• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 9
    Sep.  2015
    Turn off MathJax
    Article Contents
    Duan Wei, Luo Chengfei, Liu Jianzhang, Tian Jinqiang, Lü Bo, Ding Liang, 2015. Effect of Overpressure Formation on Reservoir Diagenesis and Its Geological Significance to LD Block of Yinggehai Basin. Earth Science, 40(9): 1517-1528. doi: 10.3799/dqkx.2015.136
    Citation: Duan Wei, Luo Chengfei, Liu Jianzhang, Tian Jinqiang, Lü Bo, Ding Liang, 2015. Effect of Overpressure Formation on Reservoir Diagenesis and Its Geological Significance to LD Block of Yinggehai Basin. Earth Science, 40(9): 1517-1528. doi: 10.3799/dqkx.2015.136

    Effect of Overpressure Formation on Reservoir Diagenesis and Its Geological Significance to LD Block of Yinggehai Basin

    doi: 10.3799/dqkx.2015.136
    • Received Date: 2015-04-05
    • Publish Date: 2015-09-15
    • As to the Yinggehai basin, there is much room for further studies on the following issues including the distribution of abnormal pressure, the interaction of fluid and rock under the condition of abnormal pressure and the effect on diagenetic evolution. A systematic analysis on the distribution of overpressure, the effect on geological fluid activities and diagenetic evolution in Yinggehai basin is carried out by means of microscopy, scanning electron microscopy, isotope analysis and fluid inclusion homogenization temperature measurement based on the previous studies.The results show follows: (1) Overpressure drives the deep thermal fluid to release up. The thermal fluid which contains carbonate minerals is driven to the top interface of the overpressure and then deposits again with the changing pressure and temperature. The thermal fluid forms tight plugged zone of carbonate cementation with high content. (2) The overpressure reduces the material sources of carbonate cements and quartz secondary enlargement by inhibiting the transformation of clay minerals, so that the primary pores can be effectively preserved. (3) The reservoirs in LD block generally contain high content of CO2. In condition of overpressure, the solubility of CO2 in the fluid increases, which generates a large number of H+. On the other hand, overpressure increases the space and time for the release of organic acids in LD block and promotes the dissolution. It is concluded that the main reason for the high porosity in middle-deep overpressure reservoir of study area is that the overpressure constrains the forming of carbonate cement, and the other reason is that the decrease of compaction and the promotion of secondary pores.

       

    • loading
    • Ajdukiewicz, J.M., Nicholson, P.H., Esch, W.L., 2010. Prediction of Deep Reservoir Quality Using Early Diagenetic Process Models in the Jurassic Norphlet Formation, Gulf of Mexico. AAPG Bulletin, 94(8): 1189-1227. doi: 10.1306/04211009152
      Duan, W., Chen, J.D., Luo, C.F., et al., 2013. Effects of Formation Overpressures on Diagensis in the Dongfang Block of Yinggehai Basin. Acta Petrolei Sinica, 34(6): 1049-1059 (in Chinese with English abstract). http://www.doaj.org/doaj?func=abstract&id=1579011&recNo=41&toc=3&uiLanguage=en
      Hao, F., 2005. Kinetics of Hydrocarbon Generation and Mechanisms of Petroleum Accumulation in Overpressure Basin. Science Press, Beijing (in Chinese).
      Hao, F., Li, S.T., Sun, Y.C., et al., 1996. Organic Matter Maturation and Petroleum Generation Model in the Yinggehai and Qiongdongnan Basins. Science in China (Series D), 39(6): 650-658.
