• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 38 Issue 4
    Jul.  2013
    Turn off MathJax
    Article Contents
    WEN Xia, MA Chang-qian, SANG Long-kang, ROGER Mason, SHE Zhen-bing, XIONG Fu-hao, 2013. The Origin and Evolution of the Houshihushan Alkaline Ring Complex in the Yanshan Orogenic Belt. Earth Science, 38(4): 689-714. doi: 10.3799/dqkx.2013.069
    Citation: WEN Xia, MA Chang-qian, SANG Long-kang, ROGER Mason, SHE Zhen-bing, XIONG Fu-hao, 2013. The Origin and Evolution of the Houshihushan Alkaline Ring Complex in the Yanshan Orogenic Belt. Earth Science, 38(4): 689-714. doi: 10.3799/dqkx.2013.069

    The Origin and Evolution of the Houshihushan Alkaline Ring Complex in the Yanshan Orogenic Belt

    doi: 10.3799/dqkx.2013.069
    • Received Date: 2013-02-21
    • Publish Date: 2013-07-01
    • The Houshihushan complex is an alkaline ring complex associated with a collapsed caldera, consisting of a circular screen of alkaline volcanic rocks and post-collapse resurgent intrusions including a ring dyke of porphyritic quartz syenite, a central composite hypabyssal intrusion of nested stocks of drusy alkali-feldspar granite and porphyritic alkali-feldspar granite, and cone sheets of quartz syenite porphyry and granite porphyry. Zircon LA-ICPMS U-Pb analyses yields mean 206Pb/238U ages of 119±3Ma for porphyritic quartz syenite, 121±2Ma for quartz syenite and 121±2Ma for granite porphyry, respectively. Volcanic rocks of the Houshihushan Ring Complex (HRC) have similar ages to those of the intrusive rocks, confirming it as a volcanic-intrusive complex. Porphyritic quartz syenites have high contents of Na2O+K2O (10.0%-10.5%) and K2O (5.21%-5.42%) with positive Eu anomalies (Eu/Eu*=1.05-1.40). Alkali-feldspar granites and porphyries are characterized by enriched Na2O+K2O, FeOtot/MgO, Ga/Al, Zr, Nb and REE (except for Eu) and low abundance of Al2O3, CaO, MgO, Ba, Sr and Eu, indicative of A-type granitic rocks. The porphyries can be classified as aluminous A-type granites, and show high zircon saturation temperatures (880-901℃). All the A-type granites of the HRC posses negative εNd(t) values from -13.9 to -12.2. Porphyritic quartz syenite magmas were derived from partial melting of intermediate to mafic granulites and gneisses in the lower crust that mixed with enriched mantle-derived basaltic magma, with subsequent differentiation of clinopyroxene. Alkali-feldspar granite magmas were produced by mixing of mantle-derived basaltic magmas with upper crustal felsic melts, with fractionation of feldspars. The petrogenetic processes of porphyritic magmas involved partial melting of quartzfeldspathic rocks at shallow crust depths coupled with differentiation of feldspars. We suggest that development of the HRC involved the following four-stage sequence: (1) massive alkaline laves and pyroclastics erupted explosively; (2) the subsided caldera formed because of loss of magma from an underlying magma chamber which reduced magma pressure and facilitated collapse of the roof of the magma chamber along near-vertical ring faults. Magma intruded passively up the opening ring-faults to form the ring dyke of porphyritic quartz syenite during caldera collapse; (3) the high-level magma chamer became overpressured, and hot peralkline A-type granite magma was emplaced as the central stock of porphyritic alkali-feldspar granite. The overlying crust was fractured to generate cone fractures that provided space for the ascent of felsic melts to form cone sheets of quartz syenite porphyry; (4) the chamber resurged and a cogenetic pluton was emplaced as the nested stock of drusy alkali-feldspar granite. Build-up of magma overpressure within the central source chamber imparted upward force to fracture the host rock and form new conical fractures. These fractures were filled with magma to form cone sheets of granite porphyry. The Houshihushan alkaline ring complex formed over a brief time period in an extensional setting related to destruction of the eastern North China Craton during Early Cretaceous, possibly associated with subduction of paleo-Pacific plate.

