• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 12
    Dec.  2015
    Turn off MathJax
    Article Contents
    Yang Tangli, Jiang Shaoyong, 2015. Petrogenesis of Intermediate-Felsic Intrusive Rocks and Mafic Microgranular Enclaves (MMEs) from Dongleiwan Deposit in Jiurui Ore District, Jiangxi Province: Evidence from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes. Earth Science, 40(12): 2002-2020. doi: 10.3799/dqkx.2015.179
    Citation: Yang Tangli, Jiang Shaoyong, 2015. Petrogenesis of Intermediate-Felsic Intrusive Rocks and Mafic Microgranular Enclaves (MMEs) from Dongleiwan Deposit in Jiurui Ore District, Jiangxi Province: Evidence from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes. Earth Science, 40(12): 2002-2020. doi: 10.3799/dqkx.2015.179

    Petrogenesis of Intermediate-Felsic Intrusive Rocks and Mafic Microgranular Enclaves (MMEs) from Dongleiwan Deposit in Jiurui Ore District, Jiangxi Province: Evidence from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes

    doi: 10.3799/dqkx.2015.179
    • Received Date: 2015-10-10
    • Publish Date: 2015-12-15
    • The intermediate-felsic intrusive rocks show a close relationship with mineralization in the Jiurui ore district, however, the studies of these rocks in the Dongleiwan deposit are relatively rare. In this study, we present a detailed study on zircon geochronology, mineral chemistry, whole rock geochemistry, and Sr-Nd-Pb-Hf isotopes of both the intermediate-felsic intrusive rocks and their mafic microgranular enclaves (MMEs). LA-ICP-MS zircon U-Pb dating yields crystallization ages of 144.3-148.7 Ma for the felsic rocks and 146.4-147.1 Ma for the MMEs, indicating they are coeval. All the intrusive rocks from the Dongleiwan deposit are metaluminous with high Mg# (42.5-68.0, with an average of 56.0) and high contents of compatible elements such as V, Cr, Co and Ni. The REE characteristics are LREE enriched and lack any significant Eu anomaly. The trace elements are characterized by enrichment of LILE and depletion of HFSE. The MMEs are characterized by microgranular texture, and contain acicular apatites and K-feldspar phenocrysts. The Dongleiwan rock samples have a narrow Sr-Nd isotopic ratio range with initial 87Sr/86Sr ratios from 0.706 4 to 0.707 9, εNd(t) values from -5.80 to -3.31, and t2DM(Nd) values from 1.2 to 1.4 Ga. The samples show radiogenic Pb isotopic ratios with values of 206Pb/204Pb(17.333 3-18.260 0), 207Pb/204Pb (15.513 5-15.621 0) and 208Pb/204Pb (37.404 1-38.395 4). The zircon Hf isotope analysis shows εHf(t) values of -15.9 to -3.6. These data suggest that the MMEs were probably produced by mixing of mafic and felsic magmas, and the mafic magma was derived from partial melting of delaminated lower crust and may have reacted with surrounded mantle peridotites during its ascent. While the felsic intrusive rocks of this area have been formed by the upwelling of magma which have experienced strong crust-mantle interaction after the delamination of lower crust into the asthenosphere.

       

    • loading
    • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X
      Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos, 80(1): 155-177. doi: 10.1016/j.lithos.2004.05.010
      Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1-2): 48-57. doi: 10.1016/j.epsl.2008.06.010
      Boynton, W.V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114.
      Chang, Y.F., Liu, X.P., Wu, Y.C., 1991. The Copper-Iron Belt of the Middle and Lower Reaches of the Yangtze River. Geological Publishing House, Beijing (in Chinese).
