• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 44 Issue 8
    Aug.  2019
    Turn off MathJax
    Article Contents
    Chen Hongjin, Xu Zhaokai, Cai Mingjiang, Li Tiegang, 2019. Provenance of Clay-Sized Detrital Sediments and Its Paleoenvironmental Implications at Site U1456 in the Eastern Arabian Sea since 30 ka. Earth Science, 44(8): 2803-2817. doi: 10.3799/dqkx.2018.185
    Citation: Chen Hongjin, Xu Zhaokai, Cai Mingjiang, Li Tiegang, 2019. Provenance of Clay-Sized Detrital Sediments and Its Paleoenvironmental Implications at Site U1456 in the Eastern Arabian Sea since 30 ka. Earth Science, 44(8): 2803-2817. doi: 10.3799/dqkx.2018.185

    Provenance of Clay-Sized Detrital Sediments and Its Paleoenvironmental Implications at Site U1456 in the Eastern Arabian Sea since 30 ka

    doi: 10.3799/dqkx.2018.185
    • Received Date: 2019-01-18
    • Publish Date: 2019-08-15
    • AMS 14C dating, clay minerals, major elements and grain size at site U1456 from International Ocean Discovery Program were analyzed, in order to constrain the source-to-sink processes of clay-sized detrital sediments and their paleoenvironmental significance in the eastern Arabian Sea. The clay mineral assemblages at site U1456 since 30 ka are dominated by smectite and illite, with minor chlorite and kaolinite. Provenance analysis results suggest that clay-sized detrital sediments are primarily derived from the Indus River and Deccan Trap. Southwest Asian monsoon probably is the main factor affecting the weathering and erosion in the western Himalaya and the Indian subcontinent since 30 ka. Relatively reduced contribution from the Indus River to the study area during weak southwest Asian monsoon intervals should correlate with the southward migration of the Intertropical Convergence Zone and the extension of glacial cover over the Himalayas during the Last Glacial Maximum, and thus reduction in the Indus River runoff as well as available exposure area for erosion and weathering over the Himalayas. The weathering and erosion on the continent revealed by K/Al ratio show coherent variations to the previous southwest Asian monsoon records, indicating the efficiency of K/Al ratio for tracking the regional climate signal in the eastern Arabian Sea since the late Quaternary.

       

    • loading
    • Ali, S., Hathorne, E. C., Frank, M., et al., 2015. South Asian Monsoon History over the Past 60 kyr Recorded by Radiogenic Isotopes and Clay Mineral Assemblages in the Andaman Sea. Geochemistry Geophysics Geosystems, 16(2): 505-521. https://doi.org/10.1002/2014gc005586
      Alizai, A., Carter, A., Clift, P. D., et al., 2011. Sediment Provenance, Reworking and Transport Processes in the Indus River by U-Pb Dating of Detrital Zircon Grains. Global and Planetary Change, 76(1-2): 33-35. https://doi.org/10.1016/j.gloplacha.2010.11.008
      Alizai, A., Hillier, S., Clift, P. D., et al., 2012. Clay Mineral Variations in Holocene Terrestrial Sediments from the Indus Basin. Quaternary Research, 77(3): 368-381. https://doi.org/10.1016/j.yqres.2012.01.008
      Altabet, M. A., Higginson, M. J., Murray, D. W., 2002. The Effect of Millennial-Scale Changes in Arabian Sea Denitrification on Atmospheric CO2. Nature, 415(6868): 159-162. https://doi.org/10.1038/415159a
      Beaumont, C., Jamieson, R. A., Nguyen, M. H., et al., 2001. Himalayan Tectonics Explained by Extrusion of a Low-Viscosity Crustal Channel Coupled to Focused Surface Denudation. Nature, 414(6865): 738-742. https://doi.org/10.1038/414738a
      Biscaye, P. E., 1965. Mineralogy and Sedimentation of Recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Seas and Oceans. Geological Society of America Bulletin, 76(7): 803-831. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
      Broccoli, A. J., Dahl, K. A., Stouffer, R. J., 2006. Response of the ITCZ to Northern Hemisphere Cooling. Geophysical Research Letters, 33(1):1-4. https://doi.org/10.1029/2005gl024546
      Cabarcos, E., Flores, J. A., Singh, A. D., et al., 2014. Monsoonal Dynamics and Evolution of the Primary Productivity in the Eastern Arabian Sea over the Past 30 ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 411(1): 249-256. https://doi.org/10.1016/j.palaeo.2014.07.006
      Chamely, 1989. Clay Sedimentology. Springer, Berlin, 1-623.
