) experiments is an important approach to study the nature of earth's deep interior. Multi-anvil press is widely used investigating phase transitions and mineral physics under the upper mantle conditions. The pressure calibration of the 18/12 (Octahedron Edge length/Truncated Edge Length) sample assembly for the multi-anvil press installed in China university of geosciences are summarized in this paper. Pressures for the 18/12 assembly were calibrated using phase transitions in bismuth at 2.55 GPa (Ⅰ-Ⅱ), and 7.7 GPa (Ⅲ-Ⅴ) at room temperature, and using quartz /coesite phase transition at 3.2 GPa and 1 200 ℃. This assembly can cover a pressure and temperature range up to 8 GPa and 2 000 ℃. Finally, the applications of HT-HP experiment in geosciences are also briefly discussed.

       

    • loading
    • Ai, Y.S., Zheng, T.Y., Xu, W.W., et al., 2003. A complex 660 km discontinuity beneath Northeast China. Earth and Planetary Science Letters, 212: 63-71. doi: 10.1016/S0012-821X(03)00266-8
      Aubaud, C., Hauri, E.H., Hirschmann, M.M., 2004. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophysical Research Letters, 31, L20611. doi: 10.1029/2004GL021341
      Bean, V.E., Akimoto, S., Bell, P.M., et al., 1986. Another step toward an international practical pressure scale: 2nd AIRAPT IPPS task group report. Physica B&C, 139-140: 52-54. doi: 10.1016/0378-4363(86)90521-8
      Birch, F., 1952. Elasticity and constitution of the Earth's interior. Journal of Geophysical Research, 57(2): 227-286. doi: 10.1029/JZ057i002p00227
      Block, S., 1978. Round-robin study of the high pressure phase transition in ZnS. Acta Crystallographica, A34(Suppl. ): 316.
      Bose, K., Ganguly, J., 1995. Quartz-coesite transition revisited; reversed experimental determination at 500-1 200 degrees C and retrieved thermochemical properties. American Mineralogist, 80(3-4): 231-238. doi: 10.2138/am-1995-3-404
      Dasgupta, R., Hirschmann, M.M., 2006. Melting in the earth's deep upper mantle caused by carbon dioxide. Nature, 440: 659-662. doi: 10.1038/nature04612
      Deuss, A., Woodhouse, J., 2001. Seismic observations of splitting of the mid-transition zone discontinuity in earth's mantle. Science, 294(5541): 354-357. doi: 10.1126/science.1063524
      Evans, R.L., Tarits, P., Chave, A.D., et al., 1999. Asymmetric electrical structure in the mantle beneath the East Pacific Rise at 17°S. Science, 286: 752-756. doi: 10.1126/science.286.5440.752
      Fei, Y.W., 2002. Phase transition in the earth's mantle and mantle mineralogy. In: Zhang, Y.X., Yin, A., eds., Structure, evolution and dynamics and the earth. High Education Press, Beijing, 49-90 (in Chinese).
      Fei, Y., Bertka, C.M., 1999. Phase transitions in the Earth's mantle and mantle mineralogy. In: Fei, Y., Bertka, C.M., Mysen, B.O., eds., Mantle petrology: field observations and high pressure experimentation. Mysen, Spec. Publ., 6: 189-207.
      Fei, Y., Van Orman, J., Li, J., et al., 2004. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. Journal of Geophysical Research, 109, B02305, doi: 10.1029/2003JB002562
      Frost, D.J., Poe, B.T., Trønnes, R.G., et al., 2004. A new large-volume multianvil system. Physics of the Earth and Planetary Interiors, 143-144: 507-514. doi: 10.1016/j.pepi.2004.03.003
      Gasparik, T., 1989. Transformation of enstatite-diopside-jadeite pyroxenes to garnet. Contributions to Mineralogy and Petrology, 102(4): 389-405. doi: 10.1007/BF00371083
      Gasparik, T., 1990. Phase relations in the transition zone. Journal of Geophysical Research, 15(B10): 15751-15769. doi: 10.1029/JB095iB10p15751
      Getting, I.C., 1998. New determination of the bismuth Ⅰ-Ⅱ equilibrium pressure: a proposed modification to the practical pressure scale. Metrologia, 35: 119-132. doi: 10.1088/0026-1394/35/2/7
      Gu, Y.J., Lerner-Lam, A.L., Dziewonski, A.M., et al., 2005. Deep structure and seismic anisotropy beneath the East Pacific Rise. Earth and Planetary Science Letters, 232(3-4): 259-272. doi: 10.1016/j.epsl.2005.01.019
      Irifune, T., Higo, Y., Inoue, T., et al., 2008. Sound velocities of majorite garnet and the composition of the mantle transition region. Nature, 451: 814-817. doi: 10.1038/nature06551
      Irifune, T., Ringwood, A.E., 1993. Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600-800 km in the mantle. Earth and Planetary Science Letters, 117(1-2): 101-110. doi: 10.1016/0012-821X(93)90120-X
      Irifune, T., Ringwood, A.E., Hibberson, W.O., 1994. Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth and Planetary Science Letters, 126(4): 351-368. doi: 10.1016/0012-821X(94)90117-1
