• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 45 Issue 1
    Jan.  2020
    Turn off MathJax
    Article Contents
    Fan Qi, Fan Tailiang, Li Yifan, Zhang Junpeng, Gao Zhiqian, Chen Yue, 2020. Paleo-Environments and Development Pattern of High-Quality Marine Source Rocks of the Early Cambrian, Northern Tarim Platform. Earth Science, 45(1): 285-302. doi: 10.3799/dqkx.2018.128
    Citation: Fan Qi, Fan Tailiang, Li Yifan, Zhang Junpeng, Gao Zhiqian, Chen Yue, 2020. Paleo-Environments and Development Pattern of High-Quality Marine Source Rocks of the Early Cambrian, Northern Tarim Platform. Earth Science, 45(1): 285-302. doi: 10.3799/dqkx.2018.128

    Paleo-Environments and Development Pattern of High-Quality Marine Source Rocks of the Early Cambrian, Northern Tarim Platform

    doi: 10.3799/dqkx.2018.128
    • Received Date: 2018-06-11
    • Publish Date: 2020-01-15
    • The lower Cambrian Yuertusi Formation has been confirmed as the best high-quality source rocks of marine rocks in China, and the source rocks of the Cambrian pre-salt play in the Tarim and crucial research field of the Ediacaran-Cambrian transition. However, little work has been published about the paleo-environments. Yutixi section in Keping is intensively investigated by a multi proxy analysis including thin-sections identification, major elements, trace elements and TOC contents, for revealing the accumulation mechanisms of the sources rocks in this study. Results demonstrate that the samples are rich in trace elements comprising V, U, Ni, Ba, Mo, Cu and Zn. Along with the weakly positive Ce anomalies (Ce/Ce*=0.45), extremely positive Eu anomalies (Eu/Eu*=35.32), Y/Ho (39.77) and barite for samples of basal Yuertusi Fm., the REEs patterns of negative Ce anomalies, positive Y anomalies and positive Eu anomalies verified the drastic hydrothermal activities and anoxic conditions of the Early Cambrian. Specifically, many proxies including U/Al, V/Al, Th/U, V/Sc, and Mo-U covariation ascertained the paleocean in the northern Tarim was an open sea. The paleocean was under sulfide in period of Yuertusi Fm. Group A (Th/Uavg=0.070). Then it changed into suboxic in periods of Yuertusi Fm. Group B (Th/Uavg=1.21), Group C (Th/Uavg=0.62) and Group D (Th/Uavg=1.21) with generally increased oxidation level. Finally it was under sulfide conditions in period of Xiaoerbulake Fm. (Th/Uavg=0.13). In addition, the elevated productivity and well preservation are implied by the high TOC contents (TOCmax=17.2%) and ex-Baavg (8 634.85×10-6) for Yuertusi Fm. Group A. Ultimately, development pattern of the source rocks of the Lower Cambrian Yuertusi Fm., northern Tarim platform is proposed, which is characterized by hydrothermal activities, coastal upwelling and anoxic to sulfide conditions. This study will facilitate both the prospect evaluation of deep and super-deep oil and gas resources in Tarim basin, and studies of Ediacaran-Cambrian paleo-environments transition in NW China.

       