      Chauhan, O. S., Gujar, A. R., 1996. Surficial Clay Mineral Distribution on the Southwestern Continental Margin of India: Evidence of Input from the Bay of Bengal. Continental Shelf Research, 16(3): 321-333. https://doi.org/10.1016/0278-4343(95)00015-S
      Chauhan, O. S., Patil, S. K., Suneethi, J., 2004. Fluvial Influx and Weathering History of the Himalayas since Last Glacial Maxima-Isotopic, Sedimentological and Magnetic Records from the Bay of Bengal. Current Science, 87(4): 509-515. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000983663
      Chauhan, O. S., Sukhija, B. S., Gujar, A. R., et al., 2000. Late-Quaternary Variations in Clay Minerals Along the Sw Continental Margin of India: Evidence of Climatic Variations. Geo-Marine Letters, 20(2): 118-122. https://doi.org/10.1007/s003670000043
      Chen, ,Z., Yan, W., 2000. Advance of the Studies on Clay Minerals in Marine Sediments and Its Response to Evolution of Paleoclimate and Paleoenvironment. Marine Sciences, 24(2): 25-27. (in Chinese)
      Cheng, H., Edwards, R. L., Broecker, W. S., et al., 2009. Ice Age Terminations. Science, 326(5950): 248-252. https://doi.org/10.1126/science.1177840
      Clift, P. D., 2002. A Brief History of the Indus River. Geological Society, London, Special Publications, 195(1):237-258. https://doi.org/10.1144/gsl.sp.2002.195.01.13
      Clift, P. D., Giosan, L., Blusztajn, J., et al., 2008a. Holocene Erosion of the Lesser Himalaya Triggered by Intensified Summer Monsoon. Geology, 36(1): 79-82. https://doi.org/10.1130/g24315a.1
      Clift, P. D., Hodges, K. V., Heslop, D., et al., 2008b. Correlation of Himalayan Exhumation Rates and Asian Monsoon Intensity. Nature Geoscience, 1(12): 875-880. https://doi.org/10.1038/ngeo351
      Clift, P. D., Wan, S., Blusztajn, J., 2014. Reconstructing Chemical Weathering, Physical Erosion and Monsoon Intensity since 25 Ma in the Northern South China Sea: A Review of Competing Proxies. Earth-Science Reviews, 130(3): 86-102. https://doi.org/10.1016/j.earscirev.2014.01.002
      Das, S. S., Rai, A. K., Akaram, V., et al., 2013. Paleoenvironmental Significance of Clay Mineral Assemblages in the Southeastern Arabian Sea During Last 30 Ka. Journal of Earth System Science, 122(1): 173-185. https://doi.org/10.1007/s12040-012-0251-1
      Dou, Y. G., Yang, S. Y., Liu, Z. X., et al., 2010. Clay Mineral Evolution in the Central Okinawa Trough since 28 ka: Implications for Sediment Provenance and Paleoenvironmental Change. Palaeogeography, Palaeoclimatology, Palaeoecology, 288(1-4): 108-117. https://doi.org/10.1016/j.palaeo.2010.01.040
      Ferrier, K. L., Mitrovica, J. X., Giosan, L., et al., 2015. Sea-Level Responses to Erosion and Deposition of Sediment in the Indus River Basin and the Arabian Sea. Earth and Planetary Science Letters, 416(3): 12-20. https://doi.org/10.1016/j.epsl.2015.01.026
      Fleitmann, D., Burns, S. J., Mangini, A., 2007. Holocene ITCZ and Indian Monsoon Dynamics Recorded in Stalagmites from Oman and Yemen (Socotra). Quaternary Science Review, 26(1-2): 170-188. https://doi.org/10.1016/j.quascirev.2006.04.012
      Garcin, Y., Vincens, A., Williamson, D., et al., 2007. Abrupt Resumption of the African Monsoon at the Yonger Dryas-Holocene Climatic Transition. Quaternary Science Reviews, 26(5-6): 690-704. https://doi.org/10.1016/j.quascirev.2006.10.014