      Irifune, T., Sekine, T., Ringwood, A.E., et al., 1986. The eclogite-garnetite transformation at high pressure and some geophysical implications. Earth and Planetary Science Letters, 77(2): 245-256. doi: 10.1016/0012-821X(86)90165-2
      Ito, E., 2007. Theory and practice-multianvil cells and high-pressure experimental methods. Treatise on Geophysics, 2: 197-229. doi: 10.1016/B978-044452748-6/00036-5
      Ito, E., Takahashi, E., 1989. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. Journal of Geophysical Research, 94(B8): 10637-10646. doi: 10.1029/JB094iB08p10637
      Jin, Z.M., 1997. The progress and perspectives of high-T and high-P experimental study in China. Chinese Journal of Geophysics, 40(Suppl. I): 70-81 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX1997S1008.htm
      Katsura, T., Ito, E., 1989. The system Mg2SiO4-Fe2SiO4 at high pressure and temperatures: precise determination of stability of olivine, modified spinel, and spinel. Journal of Geophysical Research, 94(B11): 15663-15670. doi: 10.1029/JB094iB11p15663
      Katsura, T., Yamada, H., Nishikawa, O., et al., 2004. Olivine-wadsleyite transformation in the system (Mg, Fe)2SiO4. Journal of Geophysical Research, 109(B02209). doi: 10.1029/2003JB002438
      Kawai, N., Endo, S., 1970. The generation of ultrahigh hydrostatic pressures by a split sphere apparatus. Review of Scientific Instruments, 41: 1178-1181. doi: 10.1063/1.1684753
      Kind, R., Li, X., 2007. Deep earth structure-transition zone and mantle discontinuities. Treatise on Geophysics, 1: 591-618. doi: 10.1016/B978-044452748-6/00020-1
      Liu, L., Zhang, J.F., Green, H.W., et al., 2007. Evidence of former stishovite in metamorphosed sediments: implying subduction to >350 km. Earth and Planetary Science Letters, 263(3-4): 180-191. doi: 10.1016/j.epsl.2007.08.010
      Lloyd, E.C., 1971. Accurate characterization of the high-pressure environment. NBS Spec. Publ. , 326: 1-3. http://www.researchgate.net/publication/236365649_Accurate_Characterization_of_the_High-Pressure_Environment
      McKenzie, D., Jackson, J., Priestley, K., 2005. Thermal structure of oceanic and continental lithosphere. Earth and Planetary Science Letters, 233(3-4): 337-349. doi: 10.1016/j.epsl.2005.02.005
      Morishima, H., Kato, T., Suto, M., et al., 1994. The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation. Science, 265(5176): 1202-1203. doi: 10.1126/science.265.5176.1202
      Ogasawara, Y., Fukasawa, K., Maruyama, S., 2002. Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav Massif, northern Kazakhstan. American Mineralogist, 87(4): 454-461. doi: 10.2138/am-2002-0409
      Ohtani, E., Irifune, T., Hibberson, W.O., et al., 1987. Modified split-sphere guide block for practical operation of a multiple-anvil apparatus. High Temperatures-High Pressures, 19: 523-529. http://www.researchgate.net/publication/279621765_MODIFIED_SPLIT-SPHERE_GUIDE_BLOCK_FOR_PRACTICAL_OPERATION_OF_A_MULTIPLE-ANVIL_APPARATUS
      Ono, S., Ohishi, Y., Isshiki, M., Watanuki, T., 2005. In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: implications for density of subducted oceanic plate. Journal of Geophysical Research, 110, B02208. doi: 10.1029/2004JB003196
      Piermarini, G.J., Block, S., 1975. Ultrahigh pressure diamond-anvil cell and several semiconductor phase transition pressures in relation to the fixed point pressure scale. Reviews of Scientific Instruments, 46: 973-980. doi: 10.1063/1.1134381
      Saikia, A., Frost, D.J., Rubie, D.C., 2008. Splitting of the 520-kilometer seismic discontinuity and chemical heterogeneity in the mantle. Science, 319(5869): 1515-1518. doi: 10.1126/science.1152818
      Sawamoto, H., 1987. Phase diagram of MgSiO3 at pressures up to 24 GPa and temperatures up to 2 200 ℃: phase stability and properies of tetragonal garnet. In: Manghnani, M.H., Syono, Y., eds., High-pressure research in mineral physics (Geophysical Monograph Ser. ). American Geophysical Union, Washington DC, 39: 209-219. doi: 10.1029/GM039p0209
      Shearer, P.M., 1990. Seismic imaging of upper-mantle structure with new evidence for a 520 km discontinuity. Nature, 344: 121-126. doi: 10.1038/344121a0
      Shearer, P.M., 2000. Upper mantle seismic discontinuities. In: Karato, S., Forte, A.M., Liebermann, R.C., et al., eds., Earth's deep interior: mineral physics and tomography from the atomic to the global scale (Geophysical Monograph). American Geophysical Union, Washington DC, 115-128.
