Citation: | Tan Kun, Zhang Qianqian, Cao Qian, Du Peijun, 2015. Hyperspectral Retrieval Model of Soil Organic Matter Content Based on Particle Swarm Optimization-Support Vector Machines. Earth Science, 40(8): 1339-1345. doi: 10.3799/dqkx.2015.115 |
Chu, X.L., Yuan, H.F., Lu, W.Z., 2004. Progress and Application of Spectral Data Pretreatment and Wavelength Selection Methods in NIR Analytical Technique. Progress in Chemistry, 16(4): 528-542(in Chinese with English abstract). http://www.researchgate.net/publication/279620861_Progress_and_application_of_spectral_data_pretreatment_and_wavelength_selection_method_in_NIR_analytical_technique
|
Demattê, J.A.M., Sousa, A.A., Alves, M.C., et al., 2006. Determining Soil Water Status and Other Soil Characteristics by Spectral Proximal Sensing. Geoderma, 135: 179-195. doi: 10.1016/j.geoderma.2005.12.002
|
Hair, J.F., Sarstedt, M., Ringle, C.M., et al., 2012. An Assessment of the Use of Partial Least Squares Structural Equation Modeling in Marketing Research. Journal of the Academy of Marketing Science, 40(3): 414-433. doi: 10.1007/s11747-011-0261-6
|
He, J.L., Jiang, J.J., Zhou, S.L., et al., 2007. The Hyperspectral Characteristics and Retrieval of Soil Organic Matter Content. Scientia Agricultura Sinica, 40(3): 638-643(in Chinese with English abstract). http://agris.fao.org/agris-search/search.do?recordID=CN2007000678
|
Hummel, J.W., Sudduth, K.A., Hollinger, S.E., 2001. Soil Moisture and Organic Matter Prediction of Surface and Subsurface Soils Using an Nir Soil Sensor. Computers and Electronics in Agriculture, 32(2): 149-165. doi: 10.1016/S0168-1699(01)00163-6
|
Kennedy, J., 2010. Particle Swarm Optimization. Springer, New York, 760-766.
|
Liu, H.J., Zhang, B., Zhao, J., et al., 2007. Spectral Models for Prediction of Organic Matter in Black Soil. Acta Petrologica Sinica, 44(1): 27-32(in Chinese with English abstract). http://pedologica.issas.ac.cn/trxben/ch/reader/view_abstract.aspx?file_no=20070105&flag=1
|
Liu, H.J., Zhang, X.L., Zheng, S.F., et al., 2010. Black Soil Organic Matter Predicting Model Based on Field Hyperspectral Reflectance. Spectroscopy and Spectral Analysis, 30(12): 3355-3358(in Chinese with English abstract). http://europepmc.org/abstract/MED/21322239
|
Liu, W.D., Baret, F., Gu, X.F., et al., 2002. Relating Soil Surface Moisture to Reflectance. Remote Sensing of Environment, 81(2-3): 238-246. doi: 10.1016/S0034-4257(01)00347-9
|
Lu, Y.L., Bai, Y.L., Yang, L.P., et al., 2008. Application of Hyperspectral Data for Soil Organic Matter Estimation Based on Principle Components Regerssion Analysis. Plant Nutrition and Fertilizer Science, 14(6): 1076-1082(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZWYF200806010.htm
|
Luan, F.M., Zhang, X.L., Xiong, H.G., et al., 2013. Comparative Analysis of Soil Organic Matter Content Based on Different Hyperspectral Inversion Models. Spectroscopy and Spectral Analysis, 33(1): 196-200(in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/23586255
|
Ren, H.Y., Zhuang, D.F., Singh, A., et al., 2009. Estimation of As and Cu Contamination in Agricultural Soils around a Mining Area by Reflectance Spectroscopy: A Case Study. Pedosphere, 19(6): 719-726. doi: 10.1016/S1002-0160(09)60167-3
|
Sha, J.M., Chen, P.C., Lin, C.S., 2003. Characteristics Analysis of Soil Spectrum Response Resulted from Organic Material. Research of Soil and Water Conservation, 10(2): 21-24(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STBY200302005.htm
|
Shen, R.P., Ding, G.X., Wei, G.S., et al., 2009. Retrieval of Soil Organic Matter Content from Hyper-Spectrum Based on Ann. Acta Petrologica Sinica, 46(3): 391-397(in Chinese with English abstract). http://www.cabdirect.org/abstracts/20093255951.html
|
Smola, A.J., Schölkopf, B., 2004. A Tutorial on Support Vector Regression. Statistics and Computing, 14(3): 199-222. doi: 10.1023/B:STCO.0000035301.49549.88
|
Svensson, O., Kourti, T., Macgregor, J.F., 2002. An Investigation of Orthogonal Signal Correction Algorithms and Their Characteristics. Journal of Chemometrics, 16(4): 176-188. doi: 10.1002/cem.700
|
Wang, J., He, T., Li, Y.H., 2005. Studying on Extraction Methods for Land Quality Information Based on Hyperspectral Data. Journal of Remote Sensing, 9(4): 438-445(in Chinese with English abstract).