      Chappell, B., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3
      Chappell, B., White, A., Wyborn, D., 1987. The Importance of Residual Source Material (Restite) in Granite Petrogenesis. Journal of Petrology, 28(6): 1111-1138. doi: 10.1093/petrology/28.6.1111
      Chen, Z.H., Xing, G.F., Guo, K.Y., et al., 2011. Zircon U-Pb Ages of Ore-Bearing Granitic Bodies in Northern Jiujiang-Ruichang Metallogenic District of the Mineralization Belt of the Middle-Lower Reaches of the Yangtze River, and Its Geological Significance. Acta Geologica Sinica, 85(7): 1146-1158 (in Chinese with English abstract).
      Dahlquist, J.A., 2002. Mafic Microgranular Enclaves: Early Segregation from Metaluminous Magma (Sierra de Chepes), Pampean Ranges, NW Argentina. Journal of South American Earth Sciences, 15(6): 643-655. doi: 10.1016/S0895-9811(02)00112-8
      Deer, W.A., Howie, R.A., Zussman, J., 1992. An Introduction to the Rock-Forming Minerals, 2. Longman Scientific & Technical, Hong Kong.
      Defant, M., Jackson, T.E., Drummond, M.S., et al., 1992. The Geochemistry of Young Volcanism throughout Western Panama and Southeastern Costa Rica: An Overview. Journal of the Geological Society, 149(4): 569-579. doi: 10.1144/gsjgs.149.4.0569
      Defant, M.J., Xu, J., Kepezhinskas, P., et al., 2002. Adakites: Some Variations on a Theme. Acta Petrologica Sinica, 18(2): 129-142. http://ci.nii.ac.jp/naid/10013345697
      Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. doi: 10.1038/347662a0
      Ding, X., Jiang, S.Y., Ni, P., et al., 2006. Zircon SIMS U-Pb Geochronology of Host Granitoids in Wushan and Yongping Copper Deposits, Jiangxi Province. Geological Journal of China Universities, 11(3): 383-389 (in Chinese with English abstract). http://www.researchgate.net/publication/292738727_Zircon_SIMS_U-Pb_geochronology_of_host_granitoids_in_Wushan_and_Yongping_copper_deposits_Jiangxi_Province
      Ding, X., Jiang, S.Y., Zhao, K.D., et al., 2006. In-Situ U-Pb SIMS Dating and Trace Element (EMPA) Composition of Zircon from a Granodiorite Porphyry in the Wushan Copper Deposit, China. Mineralogy and Petrology, 86(1-2): 29-44. doi: 10.1007/s00710-005-0093-5
      Donaire, T., Pascual, E., Pin, C., et al., 2005. Microgranular Enclaves as Evidence of Rapid Cooling in Granitoid Rocks: The Case of the Los Pedroches Granodiorite, Iberian Massif, Spain. Contributions to Mineralogy and Petrology, 149(3): 247-265. doi: 10.1007/s00410-005-0652-0
      Foster, M.D., 1960. Interpretation of the Composition of Trioctahedral Micas. U.S. Geological Survey, Washington D.C., 70-89.