      Sleep, N.H., Zahnle, K., 2001. Carbon dioxide cycling and implications for climate on ancient earth. Journal of Geophysical Research, 106(E1): 1373-1399. doi: 10.1029/2000JE001247
      Susaki, J., Akaogi, M., Akimoto, S., et al., 1985. Garnet-perovskite transformation in CaGeO3: in situ X-ray measurements using synchrotron radiation. Geophysical Research Letters, 12(10): 729- 732. doi: 10.1029/GL012i010p00729
      Suzuki, A., Ohtani, E., Morishima, H., 2000. In situ determination of the phase boundary between wadsleyite and ringwoodite in Mg2SiO4. Geophysical Research Letters, 27(6): 803-805. doi: 10.1029/1999GL008425
      Suzuki, T., Yagi, T., Akimoto, S., 1981. Precise determination of transition pressure of GaAs. Abstr. 22nd High Pressure, Conf. Japan, 8-9.
      Takahashi, E., 1986. Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. Journal of Geophysical Research, 91(B9): 9367-9382. doi: 10.1029/JB091iB09p09367
      Takahashi, E., Ito, E., 1987. Mineralogy of mantle peridotite along a model geotherm up to 700 km depth. In: Manghnani, M.H., Syono, Y., eds., High-pressure research in mineral physics: a volume in honor of Syun-iti Akimoto (Geophysical Monograph Ser. ). American Geophysical Union, Washington DC, 39: 427-437. doi: 10.1029/GM039p0427
      Walker, D., Carpenter, M.A., Hitch, C.M., 1990. Some simplifications to multianvil devices for high pressure experiments. American Mineralogist, 75(9-10): 1020-1028. http://www.researchgate.net/publication/279903818_Some_Simplifications_to_Multianvil_Devices_for_High_Pressures_Experiments
      Wang, Y.B., 2006. Combining the large-volume press with synchrotron radiation: applications to in-situ studies of earth materials: under high pressure and temperature. Earth Science Frontiers, 13(2): 1-36 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200602001.htm
      Weidner, D.J., Wang, Y., 2000. Phase transformations: implications for mantle structure. In: Karato, S., Forte, A.M., Liebermann, R.C., et al., eds., Earth's deep interior: mineral physics and tomography from the atomic to the global scale (Geophysical Monograph Ser. ). American Geophysical Union, Washington DC, 117: 215-235. doi: 10.1029/GM117p0215
      Wu, Y., Fei, Y.W., Jin, Z.M., et al., 2009. The fate of subducted upper continental crust: an experimental study. Earth and Planetary Science Letters, 282(1-4): 275-284. doi: 10.1016/j.epsl.2009.03.028
      Wu, Y., Wang, Y.B., Zhang, Y.F., et al., 2012, An experimental study of phase transformations in olivine under pressure and temperature conditions corresponding to the mantle transition zone. Chinese Science Bulletin, 57(8): 894-901. doi: 10.1007/s11434-011-4884-2
      Yagi, T., Akaogi, M., Shimomura, O., et al., 1987. In situ observation of the olivine-spinel phase transformation in Fe2SiO4 using synchrotron radiation. Journal of Geophysical Research, 92(B7): 6207-6213. doi: 10.1029/JB092iB07p06207
      Yasuda, A., Fujii, T., Kurita, K., 1994. Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: implications for the behavior of subducted oceanic crust in the mantle. Journal of Geophysical Research, 99(B5): 9401-9414. doi: 10.1029/93JB03205
      Ye, K., Cong, B.L., Ye, D.N., 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407: 734-736. doi: 10.1038/35037566
      Yoneda, A., Endo, S., 1980. Phase transition in barium and bismuth under high pressure. Journal of Applied Physics, 51(6): 3216-3221. doi: 10.1063/1.328076
      Zhang, J.Z., Li, B.S., Utsumi, W., et al., 1996. In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Physics and Chemistry of Minerals, 23(1): 1-10. doi: 10.1007/BF00202987
      Zhang, L.F., Song, S.G., Liou, J.G., et al., 2005. Relict coesite exsolution in omphacite from western Tianshan eclogites, China. American Mineralogist, 90(1): 181-186. doi: 10.2138/am.2005.1587
      Zhou, C.Y., Jin, Z.M., Zhang, J.F., 2010. Mantle transition zone: an important field in the studies of earth's deep interior. Earth Science Frontiers, 17(3): 90-113 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201003010.htm
      费英伟, 2002. 地幔中的相变和地幔矿物学. 见: 张有学, 尹安, 主编. 地球的结构、演化和动力学. 北京: 高等教育出版社, 49-90.
      金振民, 1997. 我国高温高压实验研究和展望. 地球物理学报, 40 (增刊I): 70-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX1997S1008.htm
      王雁宾, 2006. 地球内部物质性质的原位高温高压研究: 大体积压机与同步辐射源的结合. 地学前缘, 13(2): 1-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602001.htm
      周春银, 金振民, 章军锋, 2010. 地幔转换带: 地球深部研究的重要方向. 地学前缘, 17(3): 90-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003010.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(4)

      Article views (1281) PDF downloads(68) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return