• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 6
    Jun.  2015
    Turn off MathJax
    Article Contents
    Jiang Junsheng, Zheng Youye, Gao Shunbao, Xu Jing, Tian Kan, Huang Liangliang, Zhang Yongchao, Yun Sunggi, 2015. Genesis of Chazangcuo Cu-Pb-Zn Deposit, Tibet: Constraints from C-H-O-S-Pb Isotope Geochemistry. Earth Science, 40(6): 1006-1016. doi: 10.3799/dqkx.2015.084
    Citation: Jiang Junsheng, Zheng Youye, Gao Shunbao, Xu Jing, Tian Kan, Huang Liangliang, Zhang Yongchao, Yun Sunggi, 2015. Genesis of Chazangcuo Cu-Pb-Zn Deposit, Tibet: Constraints from C-H-O-S-Pb Isotope Geochemistry. Earth Science, 40(6): 1006-1016. doi: 10.3799/dqkx.2015.084

    Genesis of Chazangcuo Cu-Pb-Zn Deposit, Tibet: Constraints from C-H-O-S-Pb Isotope Geochemistry

    doi: 10.3799/dqkx.2015.084
    • Received Date: 2014-09-10
    • Publish Date: 2015-06-15
    • Chazangcuo Cu-Pb-Zn deposit, hosted by the Linzizong Group volcanic rocks in the west of Gangdese metallogenic belt, is a copper polymetallic deposit discovered in recent years. So far, the genesis of the deposit is still lack of clear understanding. The results of C, H, O, S, Pb isotopic analysis show that the δ13CV-PDB values range from -5.60‰ to -2.40‰, δDV-SMOW values range from -111.00‰ to -68.00‰, and δ18OV-SMOW values range from -8.65‰ to 0.27‰, indicating that the ore-forming fluid mainly derived from the magma hydrothermal in the early time, however, with the mineralization continuing, the proportion of atmospheric precipitation gradually turned larger. δ34SCDT values range from 0.50‰ to 2.50‰ and possess the distribution characteristics of tower, indicating that the sulfur isotope derived from the single magma source. Lead isotope ratios are relatively stable and have large μ values (more than 9.58), possessing the characteristics of the upper crust lead. The lead isotope characteristics are similar to the ore sulfides from the deposits in the north subzone of Gangdese metallogenic belt, but obviously different from the lead isotope characteristics of volcanic rocks of Dianzhong Formation. Therefore, the authors infer that the source of ore-forming materials mainly came from the magmatic source of the upper crust. Combining with the geological characteristics of Chazangcuo deposit, and contrasting the typical magmatic hydrothermal vein-type deposit at home and abroad, the authors think that it belongs to the typical magmatic hydrothermal vein-type deposit.

       

    • loading
    • Chen, B.L., Liu, J.M., Li, Y.S., 1999. Study on the Genesis and Geochemical Characteristics of the Zongshuban Lead-Zinc Deposit, Chen County, Hunan. Mineral Resources and Geology, 13(4): 39-43 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_mineral-resources-geology_thesis/0201240156250.html
      Chen, C., 2013. The Ore Genesis and Fracture Structural Ore-Controlling Regularities Analysis of Xiasai Silver-Lead-Zinc Deposit, Sichuan Province (Dissertation). China University of Geosciences, Wuhan, 54-58 (in Chinese with English abstract).
      Cheng, W.B., Gu, X.X., Tang, J.X., et al., 2010. Lead Isotope Characteristics of Ore Sulfides from Typical Deposits in the Gangdese-Nyainqentanglha Metallogenic Belt: Implications for the Zonation of Ore-Forming Elements. Acta Petrologica Sinica, 26(11): 3350-3362 (in Chinese with English abstract). http://www.researchgate.net/publication/285532764_Lead_isotope_characteristics_of_ore_sulfides_from_typical_deposits_in_the_Gangdese-Nyainqentanglha_metallogenic_belt_Implications_for_the_zonation_of_ore_forming_elements
      Friedman, I., O'Neil, J.R., 1977. Complication of Stable Isotope Fractionation Factors of Geochemical Interest. In: Fleischer, M., ed., Data of Geochemistry-Six Edition. Geological Survey Professional Paper, U.S., 117.
