• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 6
    Jun.  2015
    Turn off MathJax
    Article Contents
    Li Jianfeng, Wang Keyong, Lu Jisheng, Zhang Xuebing, Quan Hongyan, Wang Chengyang, Wei Liangmin, 2015. Ore-Forming Fluid Geochemical Characteristics and Genesis of Pb-Zn Deposit in Hongling, Inner Mongolia. Earth Science, 40(6): 995-1005. doi: 10.3799/dqkx.2015.083
    Citation: Li Jianfeng, Wang Keyong, Lu Jisheng, Zhang Xuebing, Quan Hongyan, Wang Chengyang, Wei Liangmin, 2015. Ore-Forming Fluid Geochemical Characteristics and Genesis of Pb-Zn Deposit in Hongling, Inner Mongolia. Earth Science, 40(6): 995-1005. doi: 10.3799/dqkx.2015.083

    Ore-Forming Fluid Geochemical Characteristics and Genesis of Pb-Zn Deposit in Hongling, Inner Mongolia

    doi: 10.3799/dqkx.2015.083
    • Received Date: 2014-07-20
    • Publish Date: 2015-06-15
    • Hongling lead-zinc deposit is one of the representative large deposits in southeastern Inner Mongolia. Presently, there's very little research on geochemical characteristics and evolution of ore-form fluids, and ore genesis. The fluid inclusions are systemly researched in this paper, The results show that there are three types of primary fluid inclusions in garnet of garnet-skarn stage (Ⅰ) including halite-bearing three-phase, aqueous two-phase as well as vapor-rich two-phase; there are two types of primary fluid inclusions in quartz of stage (Ⅱ) including aqueous two-phase as well as vapor-rich two-phase. It is found in our microthermometric study that the ore-forming fluid is of high temperature, high salinity and immiscible NaCl-H2O type solutions and the boiling process plays important role in the precipitation of Pb, Zn, and Cu. Quartz of mineralization stage Ⅲ to Ⅳ of quartz-sulfide epochs contains only aqueous two-phase of fluid inclusions. The homogenization temperature of this type of fluid inclusions is obviously lower than that of skarn epoch, while the salinity does not obviously change. The homogenization temperatures of fluid inclusions show a rising trend with salinities displaying a dropping trend of stage Ⅳ, and it may be caused by adding of high temperature, low salinity type fluid. The dropping of homogenization temperatures and salinities of ore-forming fluids from mineralization stages Ⅴ to Ⅵ suggests that meteoric water continuously joining into the ore-forming fluid. Overall, the ore-forming fluids of quartz-sulfide epoch is of medium-low temperature and low salinity NaCl-H2O type solutions. C, H, O isotope study of fluid inclusions shows that the ore-forming fluids of skarn epoch mainly came from magmatic water and that of quartz-sulfide epoch came from mixed magmatic water and meteoric water, whereas at the latest stage of mineralization, the ore-forming fluids mainly came from meteoric water. The study of S, Pb isotopes implies that the ore-forming materials posed a deep source feature.