      Gebregiorgis, D., Hathorne, E. C., Sijinkumar, A. V., et al., 2016. South Asian Summer Monsoon Variability During the Last ~54 ka Inferred from Surface Water Salinity and River Runoff Proxies. Quaternary Science Reviews, 138: 6-15. https://doi.org/10.1016/j.quascirev.2016.02.012
      Goswami, V., Singh, S. K., Bhushan, R., et al., 2012. Temporal Variations in 87Sr/86Sr and εNd in Sediments of the Southeastern Arabian Sea: Impact of Monsoon and Surface Water Circulation. Geochemistry, Geophysics, Geosystems, 13(1):1-3. https://doi.org/10.1029/2011gc003802
      Griffin, J. J., Hent, W., Dorris, G. E., 1968. The Distribution of Clay Minerals in the World Ocean. Deep Sea Research and Oceanographic Abstracts, 15(4):433-459. doi: 10.1016/0011-7471(68)90051-X
      Haug, G. H., Hughen, K. A., Sigman, D. M., et al., 2001. Southward Migration of the Intertropical Convergence Zone through the Holocene. Science. 293(5533): 1304-1308. doi: 10.1126/science.1059725
      Hu, D. K., Böning, P., Köhler, C. M., et al., 2012. Deep Sea Records of the Continental Weathering and Erosion Response to East Asian Monsoon Intensification since 14 ka in the South China Sea. Chemical Geology, 326-327(11): 1-18. https://doi.org/10.1016/j.chemgeo.2012.07.024
      Huang, J. B., Wang, S. W., Wen, X. Y., et al., 2008. Progress in Studies of the Climate of Humid Period and the Impacts of Changing Precession in Early-Mid Holocene. Progress in Natural Science, 18(12): 1459-1464. https://doi.org/10.1016/j.pnsc.2008.05.011
      John, S., Michaele, K., Michel, F., et al., 2002. Marine Reservoir Corrections for the Indian Ocean and Southeast Asia. Radiocarbon, 44(1): 167-180. doi: 10.1017/S0033822200064778
      Joussain, R., Colin, C., Liu, Z., et al., 2016. Climatic Control of Sediment Transport from the Himalayas to the Proximal Ne Bengal Fan During the Last Glacial-Interglacial Cycle. Quaternary Science Reviews, 148: 1-16. https://doi.org/10.1016/j.quascirev.2016.06.016
      Kageyama, M., Mignot, J., Swingedouw, D., et al., 2009. Glacial Climate Sensitivity to Different States of the Atlantic Meridional Overturning Circulation: Results from the IPSL Model. Climate of the Past, 5: 551-570. https://doi.org/10.5194/cp-5-551-2009
      Kessarkar, P. M., Purnachadra Rao, V., Naqvi, S. W. A., et al., 2013. Variation in the Indian Summer Monsoon Intensity During the Bølling-Ållerød and Holocene. Paleoceanography, 28(3): 413-425. https://doi.org/10.1002/palo.20040
      Kessarkar, P. M., Rao, V. P., Ahmad, S. M., et al., 2003. Clay Minerals and Sr-Nd Isotopes of the Sediments along the Western Margin of India and Their Implication for Sediment Provenance. Marine Geology, 202(1-2): 55-69. https://doi.org/10.1016/s0025-3227(03)00240-8
      Kolla, V., Kosteckl, J. A., Robinson, F., et al., 1981. Distributions and Origins of Clay Minerals and Quartz in Surface Sediments of the Arabian Sea. Journal of Sedimentary Petrology, 51(2): 563-569. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=uKgrngbN7OVFvtoiU0iRSNUFqFbP19jhJM+LacK+Ihs=
      Kong, W. L., Li, S. Y., Wan, Q., et al. 2011. Differentiation and Discrimination of Marine Clay Minerals as Indicators of Paleoenvironment. Journal of Anhui University (Natural Science Edition), 35(5): 100-108(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ahdxxb201105020
