• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 42 Issue 5
    May  2017
    Turn off MathJax
    Article Contents
    Ge Qin, Liang Xing, Gong Xulong, Liu Yan, 2017. Application and Comparison of Various Methods for Determining Hydraulic Conductivity in Saturated Clay-Rich Deposits—A Case Study of Clay-Rich Sediments in North Jiangsu Coastal Plain. Earth Science, 42(5): 793-803. doi: 10.3799/dqkx.2017.067
    Citation: Ge Qin, Liang Xing, Gong Xulong, Liu Yan, 2017. Application and Comparison of Various Methods for Determining Hydraulic Conductivity in Saturated Clay-Rich Deposits—A Case Study of Clay-Rich Sediments in North Jiangsu Coastal Plain. Earth Science, 42(5): 793-803. doi: 10.3799/dqkx.2017.067

    Application and Comparison of Various Methods for Determining Hydraulic Conductivity in Saturated Clay-Rich Deposits—A Case Study of Clay-Rich Sediments in North Jiangsu Coastal Plain

    doi: 10.3799/dqkx.2017.067
    • Received Date: 2016-12-17
    • Publish Date: 2017-05-15
    • The hydraulic conductivity (K) of deposits is one of the important and fundamental properties for solving various problems in the study filed of hydrogeology and geotechenical engineering. However, in the study of clay-rich deposits, the selection of the evaluation method for K is obviously affected by the scale of the site and the degree of deposits disturbance due to the complex deposit structure. Chemical (δ18O as the tracer), laboratory, and empirical formula methods were used to predict the vertical hydraulic conductivity in saturated clay-rich deposits, and their practicability was analyzed. Take the Quaternary thick clay-rich sediments in North Jiangsu coastal plain for example, the estimated hydraulic conductivity of the thick clay-rich sediments was lower than 1×10-11 m/s using δ18O chemical methods. Using laboratory method, that range between 2.61×10-8 and 9×10-12 m/s. The larger predictive values were determined by empirical formula method and higher than that obtained using hydraulic method by several times. Chemical method was applied to display the long-term experimental results under the natural conditions, and the equivalent permeability of the decade meters clay-rich deposits. Besides, the residence time of pore water in the sediments was also predicted. Combined with the laboratory parameters of clay samples, such as liquid and plastic limit, laboratory and empirical formula methods could provide series hydraulic conductivities of the whole profile, in order to show the difference of different permeability coefficient prediction methods in thick clay-rich profile.

       

    • loading
    • Al, T.A., Clark, I.D., Kennell, L., et al., 2015.Geochemical Evolution and Residence Time of Porewater in Low-Permeability Rocks of the Michigan Basin, Southwest Ontario.Chemical Geology, 404:1-17.doi: 10.1016/j.chemgeo.2015.03.005
      Batlle-Aguilar, J., Cook, P.G., Harrington, G.A., 2016.Comparison of Hydraulic and Chemical Methods for Determining Hydraulic Conductivity and Leakage Rates in Argillaceous Aquitards.Journal of Hydrology, 532:102-121.doi: 10.1016/j.jhydrol.2015.11.035
      Boudreau, B.P., Meysman, F.J.R., 2006.Predicted Tortuosity of Muds.Geology, 34(8):693.doi: 10.1130/g22771.1
      Carman, P.C., 1939.Permeability of Saturated Sands, Soils and Clays.The Journal of Agricultural Science, 29(2):262.doi: 10.1017/s0021859600051789
      Carman, P.C., 1937.Fluid Flow through Granular Beds.Transactions.Institution of Chemical Engineers, London, 15:150-166.
