• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 38 Issue 2
    Mar.  2013
    Turn off MathJax
    Article Contents
    CHENG Jing-wang, GU Han-ming, LIU Chun-cheng, LIU Zhi-bin, 2013. Full Waveform Inversion for Velocity Structure from Reflected Wave Seismic Data in the Frequency Domain. Earth Science, 38(2): 391-397. doi: 10.3799/dqkx.2013.038
    Citation: CHENG Jing-wang, GU Han-ming, LIU Chun-cheng, LIU Zhi-bin, 2013. Full Waveform Inversion for Velocity Structure from Reflected Wave Seismic Data in the Frequency Domain. Earth Science, 38(2): 391-397. doi: 10.3799/dqkx.2013.038

    Full Waveform Inversion for Velocity Structure from Reflected Wave Seismic Data in the Frequency Domain

    doi: 10.3799/dqkx.2013.038
    • Received Date: 2012-04-15
    • Publish Date: 2013-03-01
    • Full waveform inversion uses not only phase and amplitude information, but also waveform details, revealing precise details of the model. We use the LU factorization technique directly to solve the forward modeling, and show a preconditioned gradient method to inverse the velocity structure using the reflected wave from low-frequency to high-frequency in this study. The numerical structure of the finite difference method and back-propagation algorithm is exploited to develop an algorithm that explicitly calculates the Jacobin matrix utilizing a forward model solution. Furthermore, the diagonal elements of the false Hessian matrix are used as the preconditioned operator. Numerical tests on simple synthetic models find that a good velocity model can be obtained only by several frequency inversions, and the strategy of using low-frequency inversion result as the starting model in the high-frequency inversion can greatly reduce the non-uniqueness of their solutions. The initial model directly affects the imaging result. The smooth two-dimensional Gaussian model provides favorable low-frequency information for a better inversion result. The fast convergence can be achieved by using of the false Hessian matrix without any increase in the premise of computation.

       