      Gao, J.F., Lu, J.J., Lai, M.Y., et al., 2003. Analysis of Trace Elements in Rock Samples Using HR-ICPMS. Journal of Nanjing University (Natural Sciences), 39(6): 844-850 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026140653
      Goldstein, S.L., O'Nions, R.K., Hamilton, P.J., 1984. A Sm-Nd Isotopic Study of Atmospheric Dusts and Particulates from Major River Systems. Earth and Planetary Science Letters, 70(2): 221-236. doi: 10.1016/0012-821X(84)90007-4
      Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9
      Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4): 237-269. doi: 10.1016/S0024-4937(02)00082-8
      He, Y., Li, S., Hoefs, J., et al., 2011. Post-Collisional Granitoids from the Dabie Orogen: New Evidence for Partial Melting of a Thickened Continental Crust. Geochimica et Cosmochimica Acta, 75(13): 3815-3838. doi: 10.1016/j.gca.2011.04.011
      Huang, F., He, Y.S., 2010. Partial Melting of the Dry Mafic Continental Crust: Implications for Petrogenesis of C-Type Adakites. Chinese Science Bulletin, 55(22): 2428-2439. doi: 10.1007/s11434-010-3224-2
      Irvine, T., Baragar, W.R.A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. doi: 10.1139/e71-055
      Jacobsen, S.B., Wasserburg, G.J., 1980. Sm-Nd Isotopic Evolution of Chondrites. Earth and Planetary Science Letters, 50(1): 139-155. doi: 10.1016/0012-821X(80)90125-9
      Jia, L.Q., Yang, D., Xu. W.Y., et al., 2015. Zircon U-Pb and Molybdenite Re-Os Dating of the Dongleiwan Skarn Cu Polymetallic Deposit in the Jiujiang-Ruichang Ore Concentration Area of Jiangxi Province and Its Geological Significance. Acta Geoscientica Sinica, 36(2): 177-186 (in Chinese with English abstract). doi: 10.1111/1755-6724.12378_12/abstract
      Jiang, S.Y., Li, L., Zhu, B., et al., 2008. Geochemical and Sr-Nd-Hf Isotopic Compositions of Granodiorite from the Wushan Copper Deposit, Jiangxi Province and Their Implications for Petrogenesis. Acta Petroligica Sinica, 24(8): 1679-1690 (in Chinese with English abstract). http://www.oalib.com/paper/1472757
      Kay, S.M., Ramos, V.A., Marquez, M., 1993. Evidence in Cerro Pampa Volcanic Rocks for Slab-Melting Prior to Ridge-Trench Collision in Southern South America. The Journal of Geology, 101(6): 703-714. doi: 10.1086/648269
      Klein, M., Stosch, H.G., Seck, H., et al., 2000. Experimental Partitioning of High Field Strength and Rare Earth Elements between Clinopyroxene and Garnet in Andesitic to Tonalitic Systems. Geochimica et Cosmochimica Acta, 64(1): 99-115. doi: 10.1016/S0016-7037(99)00178-7
      Kong, F.B., Jiang, S.Y., Xu, Y.M., et al., 2012. Submarine Hydrothermal Exhalation with Superimposed Magmatic-Hydrothermal Mineralization in the Wushan Copper Deposit, Jiangxi Province: Constraints from Geology, Ore Texture and Ore Deposit Geochemistry. Acta Petrologica Sinica, 28(12): 3929-3937 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201212011.htm
      Leake, B.E., 1997. Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61(405): 1019-1037. http://ci.nii.ac.jp/naid/30022405261
      Lesher, C., 1990. Decoupling of Chemical and Isotopic Exchange during Magma Mixing. Nature, 344(6263): 235-237. doi: 10.1038/344235a0
      Li, J.W., Li, X.H., Pei, R.F., et al., 2007. Re-Os Age of Molybdenite from the Southern Ore Zone of the Wushan Copper Deposit, Jiangxi Province, and Its Geological Significance. Acta Geologica Sinica, 81(6): 801-807 (in Chinese with English abstract).
