• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 43 Issue 11
    Nov.  2018
    Turn off MathJax
    Article Contents
    Ge Mengyan, Ma Rui, Sun Ziyong, Long Xiang, Xing Wenle, Wang Shuo, Yin Maosheng, 2018. Using Heat Tracer to Estimate River Water and Groundwater Interactions in Alpine and Cold Regions: A Case Study of Hulugou Watershed in Upper Reach of Heihe River. Earth Science, 43(11): 4246-4255. doi: 10.3799/dqkx.2018.203
    Citation: Ge Mengyan, Ma Rui, Sun Ziyong, Long Xiang, Xing Wenle, Wang Shuo, Yin Maosheng, 2018. Using Heat Tracer to Estimate River Water and Groundwater Interactions in Alpine and Cold Regions: A Case Study of Hulugou Watershed in Upper Reach of Heihe River. Earth Science, 43(11): 4246-4255. doi: 10.3799/dqkx.2018.203

    Using Heat Tracer to Estimate River Water and Groundwater Interactions in Alpine and Cold Regions: A Case Study of Hulugou Watershed in Upper Reach of Heihe River

    doi: 10.3799/dqkx.2018.203
    • Received Date: 2017-12-11
    • Publish Date: 2018-11-15
    • The quantitative research on the interaction between surface water and groundwater in alpine and cold regions is of essential significance for the evaluation and management of the water resources. However, there are relatively few quantitative researches carried out on the interaction between surface water and groundwater in alpine and cold region. Taking Hulugou watershed in upper reach of the Heihe River with permafrost distributed as the study site, monitored temperature time series were used to identify the interactions between river and groundwater, and the utility of heat tracers is also evaluated in this paper. Temperatures of groundwater riverbed sediments at different depths, river stage and groundwater level were monitored at the site. Then, the vertical flow velocities of river water infiltration to groundwater at 3 points along river channel were calculated through the Hatch analytical solutions with the monitored data. The results indicate that river stage was higher than groundwater level, suggesting the recharge of the river water to the groundwater. Temperatures of riverbed sediments were higher in July in comparison with those in September. The river infiltration velocity was between 2×10-6-5×10-5 m/s in the monitoring period. The analyses show that exchange between river and groundwater can be estimated by heat tracers in alpine and cold regions. However, the other recharge sources to groundwater should be investigated by other methods such as isotopic method and numerical modeling. Exchange between river and groundwater is mainly controlled by the relationship between river stage and groundwater level, hydraulic conductivity and heat capacity of riverbed sediments.

       

