• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 8
    Aug.  2015
    Turn off MathJax
    Article Contents
    Tan Kun, Zhang Qianqian, Cao Qian, Du Peijun, 2015. Hyperspectral Retrieval Model of Soil Organic Matter Content Based on Particle Swarm Optimization-Support Vector Machines. Earth Science, 40(8): 1339-1345. doi: 10.3799/dqkx.2015.115
    Citation: Tan Kun, Zhang Qianqian, Cao Qian, Du Peijun, 2015. Hyperspectral Retrieval Model of Soil Organic Matter Content Based on Particle Swarm Optimization-Support Vector Machines. Earth Science, 40(8): 1339-1345. doi: 10.3799/dqkx.2015.115

    Hyperspectral Retrieval Model of Soil Organic Matter Content Based on Particle Swarm Optimization-Support Vector Machines

    doi: 10.3799/dqkx.2015.115
    • Received Date: 2015-04-15
    • Publish Date: 2015-08-01
    • To monitor the soil organic matter in the reclamation area of coal mines, the relationship between soil organic matter content and soil spectra in the reclamation area of coal mines was studied, and a quantitative retrieval model was established and validated in order to implement the organic matter content detection in this paper. After the preprocessing of the original spectral, the correlation of the organic matter content and reflectance spectra was analyzed, and 450 nm, 500 nm, 650 nm, 770 nm, 1 460 nm and 2 140 nm wavelength were extracted as feature bands. Using the multiple linear regression (MLR), partial least squares regression (PLSR) and particle swarm optimization support vector machine regression (PSO-SVM) methods, the hyperspectral quantitative retrieval models for soil organic matter content were built. The results show the coefficient of determination (R2) of MLR, PLSR and PSO-SVM were 0.79, 0.83 and 0.85 respectively, and the root mean square error of prediction (RMSEP) were 5.26, 4.93 and 4.76 respectively. The results demonstrate that the stability and predictive ability of PSO-SVM model are better than those of the MLR and PLSR model.

       

