• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 38 Issue 5
    Sep.  2013
    Turn off MathJax
    Article Contents
    WEI Bo, JIN Zhen-min, ZHANG Jun-feng, 2013. Deformation Microstructures and Mechanism of Ultrahigh-Pressure Garnet Wehrlite from Bixiling, Dabie Mountains. Earth Science, 38(5): 983-994. doi: 10.3799/dqkx.2013.096
    Citation: WEI Bo, JIN Zhen-min, ZHANG Jun-feng, 2013. Deformation Microstructures and Mechanism of Ultrahigh-Pressure Garnet Wehrlite from Bixiling, Dabie Mountains. Earth Science, 38(5): 983-994. doi: 10.3799/dqkx.2013.096

    Deformation Microstructures and Mechanism of Ultrahigh-Pressure Garnet Wehrlite from Bixiling, Dabie Mountains

    doi: 10.3799/dqkx.2013.096
    • Received Date: 2012-07-28
    • Publish Date: 2013-09-15
    • Studies of deformed microstructures of peridotite in ultrahigh-pressure metamorphic belt are conductive to understand rheological property and deformation mechanism of mantle materials derived from plate boundary, then further to explore the effect of microstructures during geodynamic process of the deep subduction and exhumation. Deformed microstructures of garnet wehrlite from Bixiling, Dabie Mountains are systematically studied through optical microscope, electron probe, infrared spectroscopy, electron back scattered diffraction (EBSD) technique and the method of oxidation decoration. Results show that: (1) garnet wehrlite from Bixiling with strong shape preferred orientation (SPO), but only clinopyroxene with strong lattice preferred orientation (LPO) and olivine with weak lattice preferred orientation, which is obviously different from the common characteristics of mantle peridotite which exhibits the stronger fabric in olivine than in clinopyroxene and in addition, reflects that clinopyroxene deforms through dislocation creep but olivine through grain boundary sliding with the adjustment of dislocation; (2) certain content of structural water are contained in clinopyroxene and olivine of garnet wehrlite from Bixiling, clinopyroxene with 124×10-6-247×10-6 and olivine with 38×10-6-80×10-6, which are higher than that in minerals of general peridotite in orogenic belt and may reflect the environment with high water content caused by the contamination of crust material; (3) significant dislocation microstructures developed in olivine and 230-600 MPa of differential stress calculated by the dislocation microstructures which is higher than the steady flow stress of normal upper mantle and indicates that our samples once have experienced the relative low-temperature deforming environment in subduction zone. Comprehensive study shows that the relatively special deforming microstructures in olivine and clinopyroxene from Bixiling attribute to the high pressure, low temperature, high differential stress and structural water content in ultrahigh-pressure metamorphic belt.

       

    • loading
    • Bell, D.R., Ihinger, P.D., Rossman, G.R., 1995. Quantitative Analysis of Trace OH in Garnet and Pyroxenes. American Mineralogist, 80(5): 465-474. doi: 10.1029/2001JB000679
      Bell, D.R., Rossman, G.R., Maldener, J., et al., 2003. Hydroxide in Olivine: A Quantitative Determination of the Absolute Amount and Calibration of the IR Spectrum. Journal of Geophysical Research, 108(B2): 2105. doi: 10.1029/2001JB000679
      Ben, I.W., Mainprice, D., 1998. An Olivine Fabric Database: An Overview of Upper Mantle Fabrics and Seismic Anisotropy. Tectonophysics, 269(1-2): 145-157. doi: 10.1016/S0040-1951(98)00141-3
      Boullier, A.M., Nicolas, A., 1975. Classification of Textures and Fabrics of Peridotite Xenoliths from South African Kimberlites. Physics and Chemistry of the Earth, 9: 467-475. doi: 10.1016/0079-1946(75)90034-8