       

    • loading
    • An, M.J., Feng, M., Zhao, Y., 2009. Destruction of Lithosphere within the North China Craton Inferred from Surface Wave Tomography. Geochemistry Geophysics Geosystems, 10(8): 1-18. doi: 10.1029/2009GC002562
      Beyth, M., Stern, R.J., Altherr, R., et al., 1994. The Late Precambrian Timna Igneous Complex Southern Israel, Evidence for Comagmatic-Type Sanukitoid Monzodiorite and Alkali Granite Magma. Lithos, 31(3-4): 103-124. doi: 10.1016/0024-4937(94)90003-5
      Bogaerts, M., Scaillet, B., Auwera, J.V., 2006. Phase Equilibria of the Lyngdal Granodiorite (Norway): Implications for the Origin of Metaluminous Ferroan Granitoids. Journal of Petrology, 47(12): 2405 -2431. doi: 10.1093/petrology/egl049
      Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1-2): 1-29. doi: 10.1016/j.lithos.2006.12.007
      Charles, N., Gumiaux, C., Augier, R., et al., 2011. Metamorphic Core Complexes vs. Synkinematic Plutons in Continental Extension Setting: Insights from Key Structures (Shandong Province, Eastern China). Journal of Asian Earth Sciences, 40(1): 261-278. doi: 10.1016/j.jseaes.2010.07.006
      Chen, B., Tian, W., Jahn, B.M., et al., 2008. Zircon SHRIMP U-Pb Ages and In-Situ Hf Isotopic Analysis for the Mesozoic Intrusions in South Taihang, North China Craton: Evidence for Hybridization between Mantle-Derived Magmas and Crustal Components. Lithos, 102(1-2): 118-137. doi: 10.1016/j.lithos.2007.06.012
      Clemens, J.D., Holloway, J.R., White, A.J.R., 1986. Origin of an A-Type Granite: Experimental Constraints. American Mineralogist, 71(3-4): 317-324. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsammin&resid=71/3-4/317
      Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982. Nature and Origin of A-Type Granites with Particular References to Southeastern Australia. Contributions to Mineralogy and Petrology, 80: 189-200. doi: 10.1007/BF00374895
      Cope, T.D., Graham, S.A., 2007. Upper Crustal Response to Mesozoic Tectonism in Western Liaoning, North China, and Implications for Lithospheric Delamination. In: Zhai, M.G., Windley, B.F., Kusky, T.M., et al., eds., Mesozoic Sub-Continental Lithospheric Thinning under Eastern Asia. Geological Society of London, Special Publication, 280: 201-222. doi: 10.1144/SP280.10
      Darby, B.J., Davis, G.A., Zhang, X.H., et al., 2004. The Newly Discovered Waziyu Metamorphic Core Complex, Yiwulü Shan, Western Liaoning Province, Northwest China. Earth Science Frontiers (China University of Geosciences, Beijing), 11(3): 145-155.