    • loading
    • Adachi, M., Yamamoto, K., Sugisaki, R., 1986. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific Their Geological Significance as Indication of Ocean Ridge Activity. Sedimentary Geology, 47(1-2):125-148. https://doi.org/10.1016/0037-0738(86)90075-8
      Algeo, T.J., Morford, J., Cruse, A., 2012. Editorial:New Applications of Trace Metals as Proxies in Marine Paleoenvironments. Chemical Geology, 306-307:160-164. https://doi.org/10.1016/j.chemgeo.2012.03.009.
      Bau, M., Dulski, P., 1996. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1-2):37-55. https://doi.org/10.1016/0301-9268(95)00087-9
      Calvert, S.E., Pedersen, T.F., 2007. Chapter Fourteen Elemental Proxies for Palaeoclimatic and Palaeoceanographic Variability in Marine Sediments:Interpretation and Application. Developments in Marine Geology, 1:567-644. https://doi.org/10.1016/S1572-5480(07)01019-6
      Chen, Q.L., Yang, X., Chu, C.L., et al., 2015. Recognition of Depositional Environment of Cambrian Source Rocks in Tarim Basin. Oil and Gas Geology, 36(6):880-887 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201506002
      Dulski, P., 1994. Interferences of Oxide, Hydroxide and Chloride Analyte Species in the Determination of Rare Earth Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry. Fresenius' Journal of Analytical Chemistry, 350(4-5):194-203. https://doi.org/10.1007/bf00322470
      Feng, Z.Z., 2005. Lithofacies Paleogeography of the Cambrian and Ordovician, the Tarim Basin. Petroleum Industry Publisher, Beijing (in Chinese).
      Ganai, J.A., Rashid, S.A., 2015. Rare Earth Element Geochemistry of the Permo-Carboniferous Clastic Sedimentary Rocks from the Spiti Region, Tethys Himalaya:Significance of Eu and Ce Anomalies. Chinese Journal of Geochemistry, 34(2):252-264. https://doi.org/10.1007/s11631-015-0045-7
      Ganeshram, R.S., Pedersen, T.F., Calvert, S., et al., 2002. Reduced Nitrogen Fixation in the Glacial Ocean Inferred from Changes in Marine Nitrogen and Phosphorus Inventories. Nature, 415(6868):156-159. https://doi.org/10.1038/415156a
      Holser, W.T., 1997. Evaluation of the Application of Rare-Earth Elements to Paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1-4):309-323. https://doi.org/10.1016/s0031-0182(97)00069-2
      Kidder, D.L., Krishnaswamy, R., Mapes, R. H., 2003. Elemental Mobility in Phosphatic Shales during Concretion Growth and Implications for Provenance Analysis. Chemical Geology, 198(3-4):335-353. https://doi.org/10.1016/s0009-2541(03)00036-6
      Klinkhammer, G.P., Elderfield, H., Edmond, J.M., et al., 1994. Geochemical Implications of Rare Earth Element Patterns in Hydrothermal Fluids from Mid-Ocean Ridges. Geochimica et Cosmochimica Acta, 58(23):5105-5113. https://doi.org/10.1016/0016-7037(94)90297-6
      Li, M.J., L, H.F., Mao, F, J., et al., 2018. Geochemical Assessment of Source Rock within a Stratigraphic Geochemical Framework:Taking Termit Basin (Niger) as an Example. Earth Science, 43(10):3603-3615 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201810020
      Li, R.J., Zhang, H.A., Qian, Y.X., et al., 2010. The Collision Time of South Tianshan Orogen, NW China. Chinese Journal of Geology, 45(1):57-65 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZKX201001007.htm
      Li, Y.F., Fan, T.L., Zhang, J.C., et al., 2015. Geochemical Changes in the Early Cambrian Interval of the Yangtze Platform, South China:Implications for Hydrothermal Influences and Paleocean Redox Conditions. Journal of Asian Earth Sciences, 109:100-123. https://doi.org/10.1016/j.jseaes.2015.05.003
      McLennan, S.M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4):1021. https://doi.org/10.1029/2000gc000109
      Morford, J.L., Emerson, S., 1999. The Geochemistry of Redox Sensitive Trace Metals in Sediments. Geochimica et Cosmochimica Acta, 63(11-12):1735-1750. https://doi.org/10.1016/s0016-7037(99)00126-x
      Murray, R.W., 1994. Chemical Criteria to Identify the Depositional Environment of Chert:General Principles and Applications. Sedimentary Geology, 90(3-4):213-232. https://doi.org/10.1016/0037-0738(94)90039-6
      Nance, W.B., Taylor, S.R., 1976. Rare Earth Element Patterns and Crustal Evolution-I. Australian Post-Archean Sedimentary Rocks. Geochimica et Cosmochimica Acta, 40(12):1539-1551. https://doi.org/10.1016/0016-7037(76)90093-4
      Sanders, C.J., Caldeira, P.P., Smoak, J.M., et al., 2014. Recent Organic Carbon Accumulation (~100 Years) along the Cabo Frio, Brazil Upwelling Region. Continental Shelf Research, 75:68-75. https://doi.org/10.1016/j.csr.2013.10.009
      Schoepfer, S.D., Shen, J., Wei, H.Y., et al., 2015. Total Organic Carbon, Organic Phosphorus, and Biogenic Barium Fluxes as Proxies for Paleomarine Productivity. Earth-Science Reviews, 149:23-52. https://doi.org/10.1016/j.earscirev.2014.08.017