      Li, J.W., Zhao, X.F., Zhou, M.F., et al., 2009. Late Mesozoic Magmatism from the Daye Region, Eastern China: U-Pb Ages, Petrogenesis, and Geodynamic Implications. Contributions to Mineralogy and Petrology, 157(3): 383-409. doi: 10.1007/s00410-008-0341-x
      Li, L., Jiang, S.Y., 2009. Petrogenesis and Geochemistry of the Dengjiashan Porphyritic Granodiorite, Jiujiang-Ruichang Metallogenic District of the Middle-Lower Reaches of the Yangtze River. Acta Petrologica Sinica, 25(11): 2877-2888 (in Chinese with English abstract). http://www.researchgate.net/publication/282761971_Petrogenesis_and_geochemistry_of_the_Dengjiashan_porphyritic_granodiorite_Jiujiang-Ruichang_metallogenic_district_of_the_Middle-Lower_Reaches_of_the_Yangtze_River
      Li, X.H., Li, W.X., Wang, X.C., et al., 2010. SIMS U-Pb Zircon Geochronology of Porphyry Cu-Au-(Mo) Deposits in the Yangtze River Metallogenic Belt, Eastern China: Magmatic Response to Early Cretaceous Lithospheric Extension. Lithos, 119(3): 427-438. doi: 10.1016/j.lithos.2010.07.018
      Liew, T.C., Hofmann, A.W., 1988. Precambrian Crustal Components, Plutonic Associations, Plate Environment of the Hercynian Fold Belt of Central Europe: Indications from a Nd and Sr Isotopic Study. Contributions to Mineralogy and Petrology, 98(2): 129-138. doi: 10.1007/BF00402106
      Ling, M.X., Wang, F.Y., Ding, X., et al., 2011. Different Origins of Adakites from the Dabie Mountains and the Lower Yangtze River Belt, Eastern China: Geochemical Constraints. International Geology Review, 53(5-6): 727-740. doi: 10.1080/00206814.2010.482349
      Liu, S.A., Li, S., Guo, S., et al., 2012. The Cretaceous Adakitic-Basaltic-Granitic Magma Sequence on South-Eastern Margin of the North China Craton: Implications for Lithospheric Thinning Mechanism. Lithos, 134: 163-178. doi: 10.1016/j.lithos.2011.12.015
      Liu, S.A., Li, S., He, Y., et al., 2010. Geochemical Contrasts between Early Cretaceous Ore-Bearing and Ore-Barren High-Mg Adakites in Central-Eastern China: Implications for Petrogenesis and Cu-Au Mineralization. Geochimica et Cosmochimica Acta, 74(24): 7160-7178. doi:doi: 10.1016/j.gca.2010.09.003
      Liu, X., 1990. The Mechanism of Structural Control of Ore Formation and Geochemical Characteristics in the Massive Sulfide Deposits of the Wushan Copper Ore Field, Jiangxi. Acta Geologica Sinica, (1): 22-32 (in Chinese with English abstract).
      Ludwig, K.R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special publication, (4). http://www.researchgate.net/publication/301951506_User's_Manual_for_IsoplotEx_rev_300_A_Geochronological_Toolkit_for_Microsoft_Excel
      Maas, R., Nicholls, I.A., Legg, C., 1997. Igneous and Metamorphic Enclaves in the S-Type Deddick Granodiorite, Lachlan Fold Belt, SE Australia: Petrographic, Geochemical and Nd-Sr Isotopic Evidence for Crustal Melting and Magma Mixing. Journal of Petrology, 38(7): 815-841. doi: 10.1093/petroj/38.7.815
      Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. doi:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
      Mao, J.W., Xie, G.Q., Duan, C., et al., 2011. A Tectono-Genetic Model for Porphyry-Skarn-Stratabound Cu-Au-Mo-Fe and Magnetite-Apatite Deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43(1): 294-314. doi: 10.1016/j.oregeorev.2011.07.010
      McDonough, W.F., Sun, S.S., 1995. The Composition of the Earth. Chemical Geology, 120(3): 223-253. doi: 10.1016/0009-2541(94)00140-4