      Hao, F., Li, S.T., Dong, W.L., et al., 1998. Abnormal Organic-Matter Maturation in the Yinggehai Basin, South China Sea: Implications for Hydrocarbon Expulsion and Fluid Migration from Overpressured Systems. Journal of Petroleum Geology, 21(4): 427-444. doi: 10.1111/j.1747-5457.1998.tb00794.x
      Hao, F., Li, S.T., Gong, Z.S., et al., 2000. Thermal Regime, Interreservoir Compositional Heterogeneities, and Reservoir-Filling History of the Dongfang Gas Field, Yinggehai Basin, South China Sea: Evidence for Episodic Fluid Injections in Overpressured Basins?AAPG Bulletin, 84(5): 607-626. http://ci.nii.ac.jp/naid/80012161621
      Hao, F., Sun, Y.C., Li S.T., et al., 1995. Overpressure Retardation of Organic-Matter Maturation and Petroleum Generation: A Case Study from the Yinggehai and Qiongdongnan Basins, South China Sea. AAPG Bulletin, 79(4): 551-562. doi: 10.1306/8d2b158e-171e-11d7-8645000102c1865d
      He, J.X., Zhang, W., Chen, G., 1995. A Preliminary Study on the Genesis of CO2 Gas and Characteristics in Its Migration and Accumulation in the Yinggehai Basin. Petroleum Exploration and Development, 22(6): 8-15 (in Chinese with English abstract).
      Houseknecht, D.W., 1987. Assessing the Relative Importance of Compaction Processes and Cementation to Reduction of Porosity in Sandstones. AAPG Bulletin, 71(6): 633-642. doi: 10.1306/9488787f-1704-11d7-8645000102c1865d
      Hunt, J.M., 1990. Generation and Migration of Petroleum from Abnormally Pressured Fluid Compartments. AAPG Bulletin, 74(1): 1-12. http://ci.nii.ac.jp/naid/80005099695
      Jansa, L.F., Urrea, V.H.N., 1990. Geology and Diagenetic History of Overpressured Sandstone Reservoirs, Venture Gas Field, Offshore Nova Scotia, Canada. AAPG Bulletin, 74(10): 1640-1658. doi: 10.1306/0c9b2551-1710-11d7-8645000102c1865d
      Jeans, C.V., 1994. Clay Diagenesis, Overpressure and Reservoir Quality—An Introduction. Clay Minerals, 29(4): 415-424. doi: 10.1180/claymin.1994.029.4.02
      Keith, L.M., Weber, J.N., 1964. Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils. Geochim. et Cosmochim. Acta, 28(11): 1787-1816. doi: 10.1016/0016-7037(64)90022-5
      Lavenu, A.P.C., Lamarche, J., Gallois, A., et al., 2013. Tectonic versus Diagenetic Origin of Fractures in a Naturally Fractured Carbonate Reservoir Analog (Nerthe Anticline, Southeastern France). AAPG Bulletin, 97(12): 2207-2232. doi: 10.1306/04041312225
      Li, Z., Chen, J.S., Guan, P., 2006. Scientific Problems and Frontiers of Sedimentary Diagenesis Research in Oil-Gas-Bearing Basins. Acta Petrologica Sinica, 22(8): 2113-2122 (in Chinese with English abstract). http://www.oalib.com/paper/1472034
      Lipinski, C.J., Franseen, E.K., Goldstein, R.H., 2013. Reservoir Analog Model for Oolite-Microbialite Sequences, Miocene Terminal Carbonate Complex, Spain. AAPG Bulletin, 97(11): 2035-2057. doi: 10.1306/06261312182
      Lü, M., 1999. Reservoir Characteristics of the Gas-Bearing Area in Ying-Qiong Basin. Natural Gas Industry, 19(1): 20-24 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG901.005.htm
      McLendon, W.J., Koronaios, P., Enick, R.M., et al., 2014. Assessment of CO2 Soluble Non-Ionic Surfactants for Mobility Reduction Using Mobility Measurements and CT Imaging. Journal of Petroleum Science and Engineering, 119: 196-209. doi: 10.1016/j.petrol.2014.05.010