    • loading
    • Chu, X.L., Yuan, H.F., Lu, W.Z., 2004. Progress and Application of Spectral Data Pretreatment and Wavelength Selection Methods in NIR Analytical Technique. Progress in Chemistry, 16(4): 528-542(in Chinese with English abstract). http://www.researchgate.net/publication/279620861_Progress_and_application_of_spectral_data_pretreatment_and_wavelength_selection_method_in_NIR_analytical_technique
      Demattê, J.A.M., Sousa, A.A., Alves, M.C., et al., 2006. Determining Soil Water Status and Other Soil Characteristics by Spectral Proximal Sensing. Geoderma, 135: 179-195. doi: 10.1016/j.geoderma.2005.12.002
      Hair, J.F., Sarstedt, M., Ringle, C.M., et al., 2012. An Assessment of the Use of Partial Least Squares Structural Equation Modeling in Marketing Research. Journal of the Academy of Marketing Science, 40(3): 414-433. doi: 10.1007/s11747-011-0261-6
      He, J.L., Jiang, J.J., Zhou, S.L., et al., 2007. The Hyperspectral Characteristics and Retrieval of Soil Organic Matter Content. Scientia Agricultura Sinica, 40(3): 638-643(in Chinese with English abstract). http://agris.fao.org/agris-search/search.do?recordID=CN2007000678
      Hummel, J.W., Sudduth, K.A., Hollinger, S.E., 2001. Soil Moisture and Organic Matter Prediction of Surface and Subsurface Soils Using an Nir Soil Sensor. Computers and Electronics in Agriculture, 32(2): 149-165. doi: 10.1016/S0168-1699(01)00163-6
      Kennedy, J., 2010. Particle Swarm Optimization. Springer, New York, 760-766.
      Liu, H.J., Zhang, B., Zhao, J., et al., 2007. Spectral Models for Prediction of Organic Matter in Black Soil. Acta Petrologica Sinica, 44(1): 27-32(in Chinese with English abstract). http://pedologica.issas.ac.cn/trxben/ch/reader/view_abstract.aspx?file_no=20070105&flag=1
      Liu, H.J., Zhang, X.L., Zheng, S.F., et al., 2010. Black Soil Organic Matter Predicting Model Based on Field Hyperspectral Reflectance. Spectroscopy and Spectral Analysis, 30(12): 3355-3358(in Chinese with English abstract). http://europepmc.org/abstract/MED/21322239
      Liu, W.D., Baret, F., Gu, X.F., et al., 2002. Relating Soil Surface Moisture to Reflectance. Remote Sensing of Environment, 81(2-3): 238-246. doi: 10.1016/S0034-4257(01)00347-9
      Lu, Y.L., Bai, Y.L., Yang, L.P., et al., 2008. Application of Hyperspectral Data for Soil Organic Matter Estimation Based on Principle Components Regerssion Analysis. Plant Nutrition and Fertilizer Science, 14(6): 1076-1082(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZWYF200806010.htm
      Luan, F.M., Zhang, X.L., Xiong, H.G., et al., 2013. Comparative Analysis of Soil Organic Matter Content Based on Different Hyperspectral Inversion Models. Spectroscopy and Spectral Analysis, 33(1): 196-200(in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/23586255
      Ren, H.Y., Zhuang, D.F., Singh, A., et al., 2009. Estimation of As and Cu Contamination in Agricultural Soils around a Mining Area by Reflectance Spectroscopy: A Case Study. Pedosphere, 19(6): 719-726. doi: 10.1016/S1002-0160(09)60167-3
      Sha, J.M., Chen, P.C., Lin, C.S., 2003. Characteristics Analysis of Soil Spectrum Response Resulted from Organic Material. Research of Soil and Water Conservation, 10(2): 21-24(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STBY200302005.htm
      Shen, R.P., Ding, G.X., Wei, G.S., et al., 2009. Retrieval of Soil Organic Matter Content from Hyper-Spectrum Based on Ann. Acta Petrologica Sinica, 46(3): 391-397(in Chinese with English abstract). http://www.cabdirect.org/abstracts/20093255951.html
      Smola, A.J., Schölkopf, B., 2004. A Tutorial on Support Vector Regression. Statistics and Computing, 14(3): 199-222. doi: 10.1023/B:STCO.0000035301.49549.88
      Svensson, O., Kourti, T., Macgregor, J.F., 2002. An Investigation of Orthogonal Signal Correction Algorithms and Their Characteristics. Journal of Chemometrics, 16(4): 176-188. doi: 10.1002/cem.700
      Wang, J., He, T., Li, Y.H., 2005. Studying on Extraction Methods for Land Quality Information Based on Hyperspectral Data. Journal of Remote Sensing, 9(4): 438-445(in Chinese with English abstract).
      Wold, H., 1985. Partial Least Squares. Encyclopedia of Statistical Sciences. John Wiley & Sons. Inc. USA, 9. doi: 10.1002/0471667196.ess1914.pub2
      Xu, Y.M., Zhong, L.Q., Wang, L., et al., 2006. Model for Estimating Soil Nutrient Elements Based on High Resolution Reflectance Spectra. Acta Petrologica Sinica, 43(5): 709-716(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRXB200605000.htm
      Zheng, L.H., Li, M.Z., An, X.F., et al., 2010. Forecasting Soil Parameters Based on NIR and SVM. Transactions of the CSAE, 26(Suppl. 2): 81-87(in Chinese with English abstract). http://www.cqvip.com/QK/90712X/2010S2/3000101830.html
      Zheng, L.H., Li, M.Z., Pan, L., et al., 2008. Estimation of Soil Organic Matter and Soil Total Nitrogen Based on NIR Spectroscopy and BP Neural Network. Spectroscopy and Spectral Analysis, 28(5): 1160-1164(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GUAN200805050.htm
      Zuo, L., Hou, L.G., Zhang, W., et al., 2010. Analog Circuit Fault Diagnosis Based on Partical Swarm Optimization Support Vector Machine. Systems Engineering and Electronics, 32(7): 1553-1556(in Chinese with English abstract). http://www.researchgate.net/publication/292252220_Analog_circuit_fault_diagnosis_based_on_particle_swarm_optimization_support_vector_machine
      褚小立, 袁洪福, 陆婉珍, 2004. 近红外分析中光谱预处理及波长选择方法进展与应用. 化学进展, 16(4): 528-542. doi: 10.3321/j.issn:1005-281X.2004.04.008
      贺军亮, 蒋建军, 周生路, 等, 2007. 土壤有机质含量的高光谱特性及其反演. 中国农业科学, 40(3): 638-643. doi: 10.3321/j.issn:0578-1752.2007.03.030
      刘焕军, 张柏, 赵军, 等, 2007. 黑土有机质含量高光谱模型研究. 土壤学报, 44(1): 27-32. doi: 10.3321/j.issn:0564-3929.2007.01.005
      刘焕军, 张新乐, 郑树峰, 等, 2010. 黑土有机质含量野外高光谱预测模型. 光谱学与光谱分析, 30(12): 3355-3358. doi: 10.3964/j.issn.1000-0593(2010)12-3355-04
      卢艳丽, 白由路, 杨俐苹, 等, 2008. 基于主成分回归分析的土壤有机质高光谱预测与模型验证. 植物营养与肥料学报, 14(6): 1076-1082. doi: 10.3321/j.issn:1008-505X.2008.06.008
      栾福明, 张小雷, 熊黑钢, 等, 2013. 基于不同模型的土壤有机质含量高光谱反演比较分析. 光谱学与光谱分析, 33(1): 196-200. doi: 10.3964/j.issn.1000-0593(2013)01-0196-05
      沙晋明, 陈鹏程, 陈松林, 2003. 土壤有机质光谱响应特性研究. 水土保持研究, 10(2): 21-24. doi: 10.3969/j.issn.1005-3409.2003.02.006
      沈润平, 丁国香, 魏国栓, 等, 2009. 基于人工神经网络的土壤有机质含量高光谱反演. 土壤学报, 46(3): 391-397. doi: 10.3321/j.issn:0564-3929.2009.03.003
      王静, 何挺, 李玉环, 2005. 基于高光谱遥感技术的土地质量信息挖掘研究. 遥感学报, 9(4): 438-445. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200504014.htm
      徐永明, 蔺启忠, 王璐, 等, 2006. 基于高分辨率反射光谱的土壤营养元素估算模型. 土壤学报, 43(5): 709-716. doi: 10.3321/j.issn:0564-3929.2006.05.001
      郑立华, 李民赞, 安晓飞, 等, 2010. 基于近红外光谱和支持向量机的土壤参数预测. 农业工程学报, 26(增刊2): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2010S2017.htm
      郑立华, 李民赞, 潘娈, 等, 2008. 基于近红外光谱技术的土壤参数BP神经网络预测. 光谱学与光谱分析, 28(5): 1160-1164. doi: 10.3964/j.issn.1000-0593.2008.05.047
      左磊, 侯立刚, 张旺, 等, 2010. 基于粒子群支持向量机的模拟电路故障诊断. 系统工程与电子技术, 32(7): 1553-1556. doi: 10.3969/j.issn.1001-506X.2010.07.047
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(3)

      Article views (3912) PDF downloads(590) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return