      Middlemost, E.A., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3): 215-224. doi: 10.1016/0012-8252(94)90029-9
      Pan, Y., Dong, P., 1999. The Lower Changjiang (Yangzi/Yangtze River) Metallogenic Belt, East Central China: Intrusion- and Wall Rock-Hosted Cu-Fe-Au, Mo, Zn, Pb, Ag Deposits. Ore Geology Reviews, 15(4): 177-242. doi: 10.1016/S0169-1368(99)00022-0
      Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. doi: 10.1007/BF00384745
      Pertermann, M., Hirschmann, M., Hametner, K., et al., 2004. Experimental Determination of Trace Element Partitioning between Garnet and Silica-Rich Liquid during Anhydrous Partial Melting of MORB-Like Eclogite. Geochemistry, Geophysics, Geosystems, 5(5), doi: 10.1029/2003GC000638
      Perugini, D., Poli, G., Christofides, G., et al., 2003. Magma Mixing in the Sithonia Plutonic Complex, Greece: Evidence from Mafic Microgranular Enclaves. Mineralogy and Petrology, 78(3-4): 173-200. doi: 10.1007/s00710-002-0225-0
      Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521. doi: 10.1093/petrology/37.6.1491
      Poli, G., Tommasini, S., Halliday, A., 1996. Trace Element and Isotopic Exchange during Acid-Basic Magma Interaction Processes. Geological Society of America Special Papers, 315: 225-232. doi: 10.1130/0-8137-2315-9.225
      Pu, W., Gao, J.F., Zhao, K.D., et al., 2005. Separation Method of Rb-Sr, Sm-Nd Using DCTA and HIBA. Journal of Nanjing University (Natural Sciences), 41(4): 445-450 (in Chinese with English abstract). http://www.researchgate.net/publication/284462213_Separation_method_of_Rb-Sr_Sm-Nd_using_DCTA_and_HIBA
      Rapp, R.P., Watson, E.B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. doi: 10.1093/petrology/36.4.891
      Schmidt, M.W., 1992. Amphibole Composition in Tonalite as a Function of Pressure: An Experimental Calibration of the Al-in-Hornblende Barometer. Contributions to Mineralogy and Petrology, 110(2-3): 304-310. doi: 10.1007/BF00310745
      Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002. Mount Making and Procedure of the SHRIMP Dating. Geological Review, 48(Suppl. ): 26-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP2002S1006.htm
      Sparks, R., Marshall, L., 1986. Thermal and Mechanical Constraints on Mixing between Mafic and Silicic Magmas. Journal of Volcanology and Geothermal Research, 29(1-4): 99-124. doi: 10.1016/0377-0273(86)90041-7
      Sun, W.D., Zhang, H., Ling, M.X., et al., 2011. The Genetic Association of Adakites and Cu-Au Ore Deposits. International Geology Review, 53(5-6): 691-703. doi: 10.1080/00206814.2010.507362
      Wang, D.Z., Zhou, X.M., Xu, X.S., et al., 1992. On Geneses of Microgranitoid Enclaves. Journal of Guilin College of Geology, 12(3): 235-241 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLGX199203007.htm
      Wen, C.H., Xu, W.Y., Zhong, H., et al., 2012. Fluid Inclusion Study of the Chengmenshan Porphyry Mo-Cu Deposit in the Jiujiang-Ruichang District. Acta Geologica Sinica, 86(10): 1604-1620 (in Chinese with English abstract). http://www.cqvip.com/QK/95080X/201210/43758747.html
      White, A.J.R., Chappell, B.W., Wyborn, D., 1999. Application of the Restite Model to the Deddick Granodiorite and Its Enclaves—A Reinterpretation of the Observations and Data of Maas et al. (1997). Journal of Petrology, 40(3): 413-421. doi: 10.1093/petroj/40.3.413
      Wones, D., Eugster, H., 1965. Stability of Biotite—Experiment Theory and Application. American Mineralogist, 50(9): 1228-1272. http://ci.nii.ac.jp/naid/10016754118