      Kotlia, B. S., Sanwal, J., Phartiyal, B., et al., 2010. Late Quaternary Climatic Changes in the Eastern Kumaun Himalaya, India, as Deduced from Multi-Proxy Studies. Quaternary International, 213(1-2): 44-55. https://doi.org/10.1016/j.quaint.2009.09.002
      Lan, X. H., Li, R. H., Mi, B. B., et al., 2016. Distribution Characteristics of Rare Earth Elements in Surface Sediment and Their Provenance Discrimination in the Eastern Bohai and Northern Yellow Seas. Earth Science, 31(4): 463-474(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201603013
      Laskar, J., Robutel, P., Joutel, F., et al., 2004. A Long-Term Numerical Solution for the Isolation Quantities Of the Earth. Astronomy & Astrophysics, 428(1): 261-285. https://doi.org/10.1051/0004-6361:20041335
      Limmer, D. R., Boning, P., Giosan, L., et al., 2012a. Geochemical Record of Holocene to Recent Sedimentation on the Western Indus Continental Shelf, Arabian Sea. Geochemistry, Geophysics, Geosystems, 13(1): 1-26. https://doi.org/10.1029/2011gc003845
      Limmer, D. R., Kolher, C. M., Hillier, S., et al., 2012b. Chemical Weathering and Provenance Evolution of Holocene-Recent Sediments from the Western Indus Shelf, Northern Arabian Sea Inferred from Physical and Mineralogical Properties. Marine Geology, 326-328(9): 101-115. https://doi.org/10.1016/j.margeo.2012.07.009
      Li, J. R., Liu, S. F., Feng, X. L., et al., 2017. Major and Trace Element Geochemistry of the Mid-Bay of Bengal Surface Sediments: Implications for Provenance. Acta Oceanologica Sinica, 36(3): 82-90. https://doi.org/10.1007/s13131-017-1041-z
      Liu, Z. F., 2010. Clay Mineral Assemblages in Sediments of the South China Sea: East Asian Monsoon Evolution Proxies? Acta Sedimentologica Sinica, 28(5): 1012-1019. (in Chinese with English Abstract) http://cn.bing.com/academic/profile?id=aebb71b1619fb1c98d3daabc52799637&encoded=0&v=paper_preview&mkt=zh-cn
      Liu, Z. F., Colin, C., Li, X. J., et al., 2010. Clay Mineral Distribution in Surface Sediments of the Northeastern South China Sea and Surrounding Fluvial Drainage Basins: Source and Transport. Marine Geology, 277(1-4):48-60. https://doi.org/10.1016/j.margeo.2010.08.010
      Liu, Z. F., Colin, C., Trentesaux, A., et al., 2005. Late Quaternary Climatic Control on Erosion and Weathering in the Eastern Tibetan Plateau and the Mekong Basin. Quaternary Research, 63(3): 316-328. https://doi.org/10.1016/j.yqres.2005.02.005
      Liu, Z. F., Colin, C., Trentesaux, A., et al., 2004. Erosional History of the Eastern Tibetan Plateau Since 190 kyr ago: Clay Mineralogical and Geochemical Investigations from the Southwestern South China Sea. Marine Geology, 209(1-8): 1-4. https://doi.org/10.1016/j.margeo.2004.06.004
      Liu, Z. F., Trentesaux, A., Clemens, S. C., et al., 2003. Clay Mineral Assemblages in the Northern South China Sea: Implications for East Asian Monsoon Evolution over the Past 2 Million Years. Marine Geology, 201(1-3): 133-146. https://doi.org/10.1016/s0025-3227(03)00213-5
      Milliman, J. D., Farnsworth, K. L., 2011. River Discharge to the Coastal Ocean——A Global Synthesis. Cambridge University Press, Cambridge, 1-384.