      Carter, N.L., Avé Lallemant, H.G., 1970. High Temperature Flow of Dunite and Peridotite. Geol. Soc. Am. Bull. , 81(8): 2181-2202. doi: 10.1130/0016-7606(1970)81[2181:HTFODA]2.0.CO;2
      Chen, S., Hiraga, T., Kohlstedt, D.L., 2006. Water Weakening of Clinopyroxene in the Dislocation Creep Regime. Journal of Geophysical Research: Solid Earth, 111(B8): 1-14. doi: 10.1029/2005JB003885
      Durhanm, W.B., Goetze, C., Black, B., 1977. Plastic Flow of Oriented Single Crystals of Olivine 2, Observation and Interpretation of the Dislocation Structure. Journal of Geophysical Research, 82(36): 5755-5770. doi: 10.1029/JB082i036p05755
      Frese, K., Trommsdorf, V., Kunze, K., 2003. Olivine [100] Normal to Foliation: Lattice Preferred Orientation in Prograde Garnet Peridotite Formed at High H2O Activity, Cima di Gagnone(Centre Apls). Contribution to Mineralogy and Petrology, 145(1): 75-86. doi: 10.1007/s00410-002-0434-x
      Han, Y., Lu, F.X., Yang, S.W., 2009. Microstructure Characteristics of Olivines from Nanshanlong Peridotite and Bixiling Peridotite, Dabie Mountains. Journal of Chinese Electron Microscopy Society, 28(4): 371-379(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXV200904014.htm
      Hansen, L.N., Zimmerman, M.E., Kohlstedt, D.K., 2011. Grain Boundary Sliding in San Carlos Olivine: Flow Law Parameters and Crystallographic Preferred Orientation. Journal of Geophysical Research, 116(B8): 1-16. doi: 10.1029/2011JE008220
      Hirth, G., Kohlstedt, D., 2003. Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists. Geophys. Monogr. Ser. , 138: 83-105. doi: 10.1029/138GM06
      Hirth, G., Kohlstedt, D.L., 1995a. Experimental Constraints on the Dynamics of the Partially Molten Upper Mantle: Deformation in the Diffusion Creep Regime. Journal of Geophysical Research: Solid Earth, 100(B2): 1981-2001. doi: 10.1029/94JB02128
      Hirth, G., Kohlstedt, D.L., 1995b. Experimental Constraints on the Dynamics of the Partially Molten Upper Mantle: 2. Deformation in the Dislocation Creep Regime. Journal of Geophysical Research: Solid Earth, 100(B8): 15441-15449. doi: 10.1029/95JB01292
      Holtzman, B.K., Kohlstedt, D.L., Zimmerman, M.E., et al., 2003. Melt Segregation and Strain Partitioning: Implications for Seismic Anisotropy and Mantle Flow. Science, 301(5637): 1227-1230. doi: 10.1126/science.1087132
      Hu, L., Liu, J.L., Ji, M., et al., 2009. Atlas of Identifying Microstructures Deformed. Geological Press, Beijing(in Chinese).
      Jiao, S.Q., Wang, Q., Tan, Z.S., 1999. Rheological Research into Bixiling Ultrahigh-Pressure Peridotite in Dabie Mountains. Earth Science—Journal of China University of Geosciences, 24(6): 595-600(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199906008.htm
      Jin, Z.M., GreenⅡ, H.W., Borch, R.S., 1989. Microstructures of Olivine and Flow Stresses in the Upper Mantle beneath Eastern China. Earth Science—Journal of China University of Geosciences, 14(Suppl. ): 69-79(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/0040195189901819
      Jin, Z.M., GreenⅡ, H.W., Chen, X.H., 1991. A Study of Dislocation in Olivine Using a Scanning Electron Microscope. Acta Petrologica et Mineralogical, 10(1): 44-47(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW199101005.htm
      Jin, Z.M., Jin, S.Y., Gao, S., et al., 1998. Whether the Formation Depth of Ultrahigh-Pressure Rocks in Dabie were Limited in 100-150 km? Discovery of Needle Magnetite Containing Titanium and Chrome and the Consideration of its Dynamic Implication. Chinese Science Bulletin, 43(1): 767-771(in Chinese).