      Davidson, J., Turner, S., 2007. Amphibole "Sponge" in Arc Crust? Geology, 35(9): 787-790. doi: 10.1130/G23637A.1
      Davis, G.A., Zheng, Y., Wang, C., et al., 2001. Mesozoic Tectonic Evolution of the Yanshan Fold and Thrust Belt, with Emphasis on Hebei and Liaoning Provinces, Northern China. Geological Society of America Memoir, 194: 171-197. doi: 10.1130/0-8137-1194-0.171
      Deng, J.F., Su, S.G., Zhao, G.C., et al., 2004. The Sequence of Magmatic-Tectonic Events and Orogenic Processes of the Yanshan Belt, North China. Acta Geologica Sinica, 78(1): 260-266. doi: 10.1111/j.1755-6724.2004.tb00698.x
      Du, L.L., Yang, C.H., Wang, W., et al., 2013. Paleoproterozoic Rifting of the North China Craton: Geochemical and Zircon Hf Isotopic Evidence from the 2137Ma Huangjinshan A-Type Granite Porphyry in the Wutai Area. Journal of Asian Earth Sciences, doi: 10.1016/j.jseaes.2012.11.040
      Durrance, E.M., 1967. Photoelastic Stress Studies and Their Application to a Mechanical Analysis of the Tertiary Ring-Complex of Ardnamurchan, Argyllshire. Proceedings of the Geological Association, 78(2): 289-318. doi: 10.1016/S0016-7878(67)80012-9
      Frost, B.R., Barnes, C.G., Collins, W.J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. doi: 10.1093/petrology/42.11.2033
      Gao, S., Luo, T.C., Zhang, B.R., et al., 1998. Chemical Compositions of the Continental Crust Revealed by Studies in East China. Geochimica et Cosmochimica Acta, 62(1): 1959-1975. doi: 10.1016/S0016-7037(98)00121-5
      Goss, S.C., Wilde, S.A., Wu, F.Y., et al., 2010. The Age, Isotopic Signature and Significance of the Youngest Mesozoic Granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos, 120(3-4): 309-326. doi: 10.1016/j.lithos.2010.08.019
      Jahn, B.M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society of London, Special Publications, 226: 73-100. doi: 10.1144/GSL.SP.2004.226.01.05
      Jahn, B.M., Litvinovsky, B.A., Zanvilevich, A.N., et al., 2009. Peralkaline Granitoid Magmatism in the Mongolian-Transbaikalian Belt: Evolution, Petrogenesis and Tectonic Significance. Lithos, 113(3-4): 521-539. doi. org/10.1016/j. lithos. 2009.06.015 doi: 10.1016/j.lithos.2009.06.015
      Jahn, B.M., Wu, F.Y., Lo, C.H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafıc-Ultramafıc Intrusions of the Northern Dabie Complex. Chemical Geology, 157(1-2): 119-146. doi. org/10.1016/S0009-2541(98)00197-1 doi: 10.1016/S0009-2541(98)00197-1
      Jiang, N., Zhang, S.Q., Zhou, W.G., et al., 2009. Origin of a Mesozoic Granite with A-Type Characteristics from the North China Craton: Highly Fractionated from I-Type Magmas? Contributions to Mineralogy and Petrology, 158(1): 113-130. doi10.1007/s00410-008-0373-2 doi: 10.1007/s00410-008-0373-2
      Johnson, S.E., Paterson, S.R., Tate, M.C., 1999. Structure and Emplacement History of a Multiple-Center, Cone-Sheet-Bearing Ring Complex: The Zarza Intrusive Complex, Baja California, Mexico. Geological Society of America Bulletin, 111(4): 607-619. doi: 10.1130/0016-7606(1999)
      Johnson, S.E., Schmidt, K.L., Tate, M.C., 2002. Ring Complexes in the Peninsular Ranges Batholith, Mexico and the USA; Magma Plumbing Systems in the Middle and Upper Crust. Lithos, 61(3-4): 187-208. doi: 10.1016/S0024-4937(02)00079-8
      Kerr, A., Fryer, B.J., 1993. Nd Isotope Evidence for Crust-Mantle Interaction in the Generation of A-Type Granitoid Suites in Labrador, Canada. Chemical Geology, 104(1-4): 39-60. doi: 10.1016/0009-2541(93)90141-5
      King, P.L., White, A.J.R., Chappell, B.W. et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. doi: 10.1093/petroj/38.3.371