      Meng, F.J., Xiao, L.H., Xie, Y.H., et al., 2012. Abnormal Transformation of the Clay Minerals in Yinggehai Basin and Its Significances. Acta Sedimentologica Sinica, 30(3): 469-476 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201203008.htm
      Meng, Y.L., Huang, W.B., Wang, Y.C., et al., 2006. A Kinetic Model of Clay Mineral Tranaformation in Overpressure Setting and Its Applications. Acta Sedimentologica Sinica, 24(4): 461-467 (in Chinese with English abstract). http://www.researchgate.net/publication/288935420_A_kinetic_model_of_clay_mineral_transformation_in_overpressure_setting_and_its_applications
      Morad, S., Ketzer, J.M., de Ros, L.F., 2000. Spatial and Temporal Distribution of Diagenetic Alterations in Siliciclastic Rocks: Implications for Mass Transfer in Sedimentary Basins. Sedimentology, 47: 95-120. doi: 10.1046/j.1365-3091.2000.00007.x
      Mork, M.B.E., 2013. Diagenesis and Quartz Cement Distribution of Low-Permeability Upper Triassic-Middle Jurassic Reservoir Sandstones, Longyearbyen CO2 Lab Well Site in Svalbard, Norway. AAPG Bulletin, 97(4): 577-596. doi: 10.1306/10031211193
      Nguyen, B.T.T., Jones, S.J., Goulty, N.R., et al., 2013. The Role of Fluid Pressure and Diagenetic Cements for Porosity Preservation in Triassic Fluvial Reservoirs of the Central Graben, North Sea. AAPG Bulletin, 97(8): 1273-1302. doi: 10.1306/01151311163
      Ors, O., Sinayuc, C., 2014. An Experimental Study on the CO2-CH4 Swap Process between Gaseous CO2 and CH4 Hydrate in Porous Media. Journal of Petroleum Science and Engineering, 119: 156-162. doi: 10.1016/j.petrol.2014.05.003
      Pei, J.X., Yu, J.F., Wang, L.F., et al., 2011. Key Challenges and Strategies for the Success of Natural Gas Exploration in Mid-Deep Strata of the Yinggehai Basin. Acta Petrolei Sinica, 32(4): 573-579 (in Chinese with English abstract). http://www.researchgate.net/publication/285874266_Key_challenges_and_strategies_for_the_success_of_natural_gas_exploration_in_mid-deep_strata_of_the_Yinggehai_Basin
      Sakhaee-Pour, A., Bryant, S. L, 2014. Effect of Pore Structure on the Producibility of Tight-Gas Sandstones. AAPG Bulletin, 98(4): 663-694. doi: 10.1306/08011312078
      Sneider, R.M., 1988. Reservoir Description for Exploration and Development: What is Needed and When. AAPG Bulletin, 72(12): 1522-1523. http://www.researchgate.net/publication/249895326_Reservoir_Description_for_Exploration_and_Development_What_is_Needed_and_When_ABSTRACT
      Tingay, M.R.P., Morley, C.K., Laird, A., et al., 2013. Evidence for Overpressure Generation by Kerogen-to-Gas Maturation in the Northern Malay Basin. AAPG Bulletin, 97(4): 639-672. doi: 10.1306/09041212032
      Wilkinson, M., Darby, D., Haszeldine, R.S., et al., 1997. Secondary Porosity Generation during Deep Burial Associated with Overpressure Leak-off: Fulmar Formation, United Kingdom Central Graben. AAPG Bulletin, 81(6): 803-813. http://aapgbull.geoscienceworld.org/content/81/5/803
      Wilson, A.M., Fenstemaker, T., Sharp, J.M., 2003. Abnormally Pressured Beds as Barriers to Diffusive Solute Transport in Sedimentary Basins. Geofluids, 3(3): 203-212. doi: 10.1046/j.1468-8123.2003.00060.x