      Wu, L.S., Zou, X.Q., 1997. Re-Os Isotopic Age Study of the Chengmenshan Copper Deposit, Jiangxi Province. Mineral Deposits, 16(4): 376-381 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ704.009.htm
      Xie, G.Q., Mao, J.W., Li, R.L., et al., 2008. Geochemistry and Nd-Sr Isotopic Studies of Late Mesozoic Granitoids in the Southeastern Hubei Province, Middle-Lower Yangtze River Belt, Eastern China: Petrogenesis and Tectonic Setting. Lithos, 104(1): 216-230. doi: 10.1016/j.lithos.2007.12.008
      Xu, Y.M., Jiang, S.Y., Zhu, Z.Y., et al., 2013. Geochronology, Geochemistry and Mineralogy of Ore-Bearing and Ore-Barren Intermediate-Acid Intrusive Rocks from the Jiurui Ore District, Jiangxi Province and Their Geological Implications. Acta Petrologica Sinica, 29(12) : 4291 - 4310 (in Chinese with English abstract). http://www.researchgate.net/publication/280000600_Geochronology_geochemistry_and_mineralogy_of_ore-bearing_and_ore-barren_intermediate-acid_intrusive_rocks_from_the_Jiurui_ore_district_Jiangxi_Province_and_their_geological_implications
      Xu, Y.M., Jiang, S.Y., Zhu, Z.Y., et al., 2014. Petrogenesis of Late Mesozoic Granitoids and Coeval Mafic Rocks from the Jiurui District in the Middle-Lower Yangtze Metallogenic Belt of Eastern China: Geochemical and Sr-Nd-Pb-Hf Isotopic Evidence. Lithos, 190-191: 467-484. doi: 10.1016/j.lithos.2013.12.022
      Yan, J., Chen, J.F., Yu, G., et al., 2003. Pb Isotopic Characteristics of Late Mesozoic Mafic Rocks from the Lower Yangtze Region: Evidence for Enriched Mantle. Geological Journal of China Universities, 9(2): 195-206 (in Chinese with English abstract). http://geology.nju.edu.cn/EN/abstract/abstract8833.shtml
      Yang, S.Y., Jiang, S.Y., Li, L., et al., 2011. Late Mesozoic Magmatism of the Jiurui Mineralization District in the Middle-Lower Yangtze River Metallogenic Belt, Eastern China: Precise U-Pb Ages and Geodynamic Implications. Gondwana Research, 20(4): 831-843. doi: 10.1016/j.gr.2011.03.012
      Yuan, F., Zhou, T., Liu, J., et al., 2011. Petrogenesis of Volcanic and Intrusive Rocks of the Zhuanqiao Stage, Luzong Basin, Yangtze Metallogenic Belt, East China: Implications for Ore Deposition. International Geology Review, 53(5-6): 526-541. doi: 10.1080/00206814.2010.496246
      Zeng, J.N., Li, J.W., Chen, J.H., et al., 2013. SHRIMP Zircon U-Pb Dating of Anjishan Intrusive Rocks in Ningzhen District Jiangsu, and Its Geological Significance. Earth Science—Journal of China University of Geosciences, 38(1): 57-67 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.006
      Zhai, Y.S., Yao, S.Z., Lin, X.D., et al., 1992. The Metallogenic Features of Fe and Cu (Au) in the Middle and Lower Reaches of the Yangtze River. Geological Publishing House, Beijing (in Chinese).
      Zhai, Y.S., Yao, S.Z., Zhou, Z.G., 1999. Research on Orefield Tectonics of Copper and Gold Deposits in the Middle-Lower Reaches of the Yangtze River. China University of Geosciences Press, Wuhan (in Chinese).
      Zhao, K.D., Jiang, S.Y., Yang, S.Y., et al., 2012. Mineral Chemistry, Trace Elements and Sr-Nd-Hf Isotope Geochemistry and Petrogenesis of Cailing and Furong Granites and Mafic Enclaves from the Qitianling Batholith in the Shi-Hang Zone, South China. Gondwana Research, 22(1): 310-324. doi: 10.1016/j.gr.2011.09.010
      常印佛, 刘湘培, 吴言昌, 1991. 长江中下游铜铁成矿带. 北京: 地质出版社.