      Lei, R.X., Wu, C.Z., Chi, G.X., et al., 2013. The Neoproterozoic Hongliujing A-Type Granite in Central Tianshan (NW China): LA-ICP-MS Zircon U-Pb Geochronology, Geochemistry, N-Hf Isotope and Tectonic Significance. Journal of Asian Earth Sciences, doi: 10.1016/j.jseaes.2013.03.025
      Li, S.Z., Liu, J.Z., Zhao, G.C., et al., 2004. Key Geochronology of Mesozoic Deformation in the Eastern Block of the North China Craton and Its Constrains on Regional Tectonics: A Case of Jiaodong and Liaodong Peninsula. Acta Petrologica Sinica, 20(3): 633-646 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252033273.html
      Li, W.P., 2013. Magma Evolution of the Late Jurassic Volcanic Rocks and Its Genesis of the Lanqi Formation, Beipiao Area, Western Liaoning Province. Earth Science—Journal of China University of Geosciences, 37(1): 47-56 (in Chinese with English abstract). http://www.researchgate.net/publication/287877073_Magma_evolution_of_the_Late_Jurassic_volcanic_rocks_and_its_genesis_of_the_Lanqi_Formation_Beipiao_area_western_Liaoning_Province
      Ling, W.L., Duan, R.C., Xie, X.J., et al., 2009. Contrasting Geochemistry of the Cretaceous Volcanic Suites in Shandong Province and Its Implications for the Mesozoic Lower Crust Delamination in the Eastern North China Craton. Lithos, 113(3-4): 640-658. doi: 10.1016/j.lithos.2009.07.001
      Lipman, P.W., 1984. The Roots of Ash-Flow Calderas in Western North America; Windows into the Tops of Granitic Batholiths. J. Geophys. Res. , 89: 8801-8841. doi: 10.1029/JB089iB10p08801
      Lipman, P.W., 1997. Subsidence of Ash-Flow Calderas: Relation to Caldera Size and Magma-Chamber Geometry. Bulletin of Volcanology, 59(3): 198-218. doi10.1007/s004450050186 doi: 10.1007/s004450050186
      Lipman, P.W., 2000. Calderas. In: Sigurdsson, H., Houghton, B.F., McNutt, S.R., et al., eds., Encyclopedia of Volcanoes. Academic Press, San Diego, CA, 1417.
      Litvinovsky, B.A., Steel, I.M., Wickham, S.M., 2000. Silicic Magma Formation in Overthickened Crust: Melting of Charnockite and Leucogranite at 15, 20 and 25 kbar. Journal of Petrology, 41(5): 717-737. doi: 10.1093/petrology/41.5.717
      Liu, D.Y., Nutman, A.P., Compston, W., et al., 1992. Remnants of ≥ 3800Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 20(4): 339-342. doi: 10.1130/0091-7613(1992)
      Liu, H.T., Sun, S.H., Zhai, M.G., 2002. The Mesozoic High-Sr Granitoids in the Northern Marginal Region of North China Craton: Geochemistry and Source Region. Acta Petrologica Sinica, 18(4): 257-274 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB200203000.htm
      Liu, J., Davis, G.A., Lin, Z.Y., et al., 2005. The Liaonan Metamorphic Core Complex, Southeastern Liaoning Province, North China: A Likely Contributor to Cretaceous Rotation of Eastern Liaoning, Korea and Contiguous Areas. Tectonophysics, 407(1-2): 65-80. doi: 10.1016/j.tecto.2005.07.001
      Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082
      Liu, Y.S., Gao, S., Jin, S.Y., et al., 2001. Geochemistry of Lower Crustal Xenoliths from Neogene Hannuoba Basalt, North China Craton: Implications for Petrogenesis and Lower Crustal Composition. Geochimica et Cosmochimica Acta, 65(15): 2589-2604. doi: 10.1016/S0016-7037(01)00609-3
      Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. doi: 10.1016/j.chemgeo.2007.10.016
      Loiselle, M.C., Wones, D., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America, Abstracts with Programs, 11(7): 468. http://ci.nii.ac.jp/naid/10019593683
      Ludwig, K.R., 2003. User's Manual for ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, USA.