      Mulitza, S., Prange, M., Stuut, J. B., et al. 2008. Shale Megadrought Triggered by Glacial Slowdowns of Atlantic Meridional Overturning. Paleoceanography, 23(4):1-11. https://doi.org/10.1029/2008PA001637
      Naidu, P. D., Malmgren, B. A., 1996. A High-Resolution Record of Late Quaternary Upwelling along the Oman Margin, Arabian Sea Based on Planktonic Foraminifera. Paleoceanography, 11(1): 129-140. https://doi.org/10.1029/95pa03198
      Oliva, P., Viers, J., Dupré, B., 2003. Chemical Weathering in Granitic Environments. Chemical Geology, 202(3-4):225-256. https://doi.org/10.1016/j.chemgeo.2002.08.001
      Owen, L. A., Finkel, R. C., Caffee, M. W., 2002. A Note on the Extent of Glaciation Throughout the Himalaya During the Global Last Glacial Maximum. Quaternary Science Reviews, 21(1-3): 147-157. https://doi.org/10.1016/S0277-3791(01)00104-4
      Pandarinath, K., 2009. Clay Minerals in SW Indian Continental Shelf Sediment Cores as Indicators of Provenance and Palaeomonsoonal Conditions: A Statistical Approach. International Geology Review, 51(2): 145-165. https://doi.org/10.1080/00206810802622112
      Pandey, D. K., Clift, P. D., Kulhanek, D. K., et al., 2015. Expedition 355 Preliminary Report: Arabian Sea Monsoon. International Ocean Discovery Program. https: //doi.org/10.14379/iodp.pr.355.2015
      Pattan, J. N., Parthiban, G., Garg, A., et al., 2017. Intense Reducing Conditions during the Last Deglaciation and Heinrich Events (H1, H2, H3) in Sediments from the Oxygen Minimum Zone off Goa, Eastern Arabian Sea. Marine and Petroleum Geology, 84: 243-256. https://doi.org/10.1016/j.marpetgeo.2017.03.034
      Phillips, S. C., Johnson, J. E., Underwood, M. B., et al., 2014. Long-Timescale Variation in Bulk and Clay Mineral Composition of Indian Continental Margin Sediments in the Bay of Bengal, Arabian Sea, and Andaman Sea. Marine and Petroleum Geology, 58: 117-138. https://doi.org/10.1016/j.marpetgeo.2014.06.018
      Prins, M. A., Postma, G., 2000. Effects of Climate, Sea Level, and Tectonics Unraveled for Last Deglaciation Turbidite Records of the Arabian Sea. Geology, 28(4): 375-378. https://doi.org/10.1130/0091-7613(2000)28<375:eocsla>2.0.co;2 doi: 10.1130/0091-7613(2000)28<375:eocsla>2.0.co;2
      Rao, V. P., Rao, B. R., 1995. Provenance and Distribution of Clay Minerals in the Sediments of Clay Minerals in the Sediments of the Western Continental Shelf and Slope of India. Continental Shelf Research, 15(14): 1757-1771 doi: 10.1016/0278-4343(94)00092-2
      Rohling, E. J., Foster, G. L., Grant, K. M., et al., 2014. Sea-Level and Deep-Sea-Temperature Variability over the Past 5.3 Million Years. Nature, 508(7497): 477-482. https://doi.org/10.1038/nature13230
      Saraswat, R., Lea, D. W., Nigam, R., et al., 2013. Deglaciation in the Tropical Indian Ocean Driven by Interplay between the Regional Monsoon and Global Teleconnections. Earth and Planetary Science Letters, 375: 166-175. https://doi.org/10.1016/j.epsl.2013.05.022