      Jung, H., 2009. Deformation Fabrics of Olivine in Val Malenco Peridotite Found in Italy and Implications for the Seismic Anisotropy in the Upper Mantle. Lithos, 109(3-4): 341-349. doi: 10.1016/j.lithos.2008.06.007
      Jung, H., Karato, S., 2001. Water-Induced Fabric Transitions in Olivine. Science, 293(5534): 1460-1463. doi: 10.1126/science.1062235
      Jung, H., Katayama, I., Jiang, Z., et al., 2006. Effect of Water and Stress on the Lattice Preferred Orientation of Olivine. Tectonophysics, 421: 1-22. doi: 10.1016/j.tecto.2006.02.011
      Karato, S., 1986. Does Partial Melting Reduce the Creep Strength of the Upper Mantle? Nature, 319: 309-310. dio: 10.1038/319309a0 doi: 10.1038/319309a0
      Karato, S., Jung, H., Katayama, I., et al., 2008. Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annu. Rev. Earth Planet Sci. , 36: 59-95. doi: 10.1146/annurev.earth.36.031207.124120
      Karato, S., Toriumi, M., Fujii, T., 1980. Dynamic Recrystallization of Olivine Single Crystals during High-Temperature Creep. Geophys. Res. Lett. , 7(9): 649-652. doi: 10.1029/GL007i009p00649
      Katayama, I., Jung, H., Karato, S., 2004. A New Type of Olivine Fabric from Deformation Experiments at Modest Water Content and Low Stress. Geology, 32(12): 1045-1048. doi: 10.1130/G20805.1
      Katayama, I., Karato, S.I., 2006. Effect of Temperature on the B- to C-Type Olivine Fabric Transition and Implication for Flow Pattern in Subduction Zones. Physics of the Earth and Planetary Interiors, 157(1-2): 33-45. doi: 10.1016/j.pepi.2006.03.005
      Liu, X.W., Jin, Z.M., Green, H.W., 2007. Clinoenstatite Exsolution in Diopsidic Augite of Dabieshan: Garnet Peridotite from Depth of 300 km. American Mineralogist, 92(4): 546-552. doi: 10.2138/am.2007.2232
      Mackwell, S.J., Kohlstedt, D.L., Paterson, M.S., 1985. The Role of Water in the Deformation of Olivine Single Crystals. J. Geophys. Res. , 90(B13): 11319-11333. doi: 10.1029/JB090iB13p11319
      Mainprice, D., Tommasi, A., Couvy, H., et al., 2005. Pressure Sensitivity of Olivine Slip Systems and Seismic Anisotropy of Earth's Upper Mantle. Nature, 433: 731-733. doi: 10.1038/nature03266
      Mei, S., Kohlstedt, D.L., 2000a. Influence of Water on Plastic Deformation of Olivine Aggregates: 1. Diffusion Creep Regime. Journal of Geophysical Research, 105(B9): 21457-21469. doi: 10.1029/2000JB900179
      Mei, S., Kohlstedt, D.L., 2000b. Influence of Water on Plastic Deformation of Olivine Aggregates: 2. Dislocation Creep Regime. Journal of Geophysical Research: Solid Earth, 105(B9): 21471-21481. doi: 10.1029/2000JB900180
      Mercier, J.C.C., 1985. Olivine and Pyroxenes. In: Wenk, H.R., ed., Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis. Academic Press, New York, 407-430.
      Michibayashi, K., Kusafuka, Y., Satsukawa, T., et al., 2012. Seismic Properties of Peridotite Xenoliths as a Clue to Imaging the Lithospheric Mantle beneath NE Tasmania, Australia. Tectonophysics, 522-523: 218-223. doi: 10.1016/j.tecto.2011.12.002
      Mizukami, T., Wallis, S.R., Yarnamoto, J., 2004. Natural Examples of Olivine Lattice Preferred Orientation Patterns with a Flow Normal a-Axis Maximum. Nature, 427: 432-436. doi: 10.1038/nature02179
      Möckel, J.R., 1969. Structural Petrology of the Garnet Peridotite of Alpe Arami(Ticino Switzerland). Leidse Geol. Med., 42: 61-130.
      Ohuchi, T., Kawazoe, T., Nishihara, Y., et al., 2011. High Pressure and Temperature Fabric Transitions in Olivine and Variations in Upper Mantle Seismic Anisotropy. Earth Planet. Sci. Lett. , 304(1-2): 55-63. doi: 10.1016/j.epsl.2011.01.015
      Paterson, M.S., 1982. The Determination of Hydroxyl by Infrared Absorption in Quartz, Silicate Glasses and Similar Materials. Bulletin de Mineral, 1: 20-29.