      Ma, Q., Zheng, J., Griffin, W.L., et al., 2012. Triassic "Adakitic" Rocks in an Extensional Setting (North China): Melts from the Cratonic Lower Crust. Lithos, 149(15): 159-173. doi: 10.1016/j.lithos.2012.04.017
      Magee, C., 2011. Emplacement of Sub-Volcanic Cone Sheet Intrusions. PhD Thesis. The University of Birmingham, England.
      Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America, 101(5): 635-643. doi: 10.1130/0016-7606(1989)
      Meng, Q.R., 2003. What Drove Late Mesozoic Extension of the Northern China-Mongolia Tract? Tectonophysics, 369(3-4): 155-174. doi: 10.1016/S0040-1951(03)00195-1
      Meng, Q.R., Zhang, G.W., 2000. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China. Tectonophysics, 323(3-4): 183-196. doi: 10.1016/S0040-1951(00)00106-2
      Middlemost, E.A.K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth Science Review, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9
      Miyashiro, A., 1978. Nature of Alkalic Volcanic Rock Series. Contributions to Mineralogy and Petrology, 66(1): 91-104. doi: 10.1007/BF00376089
      Mushkin, A., Navon, O., Halicz, L., et al., 2003. The Petrogenesis of A-Type Magmas from the Amram Massif, Southern Israel. Journal of Petrology, 44(5): 815-832. doi: 10.1093/petrology/44.5.815
      Namur, O., Charlier, B., Toplis, M.J., et al., 2011. Differentiation of Tholeiitic Basalt to A-Type Granite in the Sept Iles Layered Intrusion, Canada. Journal of Petrology, 52(3): 487-539. doi: 10.1093/petrology/egq088
      Niu, X.L., Chen, B., Ma, X., 2011. Petrogenesis of the Dengzhazi A-Type Pluton from the Taihang-Yanshan Mesozoic Orogenic Belts, North China Craton. Journal of Asian Earth Sciences, 41(2): 133-146. doi: 10.1016/j.jseaes.2011.01.008
      O'Driscoll, B., Troll, V.R., Reavy, R.J., et al., 2006. The Great Eucrite Intrusion of Ardnamurchan, Scotland: Reevaluating the Ring-Dike Concept. Geology, 34(3): 189-192. doi: 10.1130/G22294.1
      Patiño Douce, A.E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743-746. doi: 10.1130/0091-7613(1997)
      Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks of the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. doi: 10.1007/BF00384745
      Phillips, W.J., 1974. The Dynamic Emplacement of Cone Sheets. Tectonophysics, 24(1-2): 69-84. doi: 10.1016/0040-1951(74)90130-9
      Ren, J.Y., Tamaki, K., Li, S.T., et al., 2002. Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas. Tectonophysics, 344(3-4): 175-205. doi: 10.1016/S0040-1951(01)00271-2
      Shao, J.A., Li, X.H., Zhang, L.Q., et al., 2001. Geochemical Condition to Genetic Mechanism of the Mesozoic Bimodal Dike Swarms in Nankou-Guyaju. Geochimica, 30(6): 517-524 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200106002.htm
      Skjerlie, K.P., Johnston, A.D., 1992. Vapor-Absent Melting at 10 Kbar of a Biotite- and Amphibole-Bearing Tonalitic Gneiss: Implications for the Generation of A-Type Granites. Geology, 20(3): 263-266. doi:10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2
      Skjerlie, K.P., Johnston, A.D., 1993. Fluid-Absent Melting Behavior of an F-Rich Tonalitic Gneiss at Mid-Crustal Pressures: Implications for the Generation of Anorogenic Granites. Journal of Petrology, 34(4): 785-815. doi: 10.1093/petrology/34.4.785