      Fu, W., Chai, M.C., Yang, Q.J., et al., 2013. Genesis of Fozichong Pb-Zn Polymetallic Deposit: Constraints from Fluid Inclusions and H-O-S-Pb Isotopic Evidences. Acta Petrologica Sinica, 29(12): 4136-4150 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201312007.htm
      Gao, S.B., Zheng, Y.Y., Tian, L.M., et al., 2012. Geochronology of Magmatic Intrusions and Mineralization of Chagele Copper-Lead-Zinc Deposit in Tibet and Its Implications. Earth Science—Journal of China University of Geosciences, 37(3): 507-514 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201203014.htm
      Gariepy, C., Allegre, C.J., Xu, R.H., 1985. The Pb Isotope Geochemistry of Granites from the Himalaya-Tibet Collision Zone: Implication for Crustal Evolution. Earth and Planetary Science Letters, 74(2-3): 220-234. doi: 10.1016/0012-821X(85)90023-8
      Hoefs, J., 1997. Stable Isotope Geochemistry (4). Springer Verlag, Berlin, 199-201.
      Hou, Z.Q., Qu, X.M., Huang, W., et al., 2001. The Gangdese Porphyry Copper Metallogenic Belt is Expected to Become the Second "Yulong" Copper Belt in Tibet. Chinese Geology, 28(10): 27-29, 40 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200104009.htm
      Hou, Z.Q., Yang, Z.M., Qu, X.M., et al., 2009. The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Origen. Ore Geology Reviews, 36: 25-51. doi: 10.1016/j.oregeorev.2008.09.006
      Hou, Z.Q., Zhang, H.R., Pan, X.F., et al., 2011. Porphyry Cu (-Mo-Au) Deposits Related to Melting of Thickened Mafic Lower Crust: Examples from the Eastern Tethyan Metallogenic Domain. Ore Geology Reviews, 39: 21-45. doi: 10.1016/j.oregeorev.2010.09.002
      Huang, K.X., Zheng, Y.C., Zhang, S., et al., 2012. LA-ICP-MS Zircon U-Pb Dating of Two Types of Porphyry in the Yaguila Mining Area, Tibet. Acta Petrologica et Mineralogica, 31(3): 348-360 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201203006.htm
      Jia, J.W., Zhang, H.R., Hu, M.D., 2014. The Progress in the Study of Vein Pb-Zn-Cu-Ag Polymetalic Epithermal Deposits. Acta Perologica et Mineralogica, 33(4): 726-746 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201404011.htm
      Johnson, C.A., Cardellach, E., Tritlla, J., 1996. Cierco Pb-Zn-Ag Vein Deposits: Isotopic and Fluid Inclusion Evidence for Formation during the Mesozoic Extension in the Pyrenees of Spain. Economic Geology, 91: 497-506. doi: 10.2113/gsecongeo.91.3.497
      Joncas, I., Beaudoin, G., 2002. The St. Eugene Deposit, British Columbia: A Metamorphosed Ag-Pb-Zn Vein in Proterozoic Belt-Purcell Rocks. Economic Geology, 97: 11-22. doi: 10.2113/gsecongeo.97.1.11v.97no.1p.11-22
      Li, G.M., Rui, Z.Y., 2004. Diagenetic and Mineralization Ages for the Porphyry Copper Deposits in the Gangdise Metallogenic Belt, Southern Xizang. Geotectonica et Metallogenia, 28(2): 165-170 (in Chinese with English abstract). http://www.researchgate.net/publication/288267777_Diagenetic_and_mineralization_ages_for_the_porphyry_copper_in_the_Gangdese_metallogenic_belt_southern_Tibet
      Li, Y.S., Lü, Z.C., Yan, G.S., et al., 2012. Isotopic Charateristics of S, Pb, H and O of Jiama Copper-Polymetallic Ore Deposit, Tibet and Their Significance. Earth Science Frontier, 19(4): 72-81 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201204008.htm
      Li, Z.K., Li, J.W., Zhao, X.F., et al., 2013. Crustal-Extension Ag-Pb-Zn Veins in the Xiong'ershan District, Southern North China Craton: Constraints from the Shagou Deposit. Economic Geology, 108: 1703-1729. doi: 10.2113/econgeo.108.7.1703
      Liu, J.M., Liu, J.J., Zheng, M.H., et al., 1998. Stable Isotope Compositions of Micro-Disseminated Gold and Genetic Discussion. Geochimica, 27(6): 585-591 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX199806009.htm
      Maanijou, M., Rasa, I., Lentz, D.R., 2012. Petrology, Geochemistry, and Stable Isotope Studies of the Chehelkureh Cu-Zn-Pb Deposit, Zahedan, Iran. Economic Geology, 107(4): 683-712. doi: 10.2113/econgeo.107.4.683v.107no.4p.683-712
      Mao, J.W., He, Y., Ding, T.P., 2002. Mantle Fluids Involved in Metallogenesis of Jiaodong (East Shandong) Gold District: Evidience of C, O and H Isotopes. Mineral Deposits, 21(2): 121-128 (in Chinese with English abstract). http://www.researchgate.net/publication/281981334_Mantle_fluids_involved_in_metallogenesis_of_Jiaodong_East_Shandong_gold_district_Evidence_of_C_O_and_H_isotopes
      Mo, X.X., 2011. Magmatism and Evolution of the Qinghai-Tibet Plateau. Geological Journal of China Universities, 17(3): 351-367 (in Chinese with English abstract).