    • loading
    • Barth, G., Hill, M.C., 2005.Numerical Methods for Improving Sensitivity Analysis and Parameter Estimation of Virus Transport Simulated Using Sorptive-Reactive Processes.Journal of Contaminant Hydrology, 76(3-4):251-277.doi: 10.1016/j.jconhyd.2004.10.001
      Bastola, H., Peterson, E.W., 2016.Heat Tracing to Examine Seasonal Groundwater Flow beneath a Low-Gradient Stream in Rural Central Illinois, USA.Hydrogeology Journal, 24(1):181-194.doi: 10.1007/s10040-015-1320-8
      Brunke, M., Gonser, T., 1997.The Ecological Significance of Exchange Processes between Rivers and Groundwater.Freshwater Biology, 37(1):1-33.doi: 10.1046/j.1365-2427.1997.00143.x
      Du, Y., Ma, T., Deng, Y.M., et al., 2017.Hydro-Biogeochemistry of Hyporheic Zone:Principles, Methods and Ecological Significance.Earth Science, 42(5):661-673 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705001.htm
      Genereux, D.P., Leahy, S., Mitasova, H., et al., 2008.Spatial and Temporal Variability of Streambed Hydraulic Conductivity in West Bear Creek, North Carolina, USA.Journal of Hydrology, 358(3-4):332-353.doi: 10.1016/j.jhydrol.2008.06.017
      Gordon, R.P., Lautz, L.K., Briggs, M.A., et al., 2012.Automated Calculation of Vertical Pore-Water Flux from Field Temperature Time Series Using the VFLUX Method and Computer Program.Journal of Hydrology, 420-421:142-158.doi: 10.1016/j.jhydrol.2011.11.053
      Hatch, C.E., Fisher, A.T., Revenaugh, J.S., et al., 2006.Quantifying Surface Water-Groundwater Interactions Using Time Series Analysis of Streambed Thermal Records:Method Development.Water Resources Research, 42(10):W10410.doi: 10.1029/2005wr004787
      Hatch, C.E., Fisher, A.T., Ruehl, C.R., et al., 2010.Spatial and Temporal Variations in Streambed Hydraulic Conductivity Quantified with Time-Series Thermal Methods.Journal of Hydrology, 389(3-4):276-288.doi: 10.1016/j.jhydrol.2010.05.046
      Hayashi, M., Rosenberry, D.O., 2002.Effects of Ground Water Exchange on the Hydrology and Ecology of Surface Water.Ground Water, 40(3):309-316.doi: 10.1111/j.1745-6584.2002.tb02659.x
      Horton, P., Schaefli, B., Mezghani, A., et al., 2006.Assessment of Climate-Change Impacts on Alpine Discharge Regimes with Climate Model Uncertainty.Hydrological Processes, 20(10):2091-2109.doi: 10.1002/hyp.6197
      Irvine, D.J., Lautz, L.K., Briggs, M.A., et al., 2015.Experimental Evaluation of the Applicability of Phase, Amplitude, and Combined Methods to Determine Water Flux and Thermal Diffusivity from Temperature Time Series Using VFLUX 2.Journal of Hydrology, 531:728-737.doi: 10.1016/j.jhydrol.2015.10.054
      Jasper, K., Calanca, P., Gyalistras, D., et al., 2004.Differential Impacts of Climate Change on the Hydrology of Two Alpine River Basins.Climate Research, 26(2):113-129.doi: 10.3354/cr026113
      Keery, J., Binley, A., Crook, N., et al., 2007.Temporal and Spatial Variability of Groundwater-Surface Water Fluxes:Development and Application of an Analytical Method Using Temperature Time Series.Journal of Hydrology, 336(1-2):1-16.doi: 10.1016/j.jhydrol.2006.12.003
      Laudon, H., Seibert, J., Köhler, S., et al., 2004.Hydrological Flow Paths during Snowmelt:Congruence between Hydrometric Measurements and Oxygen 18 in Meltwater, Soil Water, and Runoff.Water Resources Research, 40(3):W03102.doi: 10.1029/2003wr002455
      Lide, D.R., 2001.CRC Handbook of Chemistry and Physics.82nd Edition.CRC Press, Boca Raton, FL.
      Luce, C.H., Tonina, D., Gariglio, F., et al., 2013.Solutions for the Diurnally Forced Advection-Diffusion Equation to Estimate Bulk Fluid Velocity and Diffusivity in Streambeds from Temperature Time Series.Water Resources Research, 49(1):488-506.doi: 10.1029/2012wr012380