      Song, B., Nutman, A.P., Liu, D.Y., et al., 1996.3800 to 2500Ma Crustal Evolution in the Anshan Area of Liaoning Province, Northeastern China. Precambrian Res. , 78(1-3): 79-94. doi:10.1016/0301- 9268(95)00070-4
      Su, S.G., Niu, Y.L., Deng, J.F., et al., 2007. Petrology and Geochronology of Xuejiashiliang Igneous Complex and Their Genetic Link to the Lithospheric Thinning during the Yanshanian Orogenesis in Eastern China. Lithos, 96(1-2): 90-107. doi: 10.1016/j.lithos.2006.09.020
      Sun, J.F., Yang, J.H., 2009. Early Cretaceous A-Type Granites in the Eastern North China Block with Relation to Destruction of the Craton. Earth Science—Journal of China University of Geosciences, 34(1): 137-147 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.013
      Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A.D., Norry, M.J., eds., Geological Society London Special Publication, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      Tibaldi, A., Pasquarè, A.F., Rust, D., 2011. New Insights into the Cone Sheet Structure of the Cuillin Complex, Isle of Skye, Scotland. Journal of the Geological Society, 168(3): 689-704. doi: 10.1144/0016-76492009-175
      Vallinayagam, G., Kochhar, N., 2011. Petrological Evolution and Emplacement of Siwana and Jalor Ring Complexes of Malani Igneous Suite, Northwestern Peninsular India. Topics in Igneous Petrology, 437-448. doi: 10.1007/978-90-481-9600-5_17
      Walter, T.R., 2008. Facilitating Dike Intrusion into Ring-Faults. Developments in Volcanology, 10: 351-374. doi: 10.1016/S1871-644X(07)00009-5
      Wang, Q., Wyman, D.A., Li, Z.X., et al., 2010. Petrology, Geochronology and Geochemistry of ca. 780Ma A-Type Granites in South China: Petrogenesis and Implications for Crustal Groh during the Breakup of the Supercontinent Rodinia. Precambrian Research, 178(1-4): 185-208. doi: 10.1016/j.precamres.2010.02.004
      Wang, Y., Zhang, Q. 2001. A Granitoids Complex from Badaling Area, North China: Composition, Geochemical Characteristics and Its Implications. Acta Petrologica Sinica, 17(4): 533-540 (in Chinese with English abstract). http://www.researchgate.net/publication/282372319_A_granitoid_complex_from_Badaling_area_North_China_Composition_geochemical_characteristics_and_its_implications
      Watson, E.B., Harrison, T.M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. doi: 10.1016/0012-821X(83)90211-X
      Wei, C.S., Zhao, Z.F., Spicuzza, M.J., 2008. Zircon Oxygen Isotopic Constraint on the Sources of Late Mesozoic A-Type Granites in Eastern China. Chemical Geology, 250(1-4): 1-15. doi: 10.1016/j.chemgeo.2008.01.004
      Wei, H.H., Meng, Q.R., Wu, G.L., et al., 2011. Multiple Controls on Rift Basin Sedimentation in Volcanic Settings: Insights from the Anatomy of a Small Early Cretaceous Basin in the Yanshan Belt, Northern North China. Geological Society of America Bulletin, 124(3-4): 380-399. doi: 10.1130/B30495.1
      Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202
      Wu, F.Y., Lin, J.Q., Wilde, S.A., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119. doi: 10.1016/j.epsl.2005.02.019
      Wu, F.Y., Sun, D.Y., Li, H.M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. doi: 10.1016/S0009-2541(02)00018-9
      Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554-1569. doi: 10.1360/04wd0130