      Sarkar, A., Ramesh, R., Somayajulu, B. L. K., et al., 2000. High Resolution Holocene Monsoon Record from the Eastern Arabian Sea. Earth and Planetary Science Letters, 177(3-4): 209-218. https://doi.org/10.1016/S0012-821x(00)00053-4
      Singh, A. D., Jung, S. J. A., Darling, K., et al., 2011. Productivity Collapses in the Arabian Sea During Glacial Cold Phases. Paleoceanography, 26(3): 1318-1323. https://doi.org/10.1029/2009pa001923
      Sinha, A., Cannariato, K. G., Stott, L. D., et al., 2005. Variability of Southwest Indian Summer Monsoon Precipitation During the Bølling-Ållerød. Geology, 33(10): 813-816. https://doi.org/10.1130/g21498.1
      Stager, J. C., Ryves, D. B., Chase, B. M., et al., 2011. Catastrophic Drought in the Afro-Asian Monsoon Region During Heinrich Event 1. Science, 33: 1299-1302. https://doi.org/10.1126/science.1198322
      Stoll, H. M., Vance, D., Arevalos, A., 2007. Records of the Nd Isotope Composition of Seawater from the Bay of Bengal: Implications for the Impact of Northern Hemisphere Cooling on Itcz Movement. Earth and Planetary Science Letters, 255(1-2): 213-228. https://doi.org/10.1016/j.epsl.2006.12.016
      Stuiver, M., Reimer, P. J., Reimer, R., 1993. Extended 14C Database and Revised Calib Radiocarbon Calibration Program. Radiocarbon, 35(1): 215-230. doi: 10.1017/S0033822200013904
      Svensson, A., Andersen, K. K., Bigler, M., et al., 2008. A 60 000 Year Greenland Stratigraphic Ice Core Chronology. Climate of the Past, 4(1): 47-57. https://doi.org/10.5194/cp-4-47-2008
      Thamban, M., Rao, V. P., and Schneider, R. R., 2002. Reconstruction of Late Quaternary Monsoon Oscillations Based on Clay Mineral Proxies Using Sediment Cores from the Western Margin of India. Marine Geology, 186(3-4): 527-539. https://doi.org/PiiS0025-3227(02)00268-2 doi: 10.1016/S0025-3227(02)00268-2
      Thiry, M., 2000. Palaeoclimatic Interpretation of Clay Minerals in Marine Deposits: An Outlook from the Continental Origin. Earth-Science Reviews, 49(1-4): 201-221. https://doi.org/10.1016/S0012-8252(99)00054-9
      Tripathy, G. R., Singh, S. K., Ramaswamy, V., 2014. Major and Trace Element Geochemistry of Bay of Bengal Sediments: Implications to Provenances and Their Controlling Factors. Palaeogeography Palaeoclimatology Palaeoecology, 397: 20-30. https://doi.org/10.1016/j.palaeo.2013.04.012
      Wan, S. M., Clift, P. D., Li, A. C., et al., 2012. Tectonic and Climatic Controls on Long-Term Silicate Weathering in Asia since 5 Ma. Geophysical Research Letters, 39(15): 151-155. https://doi.org/10.1029/2012gl052377
      Wan, S. M., Clift, P. D., Zhao, D. B., et al., 2017. Enhanced Silicate Weathering of Tropical Shelf Sediments Exposed during Glacial Lowstands: A Sink for aAtmospheric CO2. Geochimica et Cosmochimica Acta, 200: 123-144. https://doi.org/10.1016/j.gca.2016.12.010
      Wang, Y. Y., Huang, S. B., Zhao, L., et al., 2017. Evolution of Quaternary Sedimentary Environment in Shallow Aquifers, at Shahu Area, Jianghan Plain. Earth Science, 42(5): 751-760. https://doi.org/10.3799/dqkx.2017.063 (in Chinese with English abstract)