       

    • loading
    • Bai, D.M., Fu, G.L., Nei, F.J., et al., 2011. Integrated Ore-Prospecting Model for the Skarn Polymetallic Deposit in Southeastern Inner Mongolia. Journal of Jilin University (Earth Science Edition), 41(6): 1968-1976 (in Chinese with English abstract). http://www.researchgate.net/publication/288737558_Integrated_ore-prospecting_model_for_the_skarn_polymetallic_deposit_in_southeastern_Inner_Mongolia
      Bai, D.M., Liu, G.H., 1996. Application of Geologic, Geophysical, Geochemical Peospecting Method in the Haobugao Pb-Zn-Sn-Cu Polymetallic Deposit. Geological Exploration for Non-Ferrous Metals, 5(6): 361-367 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSJS606.006.htm
      Baker, T., Van, A.E., Ryan, C.G., et al., 2004. Composition and Evolution of Ore Fluids in a Magmatic-Hydrothermal Skarn Deposit. Geology, 32(2): 117-120. doi: 10.1130/G19950.1
      Brown, P.E., Hagemann, S.G., 1995. MacFlincor and Its Application to Fluids in Archean Lode-Gold Deposits. Geochimica et Cosmochimica Acta, 59(19): 3943-3952. doi: 10.1016/0016-7037(95)00254-W
      Calagari, A.A., 2004. Fluid Inclusion Studies in Quartz Veinlets in the Porphyry Copper Deposit at Sungun, East-Azarbaidjan, Iran. Journal of Asian Earth Sciences, 23(2): 179-189. doi: 10.1016/S1367-9120(03)00085-3
      Chen, Y.Q., Huang, J.N., Lu, Y.X., et al., 2009. Geochemistry of Elements, Sulphur-Lead Isotopes and Fluid Inclusions from Jinla Pb-Zn-Ag Poly-Metallic Ore Field at the Joint Area across China and Myanmar Border. Earth Science—Journal of China University of Geosciences, 34(4): 585-594 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.063
      Clayton, R.N., O'Neil, J.R., Mayeda, T.K., 1972. Oxygen Isotope Exchange between Quartz and Water. Geophys. Res., 77: 3057-3067. doi: 10.1029/JB077i017p03057
      Deng, J., Yang, L.Q., Gao, B.F., et al., 2009. Fluid Evolution and Metallogenic Dynamics during Tectonic Regime Transition: Example from the Jiapigou Gold Belt in Northeast China. Resource Geology, 59(2): 140-152. doi: 10.1111/j.1751-3928.2009.00086.x
      Driesner, T., 1997. The Effect of Pressure on Deuterium-Hydrogen Fractionation in High-Temperature Water. Science, 277(5327): 91-794.
      Drummond, S.E., Ohmoto, H., 1985. Chemical Evolution and Mineral Deposition in Boiling Hydrothermal Systems. Econ. Geol., 80: 126-147. doi: 10.2113/gsecongeo.80.1.126
      Heinrich, C.A., 2007. Fluid-Fluid Interact Ions in Magmatic-Hydrothermal Ore Formation. Reviews in Mineralogy and Geochemistry, 65: 1-363. doi: 10.2138/rmg.2007.65.1
      Horita, J., Driesner, T., Cole, D.R., 1999. Pressure Effect on Hydrogen Isotope Fractionation between Brucite and Water at Elevated Temperatures. Science, 286(5444): 1545-1547. doi: 10.1126/science.286.5444.1545
      Leng, C.B., Zhang, X.C., Wang, S.X., et al., 2009. Advances of Researches on the Evolution of Ore-Forming Fluids and the Vapor Transport of Metals in Magmatic-Hydrothermal Systems. Geological Review, 55(1): 100-112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200901016.htm
      Li, J., Chen, Y.J., Li, Q.Z., et al., 2007. Fluid Inclusion Geochemistry and Genetic Type of the Yangshan Gold Deposit, Gansu, China. Acta Petrologica Sinica, 23(9): 2144-2154 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB200709013.htm
      Logan, M.A., 1999. Mineralogy and Geochemistry of the Gualilean Skarn Deposit in the Precordillera of Western Argentina. Ore Geology Reviews, 17: 113-138. http://www.sciencedirect.com/science/article/pii/S0169136800000093
      O'Neil, J.R., Clayton, R.N., Mayeda, T.K., 1969. Oxygen Isotope Fractionation in Divalent Metal Carbonates. Journal of Chemical Physics, 51(12): 5547-5558. doi: 10.1063/1.1671982
      Reed, M.H., Spycher, N.F., 1985. Boiling, Cooling and Oxidation in Epithermal Systems: A Numerical Modeling Approach. Reviews in Economic Geology, 2: 249-272. http://www.researchgate.net/publication/284097406_Boiling_cooling_and_oxidation_in_epithermal_systems_A_numerical_modeling_approach
      Roedder, E., 1984. Fluid Inclusions. Reviews in Mineralogy, 12. Book Crafters, Michigan.
      Shan, L., Zheng, Y.Y., Xu, R.K., et al., 2009. Review on Sulfur Isotopic Tracing and Hydrothermal Metallogenesis. Geology and Resources, 18(3): 197-203 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geology-resources_thesis/0201253441849.html
      Sheng, J.F., Fu, X.Z., 1999. Geological Setting and Copper-Polymetallic Deposits in the Central Part of the Da Hinggan Mountains. Seismological Press, Beijing (in Chinese).