      Xiao, W.J., Huang, B., Han, C., et al., 2010. A Review of the Western Part of the Altaids: A key to Understanding the Architecture of Accretionary Orogens. Gondwana Research, 18(2-3): 253-273. doi: 10.1016/j.gr.2010.01.007
      Xu, B.L., Yan, G.H., Xu, Z., et al., 1999. Geochemistry and Genetic Implications of Three Series of Yanshanian Granite in Northern Hebei Province. Acta Petrologica Sinica, 15(2): 208-216 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB902.006.htm
      Xu, Y.G., 2007. Diachronous Lithospheric Thinning of the North China Craton and Formation of the Daxin'anling-Taihangshan Gravity Lineament. Lithos, 96(1-2): 281-298. doi: 10.1016/j.lithos.2006.09.013
      Yang, J.H., Wu, F.W., Wilde, S.A., 2003. A Review of Geodynamic Setting of Large-Scale Late Mesozoic Gold Mineralization in the North China Craton: An Association with Lithospheric Thinning. Ore Geology Reviews, 23(3-4): 125-152. doi: 10.1016/S0169-1368(03)00033-7
      Yang, J.H., Wu, F.Y., Chung, S.L., et al., 2006. A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89(1-2): 89-106. doi: 10.1016/j.lithos.2005.10.002
      Yang, J.H., Wu, F.Y., Chung, S.L., et al., 2007. Rapid Exhumation and Cooling of the Liaonan Metamorphic Core Complex: Inferences from 40Ar/39Ar Thermochronology and Implications for Late Mesozoic Extension in the Eastern North China Craton. Geological Society of America Bulletin, 119(11-12): 1405-1414. doi: 10.1130/B26085.1
      Yang, J.H., Wu, F.Y., Wilde, S.A., et al., 2008. Petrogenesis of an Alkali Syenite-Granite-Rhyolite Suite in the Yanshan Fold and Thrust Belt, Eastern North China Craton: Geochronological, Geochemical and Nd-Sr-Hf Isotopic Evidence for Lithospheric Thinning. Journal of Petrology, 49(2): 315-351. doi: 10.1093/petrology/egm083
      Yang, S.Y., Jiang, S.Y., Zhao, K.D., et al., 2012. Geochronology, Geochemistry and Tectonic Significance of Two Early Cretaceous A-Type Granites in the Gan-Hang Belt, Southeast China. Lithos, 150: 155-170. doi: 10.1016/j.lithos.2012.01.028
      Zhang, H.F., Sun, M., Zhou, X.H., et al., 2003. Secular Evolution of the Lithosphere Beneath the Eastern North China Craton: Evidence from Mesozoic Basalts and High-Mg Andesites. Geochimica et Cosmochimica Acta, 67(22): 4373-4387. doi: 10.1016/S0016-7037(03)00377-6s
      Zhang, J.J., Zheng, Y.D., Shi, Q.Z., et al., 1997. The Xiaoqinling Detachment Fault and Metamorphic Core Complex of China: Structure, Kinematics, Strain and Evolution. Proc. 30th International Geological Congress, 14: 158-172. http://www.researchgate.net/publication/285490431_The_Xiaoqinling_detachment_fault_and_metamorphic_core_complex_of_China_structure_kinematics_strain_and_evolution
      Zhang, J.Y., Ma, C.Q., Wang, R.J., et al., 2013. Mineralogical, Geochronological and Geochemical Characteristics of Zhoukoudian Intrusion and Their Magmatic Source and Evolution. Earth Science—Journal of China University of Geosciences, 38(1): 68-86 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.007
      Zhang, S.H., Zhao, Y., Liu, X.C., et al., 2009. Late Paleozoic to Early Mesozoic Mafic-Ultramafic Complexes from the Northern North China Block: Constraints on the Composition and Evolution of the Lithospheric Mantle. Lithos, 110(1-4): 229-246. doi: 10.1016/j.lithos.2009.01.008