      Poirier, J.P., 1985. Creep of Crystals. Cambridge Univ. Press, New York.
      Raterron, P., Amiguet, E., Chen, J.H., et al., 2009. Experimental Deformation of Olivine Single Crystals at Mantle Pressures and Temperatures. Physics of the Earth and Planetary Interiors, 172(1-2): 74-83. doi: 10.1016/j.pepi.2008.07.026
      Raterron, P., Chen, J., Li, L., et al., 2007. Pressure-Induced Slip System Transition in Forsterite: Single Crystal Rheological Properties at Mantle Pressure and Temperature. American Mineralogist, 92(8-9), 1436-1445. doi: 10.2138/am.2007.2474
      Raterron, P., Jaoul, O., 1991. High-Temperature Deformation of Diopside Single Crystal: 1. Mechanical Data. J. Geophys. Res. , 96(B9): 14277-14286. doi: 10.1029/91JB01205
      Ross, J.V., Avè-Lallemant, H.G., Carter, N.L., 1980. Stress Dependence of Recrystallized-Grain and Subgrain size in Olivine. Tectonophysics, 70(1-2): 39-61. doi:org/ 10.1016/0040-1951(80)90020-7
      Sawaguchi, T., 2004. Deformation History and Exhumation Process of the Horoman Peridotite Complex, Hokkaido, Japan. Tectonophysics, 379(1-4): 109-126. doi: 10.1016/j.tecto.2003.10.011
      Scott, T., Kohlstedt, D.L., 2006. The Effect of Large Melt Fraction on the Deformation Behavior of Peridotite. Earth and Planetary Science Letters, 246(3-4): 177-187. doi: 10.1016/j.epsl.2006.04.027
      Skemer, P., Katayama, I., Karato, S.I., 2006. Deformation Fabrics of the Cima di Gagnone Peridotite Massif, Central Alps, Switzerland: Evidence of Deformation at Low Temperatures in the Presence of Water. Contrib. Mineral. Petrol. , 152(1): 43-51. doi: 10.1007/s00410-006-0093-4
      Smith, D.C., 1984. Coesite in Clinopyroxene in the Caledonides and its Implications for Geodynamics. Nature, 310: 641-644. doi: 10.1038/310641a0
      Song, Y.R., Jin, S.Y., Ye, K., 2007. Olivine Fabric in Garnet Iherzolite from Rongcheng and Bixiling of Sulu-Dabie Ultrahigh-Pressure(UHP) Metamorphic Belt, Eastern China. Act Petrologica Sinica, 23(5): 1153-1159(in Chinese with English abstract).
      Tommasi, A., Vauchez, A., Ionov, D.A., 2008. Deformation, Static Recrystallization, and Reactive Melt Transport in Shallow Subcontinental Mantle Xenoliths (Tok Cenozoic Volcanic Field, SE Siberia). Earth Planet. Sci. Lett. , 272(1-2): 65-77. doi: 10.1016/j.epsl.2008.04.020
      Toriumi, M., 1979. Relation between Dislocation Density and Subgrain Size in Naturally Deformed Olivine in Peridotite. Contrib. Mineral. Petrol. , 68(2): 181-186. doi: 10.1007/BF00371899
      Van Roermund, H.L.M., Drury, M.R., 1998. Ultrahigh Pressure (P > 6 Gpa) Garnet Peridotites in Western Norway: Exhumation of Mantle Rocks from > 185 km Depth. Terra Nova, 10(6): 295-301. doi: 10.1046/j.1365-3121.1998.00213.x
      Wang, Q., 2010. A Review of Water Contents and Ductile Deformation Mechanisms of Olivine: Implications for the Lithosphere-Asthenosphere Boundary of Continents. Lithos, 120(1-2): 30-41. doi: 10.1016/j.lithos.2010.05.010
      Wang, X., Liou, J.G., Mao, H.K., 1989. Coesite Bearing Eclogite from the Dabie Mountains in Central China. Geology, 17(12): 1085-1088. doi:10.1130/0091-7613(1989)017<1085:CBEFTD>2.3.CO;2
      Wang, Y.F., Jin, Z.M., 2001. Diffusion Creep of Rocks and Its Implication. Geological Science and Technology Information, 20(4): 5-11(in Chinese with English abstract).