      Chapuis, R., Aubertin, M., 2003.On the Use of the Kozeny-Carman Equation to Predict the Hydraulic Cond.Canadian Geotechnical Journal, 40(3):616-628. doi: 10.1139/t03-013
      Cui, L.H., Cheng, J.M., Lu, W.L., et al., 2014.Numerical Study on Saltwater Downward Migration in Aquitard as Low Velocity Non-Darcy Flow.Journal of Hydraulic Engineering, 45(7):875-882 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB201407015.htm
      Dang, F.N., Liu, H.W., Wang, X.W., et al., 2015.Empirical Formulas of Permeability of Clay Based on Effective Pore Ratio.Chinese Journal of Rock Mechanics and Engineering, 34(9):1910-1917(in Chinese with English abstract). https://www.researchgate.net/publication/283807110_Empirical_formulas_of_permeability_of_clay_based_on_effective_pore_ratio
      Deng, Y.F., Liu, S.Y., Zhang, D.W., et al., 2011.Comparison among Some Relationships between Permeability and Void Ratio.Northwestern Seismological Journal, 33(Suppl.1):64-66, 76(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ2011S1015.htm
      Eaton, T.T., Anderson, M.P., Bradbury, K.R., 2007.Fracture Control of Ground Water Flow and Water Chemistry in a Rock Aquitard.Ground Water, 45(5):601-615.doi: 10.1111/j.1745-6584.2007.00335.x
      Farrar, D.M., Coleman, J.D., 1967.The Correlation of Surface Area with Other Properties of Nineteen British Clay Soils.Journal of Soil Science, 18(1):118-124.doi: 10.1111/j.1365-2389.1967.tb01493.x
      Fu, C.C., 2015.The Hydrochemical Characteristics and Processes for Salinity Sources of the Deep Confined Groundwater in the Coastal Plain of Huai River Basin(Dissertation).Jilin University, Changchun, 32-40 (in Chinese with English abstract).
      Gardner, W.P., Harrington, G.A., Smerdon, B.D., 2012.Using Excess 4He to Quantify Variability in Aquitard Leakage.Journal of Hydrology, 468-469:63-75.doi: 10.1016/j.jhydrol.2012.08.014
      Ge, Q., Gong, X.L., Liang, X., et al., 2015.A Permeability Tester for Saturated Clay:201520592840.1.2015.11.11, Chinese Patent(in Chinese).
      Ge, Q., Gong, X.L., Liang, X., et al., 2016.A Diffusion Coefficient Tester for Low-Permeability Soil:201620289965.1.2016.4.8, Chinese Patent(in Chinese).
      Ge, Q., Liang, X., Gong, X.L., et al., 2017.Laboratory Determination and Analysis of Effective Diffusion Coefficients for Low-Permeability Rock and Clay.Hydrogeology & Engineering Geology(in Press)(in Chinese with English abstract).
      Glaus, M.A., Aertsens, M., Appelo, C.A.J., et al., 2015.Cation Diffusion in the Electrical Double Layer Enhances the Mass Transfer Rates for Sr2+, Co2+ and Zn2+ in Compacted Illite.Geochimica et Cosmochimica Acta, 165:376-388.doi: 10.1016/j.gca.2015.06.014
      Hendry, M.J., Barbour, S.L., Novakowski, K., et al., 2013.Paleohydrogeology of the Cretaceous Sediments of the Williston Basin Using Stable Isotopes of Water.Water Resources Research, 49(8):4580-4592.doi: 10.1002/wrcr.20321
      Hendry, M.J., Kelln, C.J., Wassenaar, L.I., et al., 2004.Characterizing the Hydrogeology of a Complex Clay-Rich Aquitard System Using Detailed Vertical Profiles of the Stable Isotopes of Water.Journal of Hydrology, 293(1-4):47-56.doi: 10.1016/j.jhydrol.2004.01.010
      Hendry, M.J., Wassenaar, L.I., 1999.Implications of the Distribution of δD in Pore Waters for Groundwater Flow and the Timing of Geologic Events in a Thick Aquitard System.Water Resources Research, 35(6):1751-1760. doi: 10.1029/1999WR900046
      Ilek, A., Kucza, J., 2014.A Laboratory Method to Determine the Hydraulic Conductivity of Mountain Forest Soils Using Undisturbed Soil Samples.Journal of Hydrology, 519:1649-1659.doi: 10.1016/j.jhydrol.2014.09.045
      Ishaku, J.M., Gadzama, E.W., Kaigama, U., 2011.Evaluation of Empirical Formulae for the Determination of Hydraulic Conductivity Based on Grain-Size Analysis.Journal of Geology and Mining Research, 3(4):105-113.