      Ma, R., Sun, Z.Y., Hu, Y.L., et al., 2017.Hydrological Connectivity from Glaciers to Rivers in the Qinghai-Tibet Plateau:Roles of Suprapermafrost and Subpermafrost Groundwater.Hydrology and Earth System Sciences Discussions, 21(9):1-39.doi: 10.5194/hess-2017-7
      Ma, R., Dong, Q.M., Sun, Z.Y., et al., 2013.Using Heat to Trace and Model the Surface Water-Groundwater Interactions:A Review.Geological Science and Technology Information, 32(2):131-137 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201302018.htm
      Ma, R., Zheng, C.M., Zachara, J.M., et al., 2012.Utility of Bromide and Heat Tracers for Aquifer Characterization Affected by Highly Transient Flow Conditions.Water Resources Research, 48(8):W08523.doi: 10.1029/2011wr011281
      McCallum, A.M., Andersen, M.S., Rau, G.C., et al., 2012.A 1-D Analytical Method for Estimating Surface Water-Groundwater Interactions and Effective Thermal Diffusivity Using Temperature Time Series.Water Resources Research, 48(11):W11532.doi: 10.1029/2012wr012007
      Muskat, M., Meres, M.W., 1936.The Flow of Heterogeneous Fluids through Porous Media.Physics, 7(9):346-363. doi: 10.1063/1.1745403
      Rushton, K.R., Tomlinson, L.M., 1979.Possible Mechanisms for Leakage between Aquifers and Rivers.Journal of Hydrology, 40(1-2):49-65.doi: 10.1016/0022-1694(79)90087-8
      Sophocleous, M., 2002.Interactions between Groundwater and Surface Water:The State of the Science.Hydrogeology Journal, 10(1):52-67.doi: 10.1007/s10040-001-0170-8
      Stallman, R.W., 1963.Computation of Ground-Water Velocity from Temperature Data.USGS Water Supply Paper, 1544(H):36-46. http://ci.nii.ac.jp/naid/10003711957
      Vogt, T., Schneider, P., Hahn-Woernle, L., et al., 2010.Estimation of Seepage Rates in a Losing Stream by Means of Fiber-Optic High-Resolution Vertical Temperature Profiling.Journal of Hydrology, 380(1-2):154-164.doi: 10.1016/j.jhydrol.2009.10.033
      Wagner, W., Cooper, J.R., Dittmann, A., et al., 2008.Iapws Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam.Springer, Berlin, Heidelberg, 7-150.
      Welch, A.H., Westjohn, D.B., Helsel, D.R., et al., 2000.Arsenic in Ground Water of the United States:Occurrence and Geochemistry.Ground Water, 38(4):589-604.doi: 10.1111/j.1745-6584.2000.tb00251.x
      Winter, T.C., 1999.Relation of Streams, Lakes, and Wetlands to Groundwater Flow Systems.Hydrogeology Journal, 7(1):28-45.doi: 10.1007/s100400050178
      Xiao, S.C., Xiao, H.L., Lan, Y.C., et al., 2011.Water Issues and Integrated Water Resource Management in Heihe River Basin in Recent 50 Years.Journal of Desert Research, 31(2):529-535 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgsm201102040
      Yan, Y.N., Ma, T., Zhang, J.W., et al., 2017.Experiment on Migration and Transformation of Nitrate under Interaction of Groundwater and Surface Water.Earth Science, 42(5):783-792 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705014
      Zheng, M.J., Wan, C.W., Du, M.D., et al., 2016.Application of Rn-222 Isotope for the Interaction between Surface Water and Groundwater in the Source Area of the Yellow River.Hydrology Research, 47(6):1253-1262.doi: 10.2166/nh.2016.070
      杜尧, 马腾, 邓娅敏, 等, 2017.潜流带水文-生物地球化学:原理、方法及其生态意义.地球科学, 42(5):661-673. http://earth-science.net/WebPage/Article.aspx?id=3581
      马瑞, 董启明, 孙自永, 等, 2013.地表水与地下水相互作用的温度示踪与模拟研究进展.地质科技情报, 32(2):131-137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013050700060843
      肖生春, 肖洪浪, 蓝永超, 等, 2011.近50a来黑河流域水资源问题与流域集成管理.中国沙漠, 31(2):529-535. http://d.old.wanfangdata.com.cn/Conference/7449535
      闫雅妮, 马腾, 张俊文, 等, 2017.地下水与地表水相互作用下硝态氮的迁移转化实验.地球科学, 42(5):783-792. http://earth-science.net/WebPage/Article.aspx?id=3570
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(2)

      Article views (4003) PDF downloads(40) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return