      Tao, G.L., Shen, B.J., Ten, G.E., et al., 2016. Weathering Effects on High-Maturity Organic Matter in a Black Rock Series:A Case Study of the Yuertusi Formation in Kalpin Area, Tarim Basin. Petroleum Geology and Experiment, 38(3):375-381 (in Chinese with English abstract).
      Taylor, S.R., McLennan, S.M., 1985. The Continental Crust Its Composition and Evolution. Blackwell, Oxford.
      Tribovillard, N., Algeo, T.J., Baudin, F., et al., 2012. Analysis of Marine Environmental Conditions Based On molybdenum-uranium Covariation-Applications to Mesozoic Paleoceanography. Chemical Geology. 324-325:46-58. https://doi.org/10.1016/j.chemgeo.2011.09.009
      Wang, W.Y., Xiao, B., Zhang, S.G.., et al., 1985. Division and Correlation of Cambrian System in Aksu-Wushi District of Xinjiang. Xinjiang Geology, 3(4):59-74 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI198504008.htm
      Wilde, P., Quinby-Hunt, M. S., Erdtmann, B. D., 1996. The Whole-Rock Cerium Anomaly:A Potential Indicator of Eustatic Sea-Level Changes in Shales of the Anoxic Facies. Sedimentary Geology, 101(1-2):43-53. https://doi.org/10.1016/0037-0738(95)00020-8
      Yang, X., Li, H.L., Zhang, Z.P., et al., 2017. Evolution of Neoproterozoic Tarim Basin in Northwestern China and Tectonic Background of the Lower Cambrian Hydrocarbon Source Rocks. Acta Geological Sinica, 91(8):1706-1719 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201708004
      Yang, Z.Y., Luo, P., Liu, B., et al., 2017. The Depositional Characteristics of Earliest Cambrian Hydrothermal Fluid:A Case Study of Siliceous Rocks from Yurtus Formation in the Aksu area of Tarim Basin, Northwest China. Earth Science, 44(11):3845-3870 (in Chinese with English abstract).
      Yao, C.Y., Dong, Y.G., Gao, W.H., 2014. Paleoenvironment and Origin of the Sedimentary Phosphorite of the Yurtus Formation (Early Cambrian, Sugetbrak Phosphorite Deposit, Tarim Basin). Acta Geologica Sinica-English Edition, 88(S2):271-272. https://doi.org/10.1111/1755-6724.12370_13
      Yu, B.S., Dong, H.L., Widom, E., et al., 2009. Geochemistry of Basal Cambrian Black Shales and Cherts from the Northern Tarim Basin, Northwest China:Implications for Depositional Setting and Tectonic History. Journal of Asian Earth Sciences, 34(3):418-436. https://doi.org/10.1016/j.jseaes.2008.07.003
      Zhang, G.Y., Liu, W., Zhang, L., et al., 2015. Cambrian-Ordovician Prototypic Basin, Paleogeography and Petroleum of Tarim Craton. Earth Science Frontiers, 22(3):269-276 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201503023
      Zhang, J.P., Fan, T.L., Algeo, T.J., 2016. Paleo-Marine Environments of the Early Cambrian Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 443:66-79. https://doi.org/10.1016/j.palaeo.2015.11.029
      Zhang, X., Zhuang, X.G., Tu, Q.J., et al., 2018. Depositional Process and Mechanism of Organic Matter Accumulation of Lucaogou Shale in Southern Junggar Basin, Northwest China. Earth Science, 43(2):538-550 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201802015
      Zhu, G.Y., Chen, F.R., Chen, Z.Y., et al., 2016.Discovery and Basic Characteristics of the High-Quality Source Rocks of the Cambrian Yuertusi Formation in Tarim Basin. Natural Gas Geoscience, 27(1):8-21 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201601002
      陈强路, 杨鑫, 储呈林, 等, 2015.塔里木盆地寒武系烃源岩沉积环境再认识.石油与天然气地质, 36(6):880-887. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201506002
      冯增昭, 2005.塔里木地区寒武纪和奥陶纪岩相古地理.北京:石油工业出版社.
      李美俊, 赖洪飞, 毛凤军, 等, 2018.层序地层格架下烃源岩地球化学研究:以尼日尔Termit盆地为例.地球科学, 43(10):3603-3615. doi: 10.3799/dqkx.2018.223
      李日俊, 张洪安, 钱一雄, 等, 2010.关于南天山碰撞造山时代的讨论.地质科学, 45(1):57-65. doi: 10.3969/j.issn.0563-5020.2010.01.006
      陶国亮, 申宝剑, 腾格尔, 等, 2016.风化作用对高演化黑色岩系有机质影响因素分析——以塔里木盆地柯坪地区玉尔吐斯组为例.石油实验地质, 38(3):375-381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201603014
      王务严, 肖兵, 章森桂, 等, 1985.新疆阿克苏-乌什地区寒武系划分与对比.新疆地质. 3(4):59-74.
      杨鑫, 李慧莉, 张仲培, 等, 2017.塔里木新元古代盆地演化与下寒武统烃源岩发育的构造背景.地质学报, 91(8):1706-1719. doi: 10.3969/j.issn.0001-5717.2017.08.004
      杨宗玉, 罗平, 刘波, 等, 2017.早寒武世早期热液沉积特征:以塔里木盆地西北缘玉尔吐斯组底部硅质岩系为例.地球科学, 44(11):3845-3870. doi: 10.3799/dqkx.2017.502
      张光亚, 刘伟, 张磊, 等, 2015.塔里木克拉通寒武纪-奥陶纪原型盆地、岩相古地理与油气.地学前缘, 22(3):269-276.
      张逊, 庄新国, 涂其军, 等, 2018.准噶尔盆地南缘芦草沟组页岩的沉积过程及有机质富集机理.地球科学, 43(2):538-550. doi: 10.3799/dqkx.2017.603
      朱光有, 陈斐然, 陈志勇, 等, 2016.塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征.天然气地球科学, 27(1):8-21. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201601002
    • dqkx-45-1-285-Table1-4.pdf
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)

      Article views (4509) PDF downloads(119) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return