      Li, J., Liang, X., Jin, M.G., 2012b.Review on Pore Water Extraction Techniques in Low-Permeability Media and Their Application.Hydrogeology & Engineering Geology, 39(4):26-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG201204008.htm
      Li, J., Liang, X., Mao, X.M., et al., 2012a.Hydro-Geochemistry Implications of Evolution of Pore Water in Low-Penetrability Aquifer and Significance of Paleoclimate.Earth Science, 37(3):612-620(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201203027.htm
      Li, Y.H., Gregory, S., 1974.Diffusion of Ions in Sea Water and in Deep-Sea Sediments.Geochimica et Cosmochimica Acta, 38(5):703-714. doi: 10.1016/0016-7037(74)90145-8
      Ling, S., 2002.Study on the Dynamic Changes of Coastline in North Jiangsu since the Holocene.Journal of Oceanography of Huanghai & Bohai Seas, 20(2):37-46(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HBHH200202005.htm
      Ling, S., 2009.Evolution of Geography Space Construction in Yanfu Plain Due to the Changes of Sea Level since Holocene.Transactions of Oceanology & Limnology, (1):61-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYFB200901010.htm
      Love, A.J., Herczeg, A.L., Walker, G., 1995.Transport of Water and Solutes across a Regional Aquitard Inferred from Porewater Deuterium and Chloride Profiles Otway Basin, Australia.Isotopes in Water Resources Management, IAEA, Vienna, Austria, 273-286.
      Luffel, D.L., Hopkins, C.W., Schettler, P.D., 1993.Matrix Permeability Measurement of Gas Productive Shales.SPE Annual Technical Conference and Exhibition, Houston.doi:10.2118/26633-ms
      Malusis, M.A., Shackelford, C.D., 2002.Theory for Reactive Solute Transport through Clay Membrane Barriers.Journal of Contaminant Hydrology, 59(3-4):291-316.doi: 10.1016/s0169-7722(02)00041-4
      Mazurek, M., Alt-Epping, P., Bath, A., et al., 2011.Natural Tracer Profiles across Argillaceous Formations.Applied Geochemistry, 26(7):1035-1064.doi: 10.1016/j.apgeochem.2011.03.124
      Muhunthan, B., 1991.Liquid Limit and Surface Area of Clays.Géotechnique, 41(1):135-138.doi: 10.1680/geot.1991.41.1.135
      Niu, H., Liang, X., Li, J., et al., 2016.Paleoclimate Instruction of Sediment Grain Size and Deuterium-Oxygen Isotope in Saline Stratum of Hengshui.Earth Science, 41(3):499-507 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603016.htm
      Santamarina, J.C., Klein, K.A., Wang, Y.H., et al., 2002.Specific Surface:Determination and Relevance.Canadian Geotechnical Journal, 39(1):233-241.doi: 10.1139/t01-077
      Savoye, S., Michelot, J.L., Wittebroodt, C., et al., 2006.Contribution of the Diffusive Exchange Method to the Characterization of Pore-Water in Consolidated Argillaceous Rocks.Journal of Contaminant Hydrology, 86(1-2):87-104.doi: 10.1016/j.jconhyd.2006.02.010
      Vienken, T., Dietrich, P., 2014.Determination of Hydraulic Conductivity from Grain-Size Distribution for Different Depositional Environments.Groundwater, 52(6):823-824.doi: 10.1111/gwat.12278
      Wang, F.B., 1985.Buried Shell Dike of the West Bank Haizhou Bay and Sea Level Changes since Late Pleistocene.In:Chinese Quaternary Coastline, Chinese Society of Oceanography, eds., Proceedings of the Symposium on Quaternary Coastline of China.Ocean Press, Beijing, 146-151(in Chinese).
      Wang, J.H., 1952.Tracer-Diffusion in Liquids.III.The Self-Diffusion of Chloride Ion in Aqueous Sodium Chloride Solutions.Journal of the American Chemical Society, 74(6):1612-1615.doi: 10.1021/ja01126a525
      Wang, J.T., Wang, P.X., 1980.Relationship between Sea-Level Changes and Climatic Fluctuations in East China since Late Pleistocene.Acta Geographica Sinica, 35(4):299-312 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DLXB198004002.htm
      Wang, M.P., 2014.Hydrochemical Characteristics and Influencing Factors of Shallow Groundwater in Siyang Area, Jiangsu Province.Geoscience, 28(6):1329-1336 (in Chinese with English abstract).