      陈志洪, 邢光福, 郭坤一, 等, 2011. 长江中下游成矿带九瑞矿集区(北部)含矿岩体的锆石U-Pb定年及其地质意义. 地质学报, 85(7): 1146-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201107009.htm
      丁昕, 蒋少涌, 倪培等, 2005. 江西武山和永平铜矿含矿花岗质岩体锆石SIMS U-Pb年代学. 高校地质学报, 11(3): 383-389. doi: 10.3969/j.issn.1006-7493.2005.03.009
      高剑峰, 陆建军, 赖鸣远, 等, 2003. 岩石样品中微量元素的高分辨率等离子质谱分析. 南京大学学报(自然科学版), 39(6): 844-850. doi: 10.3321/j.issn:0469-5097.2003.06.014
      贾丽琼, 杨丹, 徐文艺, 2015. 江西九瑞地区东雷湾矽卡岩型铜多金属矿床锆石U-Pb和辉钼矿Re-Os年龄及其地质意义. 地球学报, 36(2): 177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201502007.htm
      蒋少涌, 李亮, 朱碧, 等, 2008. 江西武山铜矿区花岗闪长斑岩的地球化学和Sr-Nd-Hf同位素组成及成因探讨. 岩石学报, 24(8): 1679-1690. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808002.htm
      孔凡斌, 蒋少涌, 徐耀明, 等, 2012. 江西武山铜矿床海底喷流与岩浆热液叠加成矿作用: 控矿地质条件, 矿石结构构造与矿床地球化学制约. 岩石学报, 28(12): 3929-3937. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212011.htm
      李进文, 李旭辉, 裴荣富, 等, 2007. 江西武山铜矿南矿带辉钼矿Re-Os同位素年龄及其地质意义. 地质学报, 81(6): 801-807. doi: 10.3321/j.issn:0001-5717.2007.06.008
      李亮, 蒋少涌, 2009. 长江中下游地区九瑞矿集区邓家山花岗闪长斑岩的地球化学与成因研究. 岩石学报, 25(11): 2877-2888. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911019.htm
      刘迅, 1990. 江西武山铜矿田块状硫化物矿床的构造控矿机制及地球化学特征. 地质学报, (1): 22-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199001002.htm
      濮巍, 高剑锋, 赵葵东, 等, 2005. 利用DCTA和HIBA快速有效分离Rb-Sr, Sm-Nd的方法. 南京大学学报(自然科学), 41(4): 445-450. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ200504016.htm
      宋彪, 张玉海, 万渝生, 等, 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增刊): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm
      王德滋, 周新民, 徐夕生, 等, 1992. 微粒花岗岩类包体的成因. 桂林冶金地质学院学报, 12(3): 235-241. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX199203007.htm
      文春华, 徐文艺, 钟宏, 等, 2012. 九瑞矿集区城门山斑岩型钼铜矿床流体包裹体研究. 地质学报, 86(10): 1604-1620. doi: 10.3969/j.issn.0001-5717.2012.10.005
      吴良士, 邹晓秋, 1997. 江西城门山铜矿铼-锇同位素年龄研究. 矿床地质, 16(4): 376-381. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ704.009.htm
      徐耀明, 蒋少涌, 朱志勇, 等, 2013. 江西九瑞矿集区成矿与未成矿中酸性侵入岩年代学、岩石化学、矿物化学特征的异同及地质意义. 岩石学报, 29(12): 4291. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201312016.htm
      闫峻, 陈江峰, 喻钢, 等, 2003. 长江中下游晚中生代中基性岩的铅同位素特征: 富集地幔的证据. 高校地质学报, 9(2): 195-206. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200302004.htm
      曾键年, 李锦伟, 陈津华, 等, 2013. 宁镇地区安基山侵入岩SHRIMP锆石U-Pb年龄及其地质意义. 地球科学——中国地质大学学报, 38(1): 57-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201301010.htm
      翟裕生, 姚书振, 林新多, 等, 1992. 长江中下游地区铁铜(金)成矿规律. 北京: 地质出版社.
      翟裕生, 姚书振, 周宗贵, 1999. 长江中下游铜金矿床矿田构造. 武汉: 中国地质大学出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(8)

      Article views (4163) PDF downloads(280) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return