|
Wold, H., 1985. Partial Least Squares. Encyclopedia of Statistical Sciences. John Wiley & Sons. Inc. USA, 9. doi: 10.1002/0471667196.ess1914.pub2
|
Xu, Y.M., Zhong, L.Q., Wang, L., et al., 2006. Model for Estimating Soil Nutrient Elements Based on High Resolution Reflectance Spectra. Acta Petrologica Sinica, 43(5): 709-716(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRXB200605000.htm
|
Zheng, L.H., Li, M.Z., An, X.F., et al., 2010. Forecasting Soil Parameters Based on NIR and SVM. Transactions of the CSAE, 26(Suppl. 2): 81-87(in Chinese with English abstract). http://www.cqvip.com/QK/90712X/2010S2/3000101830.html
|
Zheng, L.H., Li, M.Z., Pan, L., et al., 2008. Estimation of Soil Organic Matter and Soil Total Nitrogen Based on NIR Spectroscopy and BP Neural Network. Spectroscopy and Spectral Analysis, 28(5): 1160-1164(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GUAN200805050.htm
|
Zuo, L., Hou, L.G., Zhang, W., et al., 2010. Analog Circuit Fault Diagnosis Based on Partical Swarm Optimization Support Vector Machine. Systems Engineering and Electronics, 32(7): 1553-1556(in Chinese with English abstract). http://www.researchgate.net/publication/292252220_Analog_circuit_fault_diagnosis_based_on_particle_swarm_optimization_support_vector_machine
|
褚小立, 袁洪福, 陆婉珍, 2004. 近红外分析中光谱预处理及波长选择方法进展与应用. 化学进展, 16(4): 528-542. doi: 10.3321/j.issn:1005-281X.2004.04.008
|
贺军亮, 蒋建军, 周生路, 等, 2007. 土壤有机质含量的高光谱特性及其反演. 中国农业科学, 40(3): 638-643. doi: 10.3321/j.issn:0578-1752.2007.03.030
|
刘焕军, 张柏, 赵军, 等, 2007. 黑土有机质含量高光谱模型研究. 土壤学报, 44(1): 27-32. doi: 10.3321/j.issn:0564-3929.2007.01.005
|
刘焕军, 张新乐, 郑树峰, 等, 2010. 黑土有机质含量野外高光谱预测模型. 光谱学与光谱分析, 30(12): 3355-3358. doi: 10.3964/j.issn.1000-0593(2010)12-3355-04
|
卢艳丽, 白由路, 杨俐苹, 等, 2008. 基于主成分回归分析的土壤有机质高光谱预测与模型验证. 植物营养与肥料学报, 14(6): 1076-1082. doi: 10.3321/j.issn:1008-505X.2008.06.008
|
栾福明, 张小雷, 熊黑钢, 等, 2013. 基于不同模型的土壤有机质含量高光谱反演比较分析. 光谱学与光谱分析, 33(1): 196-200. doi: 10.3964/j.issn.1000-0593(2013)01-0196-05
|
沙晋明, 陈鹏程, 陈松林, 2003. 土壤有机质光谱响应特性研究. 水土保持研究, 10(2): 21-24. doi: 10.3969/j.issn.1005-3409.2003.02.006
|
沈润平, 丁国香, 魏国栓, 等, 2009. 基于人工神经网络的土壤有机质含量高光谱反演. 土壤学报, 46(3): 391-397. doi: 10.3321/j.issn:0564-3929.2009.03.003
|
王静, 何挺, 李玉环, 2005. 基于高光谱遥感技术的土地质量信息挖掘研究. 遥感学报, 9(4): 438-445. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200504014.htm
|
徐永明, 蔺启忠, 王璐, 等, 2006. 基于高分辨率反射光谱的土壤营养元素估算模型. 土壤学报, 43(5): 709-716. doi: 10.3321/j.issn:0564-3929.2006.05.001
|
郑立华, 李民赞, 安晓飞, 等, 2010. 基于近红外光谱和支持向量机的土壤参数预测. 农业工程学报, 26(增刊2): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2010S2017.htm
|
郑立华, 李民赞, 潘娈, 等, 2008. 基于近红外光谱技术的土壤参数BP神经网络预测. 光谱学与光谱分析, 28(5): 1160-1164. doi: 10.3964/j.issn.1000-0593.2008.05.047
|
左磊, 侯立刚, 张旺, 等, 2010. 基于粒子群支持向量机的模拟电路故障诊断. 系统工程与电子技术, 32(7): 1553-1556. doi: 10.3969/j.issn.1001-506X.2010.07.047
|