• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 40 Issue 12
    Dec.  2015
    Turn off MathJax
    Article Contents
    Huang Shuang, Chen Shengbo, Zha Fengli, Zhou Chao, Huang Weishi, 2015. Inversion and Geological Significance of Minerals in Dark Matter of Craters of Oceanus Procellarum of Lunar Surface. Earth Science, 40(12): 2103-2109. doi: 10.3799/dqkx.2015.186
    Citation: Huang Shuang, Chen Shengbo, Zha Fengli, Zhou Chao, Huang Weishi, 2015. Inversion and Geological Significance of Minerals in Dark Matter of Craters of Oceanus Procellarum of Lunar Surface. Earth Science, 40(12): 2103-2109. doi: 10.3799/dqkx.2015.186

    Inversion and Geological Significance of Minerals in Dark Matter of Craters of Oceanus Procellarum of Lunar Surface

    doi: 10.3799/dqkx.2015.186
    • Received Date: 2015-04-12
    • Publish Date: 2015-12-15
    • There are a variety of geological structures in the Oceanus Procellarum, including 43 craters, some famous lunar mares like Mare Imbrium and Mare Frigoris, and so on. Since the Oceanus Procellarum is the candidate landing area of lunar exploration for some countries, it is important to carry out the inversion of the minerals in the dark matter of craters of the area to facilitate research, exploration and utilization of lunar resources in the future. In addition, distribution of minerals on lunar surface is important since it concerns the origin and evolution of the moon. In this paper, the Oceanus Procellarum is taken as study area, the minerals in the dark matter of crater are inversed according to the spectra absorption characteristics in the visible and near-infrared bands of different minerals like clinopyroxene, orthopyroxene, olivine and spinel from M3 (moon mineralogy mapper) data by spectral feature fitting. The mafic minerals extracted from the Oceanus Procellarum are relatively concentrated. The content of pyroxene is more than spinel and olivine. And the geological significance and relationship among olivine, spinel and other extracted minerals in the vicinity are analyzed. A comparison of the mapping results of the optical model of Lucey on Clementine data reveals that the distribution of inversion results is consistent. In this paper, the extracted olivine distributed concentratively, but there is no large scale distribution, it is associated with the study area of this article.

       

    • loading
    • Burns, R.G., 1993. Mineralogical Applications of Crystal Field Theory. Cambridge University Press, New York, 44-86.
      Clark, R.N., 2003. Imaging Spectroscopy: Earth and Planetary Remote Sensing with the USGS Tetracorder and Expert Systems. Journal of Geophysical Research, 108(E12): 1-44. doi: 10.1029/2002je001847
      Heiken, G.H., Vaniman, D.T., French, B.M., 1991. Lunar Source Book: A User's Guide to the Moon. Cambridge University Press, New York, 123-151.
      Isaacson, P.J., Pieters, C.M., Besse, S., et al., 2011. Remote Compositional Analysis of Lunar Olivine-Rich Lithologies with Moon Mineralogy Mapper (M3) Spectra. Journal of Geophysical Research, 116(E6): E00G11. doi: 10.1029/2010je003731
      Klima, R.L., Pieters, C.M., Boardman, J.W., et al., 2011. New Insights into Lunar Petrology: Distribution and Composition of Prominent Low-Ca Pyroxene Exposures as Observed by the Moon Mineralogy Mapper (M3). Journal of Geophysical Research, 116(E6): 0-6. doi: 10.1029/2010je003719
      Lucey, P.G., 2004. Mineral Maps of the Moon. Geophysical Research Letters, 31(8): 701-704. doi:10.1029/2003 GL019406
      Mouélic, S.L., Langevin, Y., 2001. The Olivine at the Lunar Crater Copernicus as Seen by Clementine NIR Data. Planetary and Space Science, 49(1): 65-70. doi: 10.1016/s0032-0633(00)00091-x
      Mouélic, S.L., Langevin, Y., Erard, S., 1999. The Distribution of Olivine in the Crater Aristarchus Inferred from Clementine NIR Data. Geophysical Research Letters, 26(9): 1195-1198. doi: 10.1029/1999gl900180
      Ouyang, Z.Y., Zou, Y.L., Li, C.L., et al., 2002. Prospect of Exploration and Utilization of Some Lunar Resources. Earth Science—Journal of China University of Geosciences, 27(5): 498-503(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200205003.htm
      Pieters, C.M., Besse, S., Boardman, J., et al., 2011. Mg-Spinel Lithology: A New Rock Type on the Lunar Farside. Journal of Geophysical Research, 116, E00G08. doi: 10.1029/2010je003727
      Pieters, C.M., Head, J.W., Gaddis, L., et al., 2001. Rock Types of South Pole-Aitken Basin and Extent of Basaltic Volcanism. Journal of Geophysical Research, 106(E11): 28001. doi: 10.1029/2000je001414
      Staid, M.I., Pieters, C.M., 2001. Mineralogy of the Last Lunar Basalts: Results from Clementine. Journal of Geophysical Research, 106(E11) : 27887- 27990. doi: 10.1029/2000JE001387
      Sunshine, J.M., Pieters, C.M., 1998. Determining the Composition of Olivine from Reflectance Spectroscopy. Journal of Geophysical Research, 103(E6): 13675-13688. doi: 10.1029/98JE01217
      Taylor, L.A., Pieters, C.M., Keller, L.P., et al., 2001. Lunar Mare Soils: Space Weathering and the Major Effects of Surface-Correlated Nanophase Fe. Journal of Geophysical Research, 106(E11): 27985- 27999. doi: 10.1029/2000je001402
      Xu, N., Hu, Y.X., Lei, B., et al., 2011. Mineral Information Extraction for Hyperspectral Image Based on Modified Spectral Feature Fitting Algorithm. Spectroscopy and Spectral Analysis, 31(6): 1639-1643(in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/21847949
      Yamamoto, S., Nakamura, R., Matsunaga, T., et al., 2010. Possible Mantle Origin of Olivine around Lunar Impact Basins Detected by SELENE. Nature Geoscience, 3(8): 533-536. doi: 10.1038/ngeo897
      Yan, B.K., Gan, F.P., Wang, R.S., et al., 2009. Mineral Mapping of the Lunar Surface Using Clementine UV/VIS/NIR Data Based on Unmixing of Spectral. Remote Sensing for Land & Resources, (4): 19-24(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_remote-sensing-land-resources_thesis/0201253538408.html
      Zhou, C., Wang, D.M., Chen, S.B., et al., 2015. Vegetation Corrected Continuum Depths Model and Its Application in Mineral Extraction from Hyperspectral Image. Earth Science—Journal of China University of Geosciences, 40(8): 1365-1370 (in Chinese with English abstract). doi: 10.3799/dqkx.2015.119
      欧阳自远, 邹永廖, 李春来, 等, 2002. 月球某些资源的开发利用前景. 地球科学——中国地质大学学报, 27(5): 498-503. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200205003.htm
      许宁, 胡玉新, 雷斌, 等, 2011. 基于改进光谱特征拟合算法的高光谱数据矿物信息提取. 光谱学与光谱分析, 31(6): 1639-1643. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201106053.htm
      闫柏琨, 甘甫平, 王润生, 等, 2009. 基于光谱分解的Clementine UV/VIS/NIR数据月表矿物填图. 国土资源遥感, (4): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200904005.htm
      周超, 汪大明, 陈圣波, 等, 2015. 植被覆盖区羟基和碳酸盐矿物光谱吸收深度校正模型. 地球科学——中国地质大学学报, 40(8): 1365-1370. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201508014.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (4160) PDF downloads(396) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return