      Ohmoto, H., 1986. Stable Isotope Geochemistry of Ore Deposits. Reviews in Mineralogy, 16(1): 491-559. http://ci.nii.ac.jp/naid/10003416887
      Orgun, Y., Gultekin, A.H., Onal, A., 2005. Geology, Mineralogy and Fluid Inclusion Data from the Arapucan Pb-Zn-Cu-Ag Deposit, Canakkale, Turkey. Journal of Asian Earth Sciences, 25(4): 629-642. doi: 10.1016/j.jseaes.2004.06.006
      Pirajno, F., 2009. Hydrothermal Process and Mineral System. Springer, Berlin, 1129-1250.
      Rye, R.O., Ohmoto, H., 1974. Sulfur and Carbon Isotope and Ore Genesis: A Review. Economic Geology, 69(6): 827-842. doi: 10.2113/gsecongeo.69.6.826
      Sun, X., Zheng, Y.Y., Wu, S., et al., 2013. Mineralization Age and Petrogenesis of Associated Intrusions in the Mingze-Chengba Porphyry-Skarn Mo-Cu Deposit, Gangdese. Acta Petrologica Sinica, 29(4): 1392-1406 (in Chinese with English abstract).
      Tao, Y., Bi, X.W., Xin, Z.L., et al., 2011. Geology, Geochemistry and Origin of Lanuoma Pb-Zn-Sb Deposit in Changdu Area, Tibet. Mineral Deposits, 30(4): 599-615 (in Chinese with English abstract). http://www.researchgate.net/publication/285913365_Geology_geochemistry_and_origin_of_Lanuoma_Pb-Zn-Sn_deposit_in_Changdu_area_Tibet
      Taylor, H.P., 1974. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition. Economic Geology, 69(6): 843-883. doi: 10.2113/gsecongeo.69.6.843
      Veizer, J., Holser, W.T., Wilgus, C.K., et al., 1980. Correlation of 13C/12C and 34S/32S Secular Variation. Geochimica et Cosmochimica Acta, 44: 579-588. doi: 10.1016/0016-7037(80)90250-1
      Voudouris, P., Melfos, V., Spry, P.G., 2008. Carbonate-Replacement Pb-Zn-Ag±Au Mineralization in the Kamariza Area, Lavrion, Greece: Mineralogy and Thermochemical Conditions of Formation. Mineralogy and Petrology, 94: 85-106. doi: 10.1007/s00710-008-0007-4
      Wang, L.Q., Gu, X.X., Cheng, W.B., et al., 2010. Sulfur and Lead Isotope Composition and Tracing for the Sources of Ore-Forming Materials in the Mengya'a Pb-Zn Deposit, Tibet. Geoscience, 24(1): 52-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201001008.htm
      Wang, L.Q., Luo, M.C., Yuan, Z.J., et al., 2012. Sulfur, Lead, Carbon and Oxygen Isotope Composition and Source of Ore-Forming Materials of the Bangpu Pb-Zn Ore Deposit in Tibet. Acta Geoscientica Sinica, 33(4): 435-443 (in Chinese with English abstract). http://www.oalib.com/paper/1559764
      Wu, K.X., Hu, R.Z., Bi, X.W., et al., 2002. Ore Lead Isotopes as a Tracer for Ore-Forming Material Sources: A Review. Geology-Geochemistry, 30(3): 73-81 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200203012.htm
      Wu, S., Zheng, Y.Y., Sun, X., et al., 2014. Origin of the Miocene Porphyries and Their Mafic Microgranular Enclaves from Dabu Porphyry Cu-Mo Deposit, Southern Tibet: Implications for Magma Mixing/Mingling and Mineralization. International Geology Review, 56(5): 571-595. doi: 10.1080/00206814.2014.880074
      Yang, C.Y., 1985. The Finding and Genesis of Kangjiawan Pb-Zn Deposit. Geology and Prospecting, 21(5): 1-7 (in Chinese).