      Zhang, Y.Q., Li, J.L., Zhang, T., et al., 2008. Cretaceous to Paleocene Tectono-Sedimentary Evolution of the Jiaolai Basin and the Contiguous Areas of the Shandong Peninsula (North China) and Its Geodynamic Implications. Acta Geologica Sinica, 82(9): 1229-1257 (in Chinese with English abstract). http://www.cqvip.com/qk/95080x/2008009/28334393.html
      Zhao, D.P., Maruyama, S., Omori, S. 2007. Mantle Dynamics of Western Paciñc and East Asia: Insight from Seismic Tomography and Mineral Physics. Gondwana Research, 11(1-2): 120-131. doi: 10.1016/j.gr.2006.06.006
      Zhao, D.P., Ohtani, E., 2009. Deep Slab Subduction and Dehydration and Their Geodynamic Consequences: Evidence from Seismology and Mineral Physics. Gondwana Research, 16(3): 401-413. doi: 10.1016/j.gr.2009.01.005
      Zhao, G.C., Wilde, S.A., Cawood, P.A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints. Precambrian Research, 107(1-2): 45-73. doi: 10.1016/S0301-9268(00)00154-6
      Zhou, X.H., Zhang, G.H., Yang, J.H., et al., 2001. Sr-Nd-Pb Isotope Mapping of Late Mesozoic Volcanic Rocks across Northern Margin of North China Craton and Implications to Geodynamic Processes. Geochimica, 30(1): 10-23 (in Chinese with English abstract). http://www.researchgate.net/publication/310751802_Sr-Nd-Pb_isotope_mapping_of_Late_Mesozoic_volcanic_rocks_across_northern_margin_of_North_China_Craton_and_implications_to_geodynamic_processes
      Zhu, G., Jiang, D.Z., Zhang, B.L., et al., 2012. Destruction of the Eastern North China Craton in a Backarc Setting: Evidence from Crustal Deformation Kinematics. Gondwana Research, 22(1): 86-103. doi: 10.1016/j.gr.2011.08.005
      Zindler, A., Staudigel, H., Batiza, R., 1984. Isotope and Trace Element Geochemistry of Young Paciñc Seamounts: Implications for the Scale of Upper Mantle Heterogeneity. Earth and Planetary Science Letters, 70(2): 175-195. doi: 10.1016/0012-821X(84)90004-9
      李三忠, 刘建忠, 赵国春, 等, 2004. 华北克拉通东部地块中生代变形的关键时限及其对构造的制约—以胶辽地区为例. 岩石学报, 20(3): 633-646. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403027.htm
      李武平, 2012. 辽西北票晚侏罗世蓝旗组火山岩的岩浆演化及其岩石成因. 地球科学——中国地质大学学报, 37(1): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201201008.htm
      刘红涛, 翟明国, 刘建明, 等, 2002. 华北克拉通北缘中生代花岗岩: 从碰撞后到非造山. 岩石学报, 18(4): 433-448. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200204000.htm
      邵济安, 李献华, 张履桥, 等, 2001. 南口-古崖居中生代双峰式岩墙群形成机制的地球化学制约. 地球化学, 30(6): 517-524. doi: 10.3321/j.issn:0379-1726.2001.06.003
      孙金凤, 杨进辉, 2009. 华北东部早白垩世A型花岗岩与克拉通破坏. 地球科学——中国地质大学学报, 34(1): 137-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901015.htm
      王焰, 张旗, 2001. 八达岭花岗杂岩的组成、地球化学特征及其意义. 岩石学报, 17(4): 533-540. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200104003.htm
      许保良, 阎国翰, 徐振邦, 等, 1999. 冀北燕山期三个系列花岗质岩石的地球化学特征及其成因学意义. 岩石学报, 15(2): 208-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.006.htm
      张金阳, 马昌前, 王人镜, 等, 2013. 周口店岩体矿物学、年代学、地球化学特征及其岩浆起源与演化. 地球科学——中国地质大学学报, 38(1): 68-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201301011.htm
      张岳桥, 李金良, 张田, 等, 2008. 胶莱盆地及其邻区白垩纪-古新世沉积构造演化历史及其区域动力学意义. 地质学报, 82(9): 1229-1257. doi: 10.3321/j.issn:0001-5717.2008.09.007
      周新华, 张国辉, 杨进辉, 等, 2001. 华北克拉通北缘晚中生代火山岩Sr-Nd-Pb同位素填图及其构造意义. 地球化学, 30(1): 10-23. doi: 10.3321/j.issn:0379-1726.2001.01.003
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(4)

      Article views (5930) PDF downloads(1256) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return