      Xie, X.N., Jiao, J.J., Xiong, H.H., 2003. Underpressure System and Forming Mechanism in the Shiwu Depression of Songliao Basin. Earth Science—Journal of China University of Geosciences, 28(1): 61-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200301011.htm
      Xie, X.N., Liu, X.F., Zhao, S.B., et al., 2004. Fluid Flow and Hydrocarbon Migration Pathways in Abnormally Pressured Environments. Earth Science—Journal of China University of Geosciences, 29(5): 589-595 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx200405014
      Xie, Y.H., Huang, B.J., 2014. Characteristics and Accumulation Mechanisms of the Dongfang 13-1 High Temperature and Overpressured Gas Field in the Yinggehai Basin, the South China Sea. Science China Earth Sciences, 44(8): 1731-1739 (in Chinese). http://www.ingentaconnect.com/content/ssam/16747313/2014/00000057/00000011/art00021
      Xie, Y.H., Zhang, Y.Z., Li, X.S., et al., 2012. Main Controlling Factors and Formation Models of Natural Gas Reservoirs with High-Temperature and Overpressure in Yinggehai Basin. Acta Petrolei Sinica, 33(4): 601-609 (in Chinese with English abstract). http://or.nsfc.gov.cn/handle/00001903-5/142167
      Yu, Z.C., Yang, S.Y., Liu, L., et al., 2012. An Experimental Study on Water-Rock Interaction during Water Flooding in Formations Saturated with CO2. Acta Petrolei Sinica, 33(6): 1032-1042 (in Chinese with English abstract). http://www.researchgate.net/publication/287528219_An_experimental_study_on_water-rock_interaction_during_water_flooding_in_formations_saturated_with_CO2
      段威, 陈金定, 罗程飞, 等, 2013. 莺歌海盆地东方区块地层超压对成岩作用的影响. 石油学报, 34(6): 1049-1059. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201306003.htm
      郝芳, 2005. 超压盆地生烃作用动力学与油气成藏机理. 北京: 科学出版社.
      何家雄, 张伟, 陈刚, 1995. 莺歌海盆地CO2成因及运聚特征的初步研究. 石油勘探与开发, 22(6): 8-15. doi: 10.3321/j.issn:1000-0747.1995.06.013
      李忠, 陈景山, 关平, 2006. 含油气盆地成岩作用的科学问题及研究前沿. 岩石学报, 22(8): 2113-2122. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200608000.htm
      吕明, 1999. 莺-琼盆地含气区储层特征. 天然气工业, 19(1): 20-24. doi: 10.3321/j.issn:1000-0976.1999.01.006
      孟凡晋, 肖丽华, 谢玉洪, 等, 2012. 莺歌海盆地黏土矿物异常转化及其地质意义. 沉积学报, 30(3): 469-476. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201203008.htm
      孟元林, 黄文彪, 王粤川, 等, 2006. 超压背景下粘土矿物转化的化学动力学模型及应用. 沉积学报, 24(4): 461-467. doi: 10.3969/j.issn.1000-0550.2006.04.001
      解习农, 焦赳赳, 熊海河, 2003. 松辽盆地十屋断陷异常低压体系及其成因机制. 地球科学——中国地质大学学报, 28(1): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200301011.htm
      解习农, 刘晓峰, 赵士宝, 等, 2004. 异常压力环境下流体活动及其油气运移主通道分析. 地球科学——中国地质大学学报, 29(5): 589-595. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200405013.htm
      裴健翔, 于俊峰, 王立锋, 等, 2011. 莺歌海盆地中深层天然气勘探的关键问题及对策. 石油学报, 32(4): 573-579. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201104004.htm
      谢玉洪, 黄保家, 2014. 南海莺歌海盆地东方13-1高温高压气田特征与成藏机理. 中国科学: 地球科学, 44(8): 1731-1739. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201408013.htm
      谢玉洪, 张迎朝, 李绪深, 等, 2012. 莺歌海盆地高温超压气藏控藏要素与成藏模式. 石油学报, 33(4): 601-609. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201204010.htm
      于志超, 杨思玉, 刘立, 等, 2012. 饱和CO2地层水驱过程中的水-岩相互作用实验. 石油学报, 33(6): 1032-1042. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201206017.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(3)

      Article views (3730) PDF downloads(417) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return