    • loading
    • Ben-Hadj-Ali, H., Operto, S., Virieux, J., 2008. Velocity Model Building by 3D Frequency-Domain, Full-Waveform Inversion of Wide-Aperture Seismic Data. Geophysics, 73(5): VE101-VE117. doi: 10.1190/ 1.2957948
      Bian, A.F., Yu, W.H., 2011. Layer-Stripping Full Waveform Inversion with Damped Seismic Reflection Data. Journal of Earth Science, 22(2): 241-249. doi:10.1007/ s12583-011-0177-6
      Hicks, G.J., Pratt, R.G., 2001. Reflection Waveform Inversion Using Local Decent Methods: Estimating Attenuation and Velocity Over a Gas-Sand Deposit. Geophysics, 66(2): 598-612. doi:10.1190/ 1.1444951
      Ha, T., Chung, W., Shin, C., 2009. Waveform Inversion Using a Back-Propagation Algorithm and a Huber Function Norm. Geophysics, 74(3): R15-R24. doi:10.1190/ 1.3112572
      Long, G.H., Li, X.F., Zhang, M.G., et al., 2009. Visco-Acoustic Transmission Waveform Inversion for Velocity Structure in Space-Frequency Domain. Acta Seismologica Sinica, 31(1): 32-41(in Chinese with English abstract). doi: 10.1007/s11589-009-0045-y
      Malinowski, M., Operto, S., 2008. Quantitative Imaging of the Permo-Mesozoic Complex and Its Basement by Frequency Domain Waveform Tomography of Wide-Aperture Seismic Data from the Polish Basin. Geophysical Prospecting, 56: 805-825. doi: 10.1111/ j.1365-2478.2007.00680.x
      Pratt, R.G., Shin, C.S., Hicks, G.J., 1998. Guass-Newton and Full Newton Methods in Frequency-Space Seismic Waveform Inversion. Geophysical Journal International, 133(2): 341-362. doi: 10.1046/ j.1365-246X.1998.00498.x
      Shin, C., Yoon, K.G., Marfurt, K.J., et al., 2001. Efficient Calculation of a Partial-Derivative Wave Field Using Reciprocity for Seismic Imaging and Inversion. Geophysics, 66(6): 1856-1863. doi: 10.1190/1.1487129
      Shin, C., Jang, S., Min, D.J., 2001. Improved Amplitude Preservation for Prestack Depth Migration by Inversion Scattering Theory. Geophysical Prospecting, 49(5): 592-606. doi: 10.1046/ j.1365-2478.2001.00279.x
      Sourbier, F., Haidar, A., Giraud, L., et al., 2011. Three-Dimensional Parallel Frequency-Domain Visco-Acoustic Wave Modeling Based on a Hybrid Direct/Iterative Solver. Geophysical Prospecting, 59(5): 834-856. doi: 10.1111/ j.1365-2478.2011.00966.x
      Tarantola, A., 1984. Inversion of Seismic Reflection Data in the Acoustic Approximation. Geophysics, 49(8): 1259-1266. doi: 10.1190/ 1.1441754
      Wu, G.C., Liang, K., 2005. Quasi P-Wave Forward Modeling in Frequency-Space Domain in VTI Media. OGP, 40(5): 535-545 (in Chinese with English abstract). http://www.researchgate.net/publication/297432449_Quasi_P-wave_forward_modeling_in_frequency-space_domain_in_VTI_media
      Wu, G.C., Liang, K., 2005. Combined Boundary Conditions of Quasi P-Wave within Frequency-Space Domain in VTI Media. GPP, 44(4): 301-307(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYWT200504002.htm
      Xu, K., Wang, M.Y., 2001. Finite Element Inversion of the Coefficients of Acoustic Equation in Frequency Domain. Chinese Journal of Geophysics, 44(6): 852-864(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX200106014.htm
      Xu, K., Wang, M.Y., 2004. Frequency-Domain Finite-Element Inversion of Elastic-Wave Velocity Using the Geological Regular-Blocky-Model Method. Chinese Journal of Geophysics, 47(4): 708-717(in Chinese with English abstract). http://www.oalib.com/paper/1567254
      Yin, W., Yin, X.Y., Wu, G.C., et al., 2006. The Method of Finite Difference of High Precision Elastic Wave Equation in the Frequency Domain and Wave-Filed Simulation. Chinese Journal of Geophysics, 49(2): 561-568 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX200602031.htm
      Zhang, R.Z., Yuan, C., 2009. Application of the Seismic Waveform Inversion Technique. Natural Gas Industry, 29(2): 52-54 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200902012.htm
      龙桂华, 李小凡, 张美根, 等, 2009. 频率域粘弹性声波透射波形速度反演. 地震学报, 31(1): 32-41. doi: 10.3321/j.issn:0253-3782.2009.01.004
      吴国忱, 梁锴, 2005. VTI介质频率-空间域准P波正演模拟. 石油地球物理勘探, 40(5): 535-545. doi: 10.3321/j.issn:1000-7210.2005.05.010
      吴国忱, 梁锴, 2005. VTI介质准P波频率空间域组合边界条件研究. 石油物探, 44(4): 301-307. doi: 10.3969/j.issn.1000-1441.2005.04.001
      许琨, 王妙月, 2001. 声波方程频率域有限元参数反演. 地球物理学报, 44(6): 852-864. doi: 10.3321/j.issn:0001-5733.2001.06.015
      许琨, 王妙月, 2004. 利用地质规则块体建模方法的频率域有限元弹性波速度反演. 地球物理学报, 47(4): 708-717. doi: 10.3321/j.issn:0001-5733.2004.04.024
      殷文, 印兴耀, 吴国忱, 等, 2006. 高精度频率域弹性波方程有限差分方法及波场模拟. 地球物理学报, 49(2): 561-568. doi: 10.3321/j.issn:0001-5733.2006.02.032
      张荣忠, 袁诚, 2009. 地震波形反应技术的应用. 天然气工业, 29(2): 52-54. http://www.cnki.com.cn/Article/CJFDTotal-TRQG200902012.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)

      Article views (3481) PDF downloads(603) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return