      Yue, X.Y., 2012. Geochemical Characteristics and Significance of Dianzhong Volcanic Rocks in the Cuoqin Area Tibet, China (Dissertation). Chengdu University of Technology, Chengdu, 35-36 (in Chinese with English abstract).
      Zartman, R.E., Doe, B.R., 1981. Plumbotectonics—The Model. Tectonophysics, 75: 135-162. doi: 10.1016/0040-1951(81)90213-4
      Zhai, Y.S., 1999. On the Metallogenic System. Earth Science Frontiers, 6(1): 13-27 (in Chinese with English abstract).
      Zhang, L.G., 1985. The Application of the Stable Isotope to Geology. Shaanxi Science and Technology Press, Xi'an, 200-210 (in Chinese).
      Zheng, Y.F., Chen, J.F., 2000. Stable Isotope Geochemistry. Science Press, Beijing, 143-153 (in Chinese).
      Zheng, Y.Y., Sun, X., Gao, S.B., et al., 2014a. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. doi: 10.1016/j.jseaes.2014.11.036
      Zheng, Y.Y., Sun, X., Gao, S.B., et al., 2014b. Analysis of Stream Sediment Data for Exploring the Zhunuo Porphyry Cu Deposit, Southern Tibet. Journal of Geochemical Exploration, 143: 19-30. doi: 10.16/j.gexplo.2014.02.12
      Zheng, Y.Y., Xue, Y.X., Cheng, L.J., et al., 2004. Finding, Characteristics and Significances of Qulong Superlarge Porphyry Copper (Molybdenum) Deposit, Tibet. Earth Science—Journal of China University of Geosciences, 29(10): 103-108 (in Chinese with English abstract). http://www.researchgate.net/publication/285272629_Finding_characteristics_and_significances_of_Qulong_superlarge_porphyry_copper_molybdenum_deposit_Tibet
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geological Journal of China Universities, 18(1): 1-15 (in Chinese with English abstract). http://www.researchgate.net/publication/260835521_Origin_and_Paleozoic_Tectonic_Evolution_of_the_Lhasa_Terrane
      Zuo, C.H., Miu, B.H., Zhao, Z.X., et al., 2014. A Study on the Isotopic Geochemistry of Kangjiawan Lead-Zinc Deposit, Changning County, Hunan Province, China. Acta Mieralogica Sinica, 34(3): 351-359 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201403008.htm
      陈柏林, 刘建民, 李玉生, 1999. 枞树板铅锌矿床地球化学特征及成因探讨. 矿产与地质, 13(4): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD904.008.htm
      陈冲, 2013. 四川省巴塘县夏塞银铅锌矿床成因及断裂控矿规律(硕士学位论文). 武汉: 中国地质大学, 54-58.