      Wang, Y.F., Zheng, Y.F., Jin, Z.M., 2005. Microstructures and Rheology of Harzburgite from Dongqiao, Northern Tibet. Earth Science—Journal of China University of Geosciences, 30(1): 52-60(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200501007.htm
      Xu, S., Su, W., Liu, Y.C., et al., 1992. Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting. Science, 256(5053): 80-82. doi: 10.1126/science.256.5053.80
      Xu, Z.Q., Zhang, Z.M., Liu, F.L., et al., 2003. Exhumation Structure and Mechanism of the Sulu Ultrahigh-Pressure Metamorphic Belt, Central China. Acta Geologica Sinica, 77(4): 433-450(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200304000.htm
      Ye, K., Cong, B., Ye, D., 2000. The Possible Subduction of Continental Material to Depths Greater than 200 km. Nature, 407: 734-736. doi: 10.1038/35037566
      Zhang, R.Y., Liou, J.G., 1998. Dual Origin of Garnet Peridotites of the Dabie-Sulu UHP Terrane, Eastern-Central China. Episodes, 21(4): 229-234. doi: 10.18814/epiiugs/1998/v21i4/003
      Zhang, R.Y., Liou, J.G., Cong, B.L., 1995. Talc-, Magnesite- and Ti-Clinohumite Bearing Ultrahigh-Pressure Meta-Mafic and Ultramafic Complex in the Dabie Mountains, China. J. Petrology, 36(4): 1011-1037. doi: 10.1093/petrology/36.4.1011
      Zheng, Y.F., 2008. Progress of Study on Ultrahigh-Pressure Metamorphism and Collision of Continents: A Case Study from Dabie-Sulu Orogenic Belt. Chinese Science Bulletin, 53(18): 2129-2152(in Chinese). doi: 10.1360/csb2008-53-18-2129
      韩勇, 路凤香, 杨善武, 2009. 大别山碧溪岭及南山岭两岩体中橄榄石的显微构造特征. 电子显微学报, 28(4): 371-379. doi: 10.3969/j.issn.1000-6281.2009.04.013
      胡玲, 刘俊来, 纪沫, 等, 2009. 变形显微构造识别图册. 北京: 地质出版社.
      焦述强, 王强, 谭子珊, 1999. 碧溪岭超高压石榴橄榄岩的流变学研究. 地球科学——中国地质大学学报, 24(6): 595-600. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199906008.htm
      金振民, Green, H.W., Borch, R.S., 1989. 橄榄石显微构造和中国东部上地幔流动应力. 地球科学——中国地质大学学报, 14(S1): 69-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX1989S1013.htm
      金振民, GreenII, H.W., Chen, X.H., 1991. 橄榄石位错构造的扫描电子显微镜研究. 岩石矿物学杂志, 10(1): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW199101005.htm
      金振民, 金淑燕, 高山, 等, 1998. 大别山超高压岩石形成深度局限于100~150 km吗?——针状含钛铬磁铁矿的发现及动力学意义的思考. 科学通报, 43(1): 767-771. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199807023.htm
      宋衍茹, 金淑燕, 叶凯, 2007. 苏鲁-大别山超高压变质带迟家店和碧溪岭石榴二辉橄榄岩橄榄石组构. 岩石学报, 23(5): 1153-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705028.htm
      王永锋, 金振民, 2001. 岩石扩散蠕变及其地质意义. 地质科技情报, 20(4): 5-11. doi: 10.3969/j.issn.1000-7849.2001.04.002
      王永锋, 郑有业, 金振民, 2005. 西藏东巧方辉橄榄岩的显微构造特征及其流变学意义. 地球科学——中国地质大学学报, 30(1): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200501007.htm
      许志琴, 张泽明, 刘福来, 等, 2003. 苏鲁高压-超高压变质带的折返构造及折返机制. 地质学报, 77(4): 433-450. doi: 10.3321/j.issn:0001-5717.2003.04.001
      郑永飞, 2008. 超高压变质与大陆碰撞研究进展: 以大别-苏鲁造山带为例. 科学通报, 53(18): 2129-2152. doi: 10.3321/j.issn:0023-074X.2008.18.001
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(3)

      Article views (3266) PDF downloads(476) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return