      Wissmeier, L., Barry, D.A., 2011.Simulation Tool for Variably Saturated Flow with Comprehensive Geochemical Reactions in Two-and Three-Dimensional Domains.Environmental Modeling & Software, 26(2):210-218.doi: 10.1016/j.envsoft.2010.07.005
      Yang, H.R., Chen, X.Q., 1985.Quaternary Transgressions, Eustatic Changes and Shifting of Shoreline in East China.Marine Geology & Quaternary Geology, 5(4):59-80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ198504010.htm
      Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract).
      Yu, L., Rogiers, B., Gedeon, M., et al., 2013.A Critical Review of Laboratory and In-Situ Hydraulic Conductivity Measurements for the Boom Clay in Belgium.Applied Clay Science, 75-76(5):1-12.doi: 10.1016/j.clay.2013.02.018
      崔莉红, 成建梅, 路万里, 等, 2014.弱透水层低速非达西流咸水下移过程的模拟研究.水利学报, 45(7):875-882. http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201407015.htm
      党发宁, 刘海伟, 王学武, 等, 2015.基于有效孔隙比的黏性土渗透系数经验公式研究.岩石力学与工程学报, 34(9):1910-1917. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm
      邓永锋, 刘松玉, 章定文, 等, 2011.几种孔隙比与渗透系数关系的对比.西北地震学报, 33(z1):64-66, 76. doi: 10.3969/j.issn.1000-0844.2011.z1.014
      付昌昌, 2015. 淮河流域沿海平原深层地下水水化学特征及咸水成因(硕士学位论文). 长春: 吉林大学, 32-40.
      葛勤, 龚须龙, 梁杏, 等, 2015. 一种低渗透性饱和粘土渗透测定仪: 201520592840. 1. 2015. 11. 11, 中国专利.
      葛勤, 龚须龙, 梁杏, 等, 2016. 一种低渗透性岩土扩散系数测定仪: 201620289965. 1. 2016. 4. 8, 中国专利.
      葛勤, 梁杏, 龚须龙, 等, 2017. 低渗透岩土有效扩散系数的室内测定与分析. 水文地质与工程地质(待刊).
      李静, 梁杏, 靳孟贵, 2012b.低渗透介质孔隙溶液的提取及其应用综述.水文地质工程地质, 39(4):26-31.
      李静, 梁杏, 毛绪美, 等, 2012a.水化学揭示的弱透水层孔隙水演化特征及其古气候指示意义.地球科学, 37(3):612-620. http://www.earth-science.net/WebPage/Article.aspx?id=2267
      凌申, 2002.全新世苏北沿海岸线冲淤动态研究.黄渤海海洋, 20(2):37-46. http://www.cnki.com.cn/Article/CJFDTOTAL-HBHH200202005.htm
      凌申, 2009.全新世海面变化与盐阜平原地理空间结构的演变.海洋湖沼通报, (1):61-66. http://www.cnki.com.cn/Article/CJFDTOTAL-HYFB200901010.htm
      牛宏, 梁杏, 李静, 等, 2016.衡水地区咸水层沉积物粒度及氘氧同位素的古气候指示.地球科学, 41(3):499-507. http://www.earth-science.net/WebPage/Article.aspx?id=3273
      王富葆, 1985. 海州湾西岸埋藏贝壳堤与晚更新世以来的海面变化. 见: 中国第四纪研究委员会, 中国海洋学会编, 中国第四纪海岸线学术讨论会论文集. 北京: 海洋出版社, 146-151.
      王靖泰, 汪品先, 1980.中国东部晚更新世以来海面升降与气候变化的关系.地理学报, 35(4):299-312. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB198004002.htm
      汪名鹏, 2014.江苏泗阳城区浅层地下水化学特征及其影响因素.现代地质, 28(6):1329-1336. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201406026.htm
      杨怀仁, 陈西庆, 1985.中国东部第四纪海面升降、海侵海退与岸线变迁.海洋地质与第四纪地质, 5(4):59-80. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ198504010.htm
      杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6):1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(2)

      Article views (6113) PDF downloads(27) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return