      程文斌, 顾雪祥, 唐菊兴, 等, 2010. 西藏冈底斯念青唐古拉成矿带典型矿床硫化物Pb同位素特征对成矿元素组合分带性的指示. 岩石学报, 26(11): 3350-3362. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011017.htm
      付伟, 柴明春, 杨启军, 等, 2013. 广西佛子冲大型铅锌多金属矿床的成因: 流体包裹体和H-O-S-Pb同位素地球化学约束. 岩石学报, 29(12): 4136-4150. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201312007.htm
      高顺宝, 郑有业, 田立明, 等, 2012. 西藏查个勒铜铅锌矿成岩成矿时代及意义. 地球科学——中国地质大学学报, 37(3): 507-514. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203014.htm
      侯增谦, 曲晓明, 黄卫, 等, 2001. 冈底斯斑岩铜矿成矿带有望成为西藏第二条"玉龙"铜矿带. 中国地质, 28(10): 27-29, 40. doi: 10.3969/j.issn.1000-3657.2001.10.005
      黄克贤, 郑远川, 张松, 等, 2012. 西藏亚贵拉矿区两期岩体LA-ICP-MS锆石U-Pb定年及地质意义. 岩石矿物学杂志, 31(3): 348-360. doi: 10.3969/j.issn.1000-6524.2012.03.005
      贾敬伍, 张洪瑞, 胡茂德, 2014. 脉状铅锌(铜、银)多金属热液矿床研究进展. 岩石矿物学杂志, 33(4): 726-746. doi: 10.3969/j.issn.1000-6524.2014.04.011
      李光明, 芮宗瑶, 2004. 西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄. 大地构造与成矿学, 28(2): 165-170. doi: 10.3969/j.issn.1001-1552.2004.02.008
      李永胜, 吕志成, 严光生, 等, 2012. 西藏甲玛铜多金属矿床S-Pb-H-O同位素特征及其指示意义. 地学前缘, 19(4): 72-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201204008.htm
      刘建明, 刘家军, 郑明华, 等, 1998. 微细浸染型金矿床的稳定同位素特征与成因探讨. 地球化学, 27(6): 585-591. doi: 10.3321/j.issn:0379-1726.1998.06.010
      毛景文, 赫英, 丁悌平, 2002. 胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据. 矿床地质, 21(2): 121-128. doi: 10.3969/j.issn.0258-7106.2002.02.004
      莫宣学, 2011. 岩浆作用与青藏高原演化. 高校地质学报, 17(3): 351-367. doi: 10.3969/j.issn.1006-7493.2011.03.001
      孙祥, 郑有业, 吴松, 等, 2013. 冈底斯明则-程巴斑岩-夕卡岩型Mo-Cu矿床成矿时代与含矿岩石成因. 岩石学报, 29(4): 1392-1397. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201304023.htm
      陶琰, 毕献武, 辛忠雷, 等, 2011. 西藏昌都地区拉诺玛铅锌锑多金属矿床地质地球化学特征及成因分析. 矿床地质, 30(4): 599-615. doi: 10.3969/j.issn.0258-7106.2011.04.002
      王立强, 顾雪祥, 程文斌, 等, 2010. 西藏蒙亚阿铅锌矿床S、Pb同位素组成及对成矿物质来源的示踪. 现代地质, 24(1): 52-58. doi: 10.3969/j.issn.1000-8527.2010.01.007
      王立强, 罗茂澄, 袁志洁, 等, 2012. 西藏邦铺铅锌矿床S、Pb、C、O同位素组成及成矿物质来源研究. 地球学报, 33(4): 435-443. doi: 10.3975/cagsb.2012.04.05
      吴开兴, 胡瑞忠, 毕献武, 等, 2002. 矿石铅同位素示踪成矿物质来源综述. 地质地球化学, 30(3): 73-81. doi: 10.3969/j.issn.1672-9250.2002.03.013
      杨传益, 1985. 康家湾铅锌矿床的发现及成因. 地质与勘探, 21(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT198505000.htm
      岳相元, 2012. 西藏措勤地区典中组火山岩地球化学特征及其地质意义(硕士学位论文). 成都: 成都理工大学, 35-36.
      翟裕生, 1999. 论成矿系统. 地学前缘, 6(1): 13-27. doi: 10.3321/j.issn:1005-2321.1999.01.002
      张理刚, 1985. 稳定同位素在地质科学中的应用-金属活化热液成矿作用及找矿. 西安: 陕西科学技术出版社, 88.
      郑永飞, 陈江峰, 2000. 稳定同位素地球化学. 北京: 科学出版社, 143-153.
      郑有业, 薛迎喜, 程力军, 等, 2004. 西藏驱龙超大型斑岩铜(钼)矿床: 发现, 特征及意义. 地球科学——中国地质大学学报, 29(10): 103-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401018.htm
      朱弟成, 赵志丹, 牛耀龄, 等, 2012. 拉萨地体的起源和古生代构造演化. 高校地质学报, 18(1): 1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001
      左昌虎, 缪柏虎, 赵增霞, 等, 2014. 湖南常宁康家湾铅锌矿床同位素地球化学研究. 矿物学报, 34(3): 351-359. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201403008.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(3)

      Article views (3996) PDF downloads(466) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return