      Wei, G. J., Li, Liu, Y.X. H., et al., 2006. Geochemical Record of Chemical Weathering and Monsoon Climate Change since the Early Miocene in the South China Sea. Paleoceanography, 24(4): 1-11. https://doi.org/10.1029/2006PA001300
      Xu, Z. K., Chang, F. M., Li, T. G., et al., 2012a. Provenance of Sediments in the Northern Okinawa trough over the Last 24 ka: High Resolution Record from Major Elements. Marine Geology & Quaternary Geology, 32(4):73-82(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=ba0a91bd18c113a882dd13e3a87e2159&encoded=0&v=paper_preview&mkt=zh-cn
      Xu, Z. K., Li, T. G., Wan, S. M., et al., 2012b. Evolution of East Asian Monsoon: Clay Mineral Evidence in the Western Philippine Sea over the Past 700 kyr. Journal of Asian Earth Sciences, 60: 188-196. https://doi.org/10.1016/j.jseaes.2012.08.018
      Xu, Z. K., Li, T. G., Clift, P. D., et al., 2017. Sediment Provenance and Paleoenvironmental Change in the Middle Okinawa Trough During the Last 18.5 ka: Clay Mineral and Geochemical Evidence. Quaternary International, 440: 139-149. https://doi.org/10.1016/j.quaint.2016.07.058
      Xu, Z. K., Li, T. G., Yu, X. K., et al., 2013. Sediment Provenance and Evolution of the East Asian Winter Monsoon since 700 ka Recorded by Major Elements in the West Philippine Sea. Chinese Science Bulletin, 58(9): 1044-1052, https://doi.org/10.1007/s11434-012-5538-8
      Yu, Z. J., Wan, S. M., Colin, C., et al., 2016. Co-Evolution of Monsoonal Precipitation in East Asia and the Tropical Pacific Enso System since 2.36 Ma: New Insights from High-Resolution Clay Mineral Records in the West Philippine Sea. Earth and Planetary Science Letters, 446:45-55. https://doi.org/10.1016/j.epsl.2016.04.022
      Zorzi, C., Sanchez Goni, M. F., Anupama, K., et al., 2015. Indian Monsoon Variations during Three Contrasting Climate Periods: The Holocene, Heinrich Stadial 2 and the Last Interglacial-Glacial Transition. Quaternary Science Reviews, 125: 50-60. https://doi.org/10.1016/j.quascirew.2015.06.009
      陈忠, 颜文, 2000.海洋沉积粘土矿物与古气候, 古环境演化响应的研究进展.海洋科学, 24(2): 25-27. http://d.old.wanfangdata.com.cn/Periodical/hykx200002009
      孔为伦, 李双应, 万秋, 等, 2011.海洋粘土矿物的古环境含义辨析.安徽大学学报(自然科学版), 35(5): 100-108. doi: 10.3969/j.issn.1000-2162.2011.05.020
      蓝先洪, 李日辉, 密蓓蓓, 等, 2016.渤海东部和黄海北部表层沉积物稀土元素的分布特征与物源判别.地球科学, 41(3): 463-474. http://earth-science.net/WebPage/Article.aspx?id=3272
      刘志飞, 2010.南海沉积物中的黏土矿物:指示东亚季风演化历史?沉积学报, 28(5):1012-1019. http://d.old.wanfangdata.com.cn/Periodical/kxtb200704013
      王妍妍, 黄爽兵, 赵龙, 等, 2017.江汉平原沙湖地区浅层含水层第四纪沉积环境演化.地球科学, 42(5): 751-760. http://earth-science.net/WebPage/Article.aspx?id=3573
      徐兆凯, 常凤鸣, 李铁刚, 等, 2012.24 ka来冲绳海槽背部沉积物来源的高分辨率常量元素记录.海洋地质与第四纪地质, 32(4):73-82. http://www.cqvip.com/QK/96122X/201204/43148733.html
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(3)

      Article views (6442) PDF downloads(84) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return