      Wan, D., Li, J.F., Wang, Y.C., et al., 2014. Re-Os Radiometric Dating of Molybdenite in Hongling Lead-Zinc Polymetallic Deposit, Inner Mongolia, and Its Significance. Earth Science—Journal of China University of Geosciences, 39(6): 687-695 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.064
      Wang, K.Y., Qing, M., Sun, F.Y., et al., 2010. Study on the Geochemical Characteristics of Ore-Forming Fluids and Genesis of Xiaoxinancha Gold-Copper Deposit, Jilin Province. Acta Petrologica Sinica, 26(12): 3727-3734 (in Chinese with English abstract). http://www.oalib.com/paper/1474915
      Wang, L.J., Wang, J.B., Wang, Y.W., et al., 2004. Oxygen Isotope Characteristics of Granite Related to the Skarn Type Deposit in Eastevn Inner Mongolia—Taking Haobugao Deposit as an Example. Geological Review, (5): 513, 560 (in Chinese). doi: 10.1111/j.1751-3928.2004.tb00201.x
      Xiao, Q.H., Deng, J.F., Ma, D.Q., et al., 2002. The Way of Investigation on Granitoids. Geological Publishing House, Beijing (in Chinese).
      Xiong, S.F., He, M.C., Yao, S.Z., et al., 2014. Compositions and Microthermometry of Fluid Inclusions of Chalukou Porphyry Mo Deposit from Great Xing'an Range: Implications for Ore Genesis. Earth Science—Journal of China University of Geosciences, 39(7): 820-836 (in Chinese with English abstract). doi: 10.3799/dqkx.2014.077
      Yang, L. Y, Yang, L.Q., Yuan, W.M., et al., 2013. Origin and Evolution of Ore Fluid for Orogenic Gold Traced by D-O Isotopes: A Case from the Jiapigou Gold Belt, China. Acta Petrologica Sinica, 29(11): 4025-4035 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201311031.htm
      Yang, Z.H., Wang, J.P., Liu, J.J., et al., 2012. Characteristics and Its Geological Significance of Fluid Inclusions of the Wurinitu W-Mo Deposit in Inner Mongolia, China. Earth Science—Journal of China University of Geosciences, 37(6): 1268-1278 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201206024.htm
      Yao, M.J., Liu, J.J., Zhai, D.G., et al., 2012. Sulfur and Lead Isotopic Compositions of the Polymetallic Deposits in the Southern Daxing'anling: Implications for Metal Sources. Journal of Jilin University (Earth Science Edition), 42(2): 362-373 (in Chinese with English abstract). http://www.researchgate.net/publication/282507766_Sulfur_and_lead_isotopic_compositions_of_the_polymetallic_deposits_in_the_Southern_Daxing'anling_Implications_for_metal_sources
      Yao, Y., Murphy, P., Robb, L.J., 2001. Fluid Characteristics of Granitoid-Hosted Gold Deposits in the Birimian Terrane of Ghana: A Fluid Inclusion Microthermometric and Raman Spectroscopic Study. Econ. Geol., 96(7): 1611-1643. doi: 10.2113/gsecongeo.96.7.1611
      Zhang, L.G., 1985. The Application of the Stable Isotope to Geology. Shaanxi Science and Technology Press, Xi'an, 91-94 (in Chinese).
      Zhang, R.B., Liu, J.M., Ye, J., et al., 2003. C & O Isotopic Geochemistry of Shouwangfen Copper Deposit, Hebei Province. Mineral Resources and Geology, 17(2): 122-126 (in Chinese with English abstract).
      Zhao, Y.M., Tan, H.J., Yuan, R.G., et al., 1980. Discovery of the Cl-Bearing Amphibole in the Iron Skarn Deposits of Southwestern Fujian, and Its Geological Significance. Geological Review, 26(4): 300-306 (in Chinese). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-review_thesis/0201253290513.html
      Zheng, Y.F., Chen, J.F., 2000. Stable Isotope Geochemistry. Science Press, Beijing (in Chinese).
      Zhou, T.F., Yuan, F., Yue, S.C., et al., 2007. Geochemistry and Evolution of Ore-Forming Fluids of the Yueshan Cu-Au Skarn and Vein-Type Deposits, Anhui Province, South China. Ore Geology Reviews, 3: 279-303. http://www.sciencedirect.com/science/article/pii/S0169136806000515
      白大明, 付国立, 聂风军, 等, 2011. 内蒙古东南部矽卡岩型金属矿床的综合找矿模式. 吉林大学学报(地球科学版), 41(6): 1968-1976. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201106026.htm
      白大明, 刘光海, 1996. 浩布高铅锌铜锡矿床地物化综合找矿模式探讨. 有色金属矿产与勘查, 5(6): 361-367. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS606.006.htm
      陈永清, 黄静宁, 卢映祥, 等, 2009. 中缅毗邻区金腊Pb-Zn-Ag多金属矿田元素、稳定同位素和流体包裹体地球化学. 地球科学——中国地质大学学报, 34(4): 585-594. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200904004.htm
      冷成彪, 张兴春, 王守旭, 等, 2009. 岩浆-热液体系成矿流体演化及其金属元素气相迁移研究进展. 地质论评, 55(1): 100-112. doi: 10.3321/j.issn:0371-5736.2009.01.012
      李晶, 陈衍景, 李强之, 等, 2007. 甘肃阳山金矿流体包裹体地球化学和矿床成因类型. 岩石学报, 23(9): 2144-2154. doi: 10.3969/j.issn.1000-0569.2007.09.013
      陕亮, 郑有业, 许荣科, 等, 2009. 硫同位素示踪与热液成矿作用研究. 地质与资源, 18(3): 197-203. doi: 10.3969/j.issn.1671-1947.2009.03.007
      盛继福, 傅先政, 1999. 大兴安岭中段成矿环境与铜多金属矿床地质特征. 北京: 地震出版社.
      万多, 李剑锋, 王一存, 等, 2014. 内蒙古红岭铅锌多金属矿床辉钼矿Re-Os同位素年龄及其意义. 地球科学——中国地质大学学报, 39(6): 687-695. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201406004.htm
      王可勇, 卿敏, 孙丰月, 等, 2010. 吉林小西南岔金-铜矿床成矿流体地球化学特征及矿床成因研究. 岩石学报, 26(12): 3727-3734. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201012025.htm
      王莉娟, 王京彬, 王玉往, 等, 2004. 内蒙古东部与矽卡岩型矿床有关的花岗岩氧同位素特征——以浩布告矿床为例. 地质评论, (5): 513, 560. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200405010.htm
      肖庆辉, 邓晋福, 马大铨, 等, 2002. 花岗岩研究思维与方法. 北京: 地质出版社.
      熊索菲, 何谋惷, 姚书振, 等, 2014. 大兴安岭岔路口斑岩钼矿床流体成分及成矿意义. 地球科学——中国地质大学学报, 39(7): 820-836. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201407005.htm
      杨利亚, 杨立强, 袁万明, 等, 2013. 造山型金矿成矿流体来源与演化的氢-氧同位素示踪: 夹皮沟金矿带例析. 岩石学报, 29(11): 4025-4035. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311031.htm
      杨增海, 王建平, 刘家军, 等, 2012. 内蒙古乌日尼图钨钼矿床成矿流体特征及地质意义. 地球科学——中国地质大学学报, 37(6): 1268-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201206024.htm
      要梅娟, 刘家军, 翟德高, 等, 2012. 大兴安岭南段多金属成矿带硫、铅同位素组成及其地质意义. 吉林大学学报(地球科学版), 42(2): 362-373. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201202012.htm
      张理刚, 1985. 稳定同位素在地质科学中的应用. 西安: 陕西科学技术出版社, 91-94.
      张瑞斌, 刘建明, 叶杰, 等, 2003. 河北寿王坟铜矿碳-氧同位素地球化学特征及其意义. 矿产与地质, 17(2): 122-126. doi: 10.3969/j.issn.1001-5663.2003.02.002
      赵一鸣, 谭惠静, 袁润光, 等, 1980. 含氯角闪石在闽西南矽卡岩铁矿床中的发现及其地质意义. 地质论评, 26(4): 300-306. doi: 10.3321/j.issn:0371-5736.1980.04.004
      郑永飞, 陈江峰, 2000. 稳定同位素地球化学. 北京: 科学出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(3)

      Article views (4349) PDF downloads(702) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return